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ABSTRACT: 
As autonomous driving technology advances, ensuring the system's safety in rain and snow has emerged as a pivotal research topic. In 
rainy and snowy weather, rain and snow can generate noise points within the point cloud captured by the Light Detection and Ranging 
(LiDAR), significantly impeding the LiDAR's sensing capability. To address this problem, we first manually label the point cloud data 
gathered in rain and snow, categorizing all points into noise points and non-noise points. Subsequently, we analyze the intensity and 
spatial distribution characteristics of the rain and snow noise points and employ the gamma distribution curve to illustrate the spatial 
distribution characteristics of these noise points. Finally, we propose a Low-Intensity Dynamic Statistical Outlier Removal (LIDSOR) 
filter, an enhancement of the existing Dynamic Statistical Outlier Removal (DSOR) filter. Experimental results suggest that the 
LIDSOR filter can effectively eliminate rain and snow noise points while preserving more environmental feature points. Additionally, 
it consumes fewer computational resources. The filter we propose in this paper significantly contributes to the safe operation of the 
autonomous driving system in diverse complex environments. 
 

1. INTRODUCTION 

As autonomous driving technology continues to mature, the role 
of sensors in Autonomous Driving System (ADS) becomes 
increasingly critical. ADS integrates a diverse range of sensors, 
which collaboratively respond to a multitude of situations 
throughout the vehicle's driving process. Among these, LiDAR 
stands out as a central sensor within the autonomous driving 
perception system. It collects environmental data in the form of 
3D point clouds. These point cloud data are processed to facilitate 
an array of advanced perception tasks integral to autonomous 
driving, such as semantic segmentation, object detection, and 
tracking. However, in rainy and snowy weather conditions, 
LiDAR tends to generate an abundance of noise points due to the 
occlusion and reflection of raindrops and snowflakes. This could 
potentially compromise the safety of ADS. To accommodate the 
use of autonomous driving technology in such inclement weather, 
the academic community has proposed numerous solutions to 
mitigate the issue of excessive noise points produced by LiDAR. 
Among these, implementing filters is a common approach. 
Traditional PCL-based generalized filters, such as Statistical 
Outlier Removal (SOR) filter and Radius Outlier Removal (ROR) 
filter (Rusu and Cousins, 2011), are able to eliminate some noise 
points produced by rain and snow. However, they tend to erase 
substantial environmental features. As a result, some researchers 
have proposed modifications like the Dynamic Statistical Outlier 
Removal (DSOR) filter (Kurup and Bos, 2021) and the Dynamic 
Radius Outlier Removal (DROR) filter (Charron et al., 2018), 
both of which take into account the variations in point density 
within the point cloud data. Additionally, following the 
successful application of intensity in point cloud classification, 
some researchers proposed a Low-Intensity Outlier Removal 
(LIOR) filter (Park et al., 2020) which integrated intensity into 
point cloud denoising. Another prevalent method is the use of 
Deep Learning (DL), as evidenced by the development of 
WeatherNet (Heinzler et al. 2020), the first CNN-based point 
cloud denoising method, and the more recent SunnyNet (Luo et 
al., 2022) and 4DenoiseNet (Seppänen et al., 2023). However, the 
generalizability of DL remains a considerable challenge due to 
the insufficient maturity of public datasets for severe weather. 
To address these challenges, we propose an improved LIDSOR 
filter. This paper contributes in the following ways: 

 
*  Corresponding author 
 

a) We performed a comprehensive statistical analysis on the 
intensity and spatial distribution characteristics of noise points 
generated in rain and snow, subsequently employing gamma 
curves for a more precise fitting of these noise point distribution 
characteristics. 
b) We propose a LIDSOR filter. This filter is built on intensity 
and distance thresholds. 
c) Our experimental results reveal that the LIDSOR filter 
outperforms existing filters in terms of overall efficacy. 
 

2. RELATED WORK 

2.1 Research Status of Severe Weather Datasets 

Currently, publicly available severe weather datasets are not 
sufficiently mature. Below is a brief overview of severe weather 
datasets released in recent years. Bijelic et al. unveiled the 
DENSE dataset in 2020 (Bijelic et al. 2020). This multimodal 
severe weather dataset includes data captured under fog, snow, 
and heavy rain scenarios, with bounding boxes providing the 
labels. In 2021, Pitropov et al. released the Canadian Adverse 
Driving Conditions (CADC) dataset (Pitropov et al. 2021), 
marking the advent of the first autonomous vehicle dataset 
specifically tailored for adverse driving conditions. The CADC 
dataset utilizes the same annotation approach as the DENSE 
dataset and additionally offers time series information. In the 
same year, Kurup and Bos published a research paper addressing 
the removal of snow noise points (Kurup and Bos, 2021). Their 
contribution included the release of the Winter Adverse Driving 
DataSet (WADS), which is notably distinctive for containing 
data from snow days and for its point-by-point labeling. This 
dataset has significantly facilitated the study of snow noise 
removal, but it lacks time series information. In 2022, a research 
team introduced the Ithaca365 dataset (Diaz-Ruiz et al. 2022), 
encompassing diverse scenes (city, highway, countryside, 
campus) and weather conditions (snow, rain, sun). Its standout 
feature is the inclusion of road and object annotations, employing 
modal masks to document partial occlusions and 2D/3D 
bounding boxes. In 2023, the Boreas dataset was released by 
Burnett et al. (Burnett et al. 2023), encompassing over 350km of 
driving data. The Boreas dataset's unique strength lies in its data 
collection methodology: the same routes were driven repeatedly 
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over the course of a year. This approach resulted in the Boreas 
dataset housing comparable data. 
 
2.2 Research Status of Point Cloud Denoising Methods 

Denoising methods for point cloud data are generally divided into 
two primary categories: filter-based and DL-based methods. 
Filter methods tend to offer superior generalization and 
interpretability when compared to their DL counterparts. 
However, DL methods show a marked advantage when the task 
involves distinguishing noise points that are difficult to 
differentiate from non-noise points. Nevertheless, through 
algorithmic optimization, filters can effectively address this issue. 
 
2.2.1 Research Status of Filter-Based Denoising Methods:  
Charron et al. proposed the DROR filter (Charron et al., 2018). 
In comparison to the ROR method, DROR can dynamically 
adjust the search radius, thereby retaining more environmental 
feature points at medium and long distances. Balta et al. proposed 
the Fast Cluster Statistical Outlier Removal (FCSOR) filter based 
on SOR (Balta et al., 2018). This method enhances algorithmic 
efficiency by implementing rapid cluster analysis subsequent to 
the downsampling of point cloud data. The intensity-based 
filtering method filters out rain and snow noise points by pre-
setting LiDAR intensity thresholds for reflectors such as 
raindrops and snowflakes, and applying these thresholds to the 
intensity values (Hui et al., 2008). However, some environmental 
features and raindrops or snowflakes exhibit similar intensities, 
leading to potential misclassification by the filter. To overcome 
this limitation, Park et al. proposed the LIOR filter (Park et al. 
2020) by merging the intensity filtering method and ROR. This 
approach sets a point cloud intensity threshold for initial filtering 
of the point cloud and subsequently applies ROR to the initial 
filtering results for secondary filtering. This compensates for the 
limitation of the singular attribute of the intensity filtering 
method. Kurup and Bos proposed the DSOR filter (Kurup and 
Bos, 2021), which optimizes the SOR filter by adaptively 
adjusting the thresholds in the SOR filter in line with the increase 
in LiDAR detection distance. Wang et al. proposed the Dynamic 
Distance-Intensity Outlier Removal (DDIOR) filter  based on 
distance and intensity information (Wang et al., 2022). This 
method is specifically tailored to address the characteristics of 
snow noise points and takes both intensity information and 
distance into consideration, enabling effective filtering results in 
snowy weather. Duan et al. combined Principal Component 
Analysis and density clustering to propose the PCA-based 
adaptive clustering filtering (PCAAC) method (Duan et al. 2021). 
This is an improved method based on PCA that filters out sparse 
point cloud regions after transforming the 3D point cloud into 
two dimensions, thereby facilitating the removal of snowflake 
noise. 
 
2.2.2 Research Status of DL-Based Denoising Methods: 
Sun et al. proposed a point cloud filtering method premised on a 
convolutional neural network model (Sun et al., 2019). This 
method is primarily designed to address the task of removing rain 
from individual images of urban street scenes for autonomous 
driving in rainy weather. Heinzle et al. advanced a point cloud 
filtering method based on a convolutional neural network deep 
learning framework (Heinzler et al., 2020). This method is 
capable of understanding the intrinsic data structure and 
generalizing its properties across different distances and clutter 
distributions. Further, it effectively incorporates the intensity 
information of the point cloud. Empirical results demonstrate that 
this method attains commendable filtering results in rainy 
weather.  
 

3. APPROACH 

3.1 Analysis of the Characteristics of Rain and Snow Noise 
Points 

3.1.1 Data Collection: The equipment utilized for point cloud 
data acquisition in this study is the Hesai Pandar40 LiDAR. We 
annotate the collected point cloud data on a point-by-point basis. 
Figures 1 and 2 illustrate the visualization results of a frame point 
cloud, labelled point by point, in rainy and snowy weather, 
respectively. Noise points are represented by blue points, 
whereas non-noise points are indicated by red points. By 
analyzing these figures, it can be inferred that some noise points 
in rainy weather are situated below the ground plane and 
symmetrically arranged with respect to the above-ground 
features. These points are a result of the laser beam's reflection 
off the water on the ground. Conversely, in snowy weather, noise 
points predominantly occupy the spatial region above the ground 
plane and are highly concentrated near the LiDAR sensor. These 
points are generated by falling snowflakes reflecting the laser 
beam. 

 
Figure 1. Visualization result of point cloud in rainy weather. 

 
Figure 2. Visualization result of point cloud in snowy weather. 

 
3.1.2 Analysis of the Characteristics of Rain Noise Points: 
We initially conducted a frame-by-frame statistical analysis of 
the labeled point cloud data in rainy weather. Figure 3 presents 
the results of this analysis for a specific frame in rainy weather. 
During this statistical analysis, for improved reader distinction, 
we color-coded noise points in red and non-noise points in blue. 
In the statistical analysis of the relationship between intensity 
values and the number of points, the intensity values ranged from 
0 to 255. A closer examination of Figure 3 a) demonstrates that 
the reflected intensity values of rain noise points occupy the 
lower range, and the count of noise points decreases as the 
intensity values increase. We calculated that in rainy weather, 
over 98% of rain noise points have intensities distributed in 
intervals of 25 units or less. 
In our analysis of the relationship between distance intervals and 
the number of points, we initially partitioned the distance from 
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the point to the center of the LiDAR sensor into intervals of 10 
meters. A more detailed observation of Figure 3 b) indicates that 
rain noise points are almost entirely concentrated within a 60m 
radius. To more effectively analyze the spatial distribution 
characteristics of noise points, we adopt a method from prior 
research: fitting the data to a gamma distribution curve 
(Ronnback and Wernersson, 2008). The Probability Density 
Function (PDF) of the gamma distribution is depicted in Equation 
(1). Figure 4 presents the gamma distribution fitting result for a 
point cloud frame in rainy weather. Table 1 showcases the 
parameter fitting results of the PDF for the gamma distribution 
corresponding to the rain noise points. 
 

 𝑓𝑓(𝑥𝑥) =
𝜃𝜃𝑘𝑘

Γ(𝑘𝑘) 𝑥𝑥
𝑘𝑘−1𝑒𝑒−𝜃𝜃𝑥𝑥 , 𝑥𝑥 > 0 (1) 

 

 
Figure 4. Gamma distribution fitting result for rain noise points. 

 
Figure 4 illustrates that rain noise points exhibit significant 
outliers within some distance intervals. This is attributed to a 
large volume of noise points generated by water reflections from 
the road surface. These noise points produce anomalies in the 
count of rain noise points and interfere with the gamma 
distribution curve fitting process, subsequently reducing the 
fitting accuracy. This also explains why the variance of the 
gamma distribution curve parameter fitting results in rainy 
weather exceeds that in snowy weather. Upon a more detailed 
inspection of the fitted curves, it is observable that the quantity 
of rain noise points exhibits a tendency to initially increase and 
subsequently decrease. Notably, this variation manifests within a 
distance span of 0 to 20 meters. 
Based on the LiDAR equation in Eq. (2) (Kashani et al. 2015), 
we understand that a point's intensity value is principally 
influenced by the object's reflectivity, the distance, and the angle 
of incidence. Consequently, we will statistically analyze the 
relationship between distance and intensity in the subsequent 
sections. 
 

 𝑃𝑃𝑟𝑟 =
𝑃𝑃𝑡𝑡𝐷𝐷𝑟𝑟2𝜂𝜂𝑎𝑎𝑡𝑡𝑎𝑎𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠𝜌𝜌

4𝑅𝑅2 𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑖𝑖 (2) 

 
Fig 3 c) illustrates that rain noise points primarily cluster in the 
bottom-left corner. This pattern suggests the existence of a 
intensity threshold and a distance threshold specific to rain noise 
points, thus confirming the rationality of the methodological 
enhancement proposed in this paper. 

3.1.3 Analysis of the Characteristics of Snow Noise Points:  
Following the process used to statistically analyze rain noise 
points, we also conducted a frame-by-frame analysis of the 
labeled point cloud data collected in snowy weather. The results 
of the statistical analysis of the point cloud in snowy weather are 
displayed in Figure 5. In line with prior research (Park et al., 2020) 
and Equation (2), it becomes apparent that when setting the 
intensity threshold for snow, we must consider the size of the 
snow particles, their reflectivity, and the ratio of the snow-
covered area to the beam area. As the diameter of the snow 
increases, its reflectivity correspondingly decreases. In alignment 
with the LIOR paper (Park et al., 2020), we set the maximum 
diameter of snow at 1.12 cm, the angle of incidence at 45°, and 
the reflectivity of snow at 0.158 for this study. 
Our statistical analysis of the relationship between the intensity 
values and the number of points, as shown in Figure 5 a), suggests 
that the intensity values of the noise points are almost entirely 
confined within an interval of 40 units. Further calculations 
revealed that in snowy weather, more than 98% of the snow noise 
points have their intensity distributed within an interval of 28 
units. 
Moving on to the statistical analysis of the relationship between 
the distance intervals and the number of points, Figure 5 c) 
demonstrates that the snow noise points are predominantly 
concentrated within a distance interval of 70m or less from the 
sensor's center, with the majority of the noise points being within 
20m. In order to gain a more precise understanding of the spatial 
distribution characteristics of snow noise points, we fitted the 
data to a gamma curve. Figure 6 displays the result of fitting the 
gamma distribution to a point cloud frame in snowy weather. The 
fitting results for the parameters of the PDF of the gamma 
distribution corresponding to the snow noise points are detailed 
in Table 1. The fitting curves reveal that the snow noise points 
are mainly distributed within a spatial region 0-15m from the 
LiDAR sensor. The overall trend in the number of noise points 
displays an initial increase followed by a decrease, with changes 
occurring predominantly within the 5-10m range. 

 
Figure 6. Gamma distribution fitting result for snow noise 

points. 

 
Similar to the distance versus intensity characteristics for rain 
noise points, we note from Figure 5 c) that snow noise points are 
primarily concentrated in the lower left quadrant of the diagram. 
This observation confirms the appropriateness of the 
methodological enhancements made in this paper. 

Table 1. Fitting results of gamma distribution PDF curve parameters. 

Weather Shape Parameter 𝑘𝑘 Scale Parameter 𝜃𝜃 Variance 𝑟𝑟 
Rain 1.410335 11.366825 0.738499 
Snow 6.405399 1.304660 0.589831 
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a) Relationship between intensity and number of points. 

 
b) Relationship between distance intervals and number of points. 

 
c) Relationship between distance and intensity. 

Figure 3. Results of statistical analysis of point clouds in rainy weather. 

 

 

a) Relationship between intensity and number of points. 

 

b) Relationship between distance intervals and number of points. 

 

c) Relationship between distance and intensity. 

Figure 5. Results of statistical analysis of point clouds in snowy weather. 
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3.2 Workflow and Basic Principle of Improved LIDSOR 

3.2.1 Workflow of LIDSOR: The operational workflow of 
LIDSOR is bifurcated into two stages: initialization and filtering, 
as depicted in Figure 7. The initialization stage, executed only 
once before LIDSOR begins functioning, involves initial filtering 
using a state-of-the-art filter to identify noise points, followed by 
the computation of the gamma distribution fitting function. 
Subsequently, two input parameters—distance threshold and 
intensity threshold—are calculated according to Equations (3) 
and (4). Given the previously identified characteristics, we have 
set the intensity thresholds to 25 for rainy weather and 28 for 
snowy weather in this paper. Taking into account the lower 
probability in rainy weather, we establish a significance level at 
0.01, suggesting that when the occurrence probability of rain and 
snow noise points falls below 0.01, the space can be considered 
noise-free. Following these significance test criteria, the distance 
thresholds for rainy and snowy weather with a P-value of 0.01 
are approximately 30 meters and 16 meters, respectively. During 
the filtering stage, these computed distance and intensity 
thresholds are introduced as parameters into LIDSOR. This 
initiates operation and results in the production of filtered point 
cloud data. 
 

𝑇𝑇𝑑𝑑  ⇔ 𝑓𝑓(𝑇𝑇𝑑𝑑) = 0.01 (3) 
 
where  𝑓𝑓(𝑇𝑇)  = the corresponding unit space distribution 
probability of point clouds at the respective distance 
               𝑇𝑇𝑑𝑑 = distance threshold 
 

𝑇𝑇𝑖𝑖  ⇔ 𝑓𝑓(𝑇𝑇𝑖𝑖) = 𝑁𝑁 (4) 
 
where   𝑁𝑁  = the unit space distribution quantity threshold, 
accounting for 2% of the total point cloud count 
               𝑓𝑓(𝑇𝑇)  = the corresponding unit space distribution 
quantity of point clouds for the respective intensity 
               𝑇𝑇𝑖𝑖 = intensity threshold 
 
3.2.2 Basic Principle of LIDSOR: The LIDSOR pseudo-
code is depicted in Algorithm 1. Distinct from DSOR, LIDSOR 
incorporates two additional input parameters: a distance 
threshold and an intensity threshold. The distance threshold 
regulates LIDSOR's filtering scope. Based on the characteristics 
results, the count of rain and snow noise points initially escalates 
and then declines with increasing detection distance. Hence, 
beyond a specific distance, the quantity of rain and snow noise 
points within the point cloud data becomes negligible. Setting a 
distance threshold enables LIDSOR to bypass filtering of these 
point clouds, thereby decreasing computational load and 
shortening algorithm filtering time. 
The intensity threshold determines the intensity range filtered by 
LIDSOR. Given that rain and snow noise points exhibit a distinct 
intensity range, setting the intensity threshold instructs LIDSOR 
to process only those point clouds whose reflection intensities are 
comparable to the rain and snow noise points. Point clouds 
exhibiting considerable intensity differences from rain and snow 
noise points are exempted from filtering. This strategy preserves 

more environmental feature points from incorrect classification 
as noise and consequent removal by the filter, while also reducing 
computational load and filtering time. 
 

Algorithm 1 Low-Intensity Dynamic Statistical Outlier 
Removal (LIDSOR) Filter 
Input：Point Cloud 𝑷𝑷 = 𝑝𝑝𝑖𝑖，𝑖𝑖 = 1,2, … ,𝑁𝑁；𝑝𝑝𝑖𝑖=(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) 
𝒌𝒌 ← minimum number of nearest neighbors  
𝒔𝒔 ← multiplication factor for standard deviation 
𝒓𝒓 ← multiplication factor for range 
𝒊𝒊 ← intensity threshold 
𝒅𝒅 ← distance threshold 
 
Output：Filtered Point Cloud 𝑭𝑭 = 𝑓𝑓𝑖𝑖，𝑖𝑖 = 1,2, … ,𝑁𝑁；
𝑝𝑝𝑖𝑖=(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖) 
 
for 𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃 do 

calculate： 𝑑𝑑𝑖𝑖𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 ← �𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2 + 𝑧𝑧𝑖𝑖2 
if 𝑑𝑑𝑖𝑖𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 < 𝒅𝒅 then 

primary filtrating point cloud 𝑄𝑄 ← 𝑝𝑝𝑖𝑖 (store in the 
primary filtrating point cloud) 
else 

𝑓𝑓𝑖𝑖 ← 𝑝𝑝𝑖𝑖 (stored in the filtered point cloud) 
end if 

end for 
𝑄𝑄 ← kd-tree pretreatment 
for 𝑝𝑝𝑖𝑖 ∈ 𝑄𝑄 do 

mean distances 𝐷𝐷 ← nearestKSearch(𝒌𝒌) 
end for 
calculate：mean 𝜇𝜇 ← 𝐷𝐷 
calculate：standard deviation 𝜎𝜎 ← 𝐷𝐷 
calculate：global threshold 𝑇𝑇𝑔𝑔 ← 𝜇𝜇 + 𝜎𝜎 × 𝒔𝒔 
for 𝑝𝑝𝑖𝑖 ∈ 𝑄𝑄 do 

calculate：𝑑𝑑𝑖𝑖𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑒𝑒 ← �𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑖𝑖2 + 𝑧𝑧𝑖𝑖2 
calculate：dynamic threshold 𝑇𝑇𝑑𝑑 ← 𝑇𝑇𝑔𝑔 × 𝒓𝒓 × 𝑑𝑑istance 

if 𝐷𝐷 > 𝑇𝑇𝑑𝑑 and 𝐼𝐼𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝑐𝑐𝑖𝑖𝑑𝑑𝑦𝑦(𝑝𝑝𝑖𝑖) < 𝒊𝒊 then 
𝑝𝑝𝑖𝑖 → discard (classified as noise) 

else 
𝑓𝑓𝑖𝑖 ← 𝑝𝑝𝑖𝑖 (stored in the filtered point cloud) 

end if 
end for 
return 𝑭𝑭  (Output filtered point cloud) 

 
4. RESULTS AND EVALUATION  

In this paper, we conduct filtering experiments on point-by-point 
labeled point cloud data collected in rainy and snowy weather. 
We apply five existing filters - ROR, SOR, DROR, DSOR, 
DDIOR - as well as our proposed LIDSOR filter, each one 
separately. We undertake both qualitative and quantitative 
analysis of the experimental results. For the quantitative analysis, 
we employ accuracy, precision, recall, and filtering time as 
evaluation metrics. 

 
Figure 7. Workflow of LIDSOR. 
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4.1 Qualitative Analysis 

Figures 8 and 9 present raw point cloud data for a frame in rainy 
and snowy weather, respectively. Visualization results of the 
point clouds, post-filtering by the six different filters under both 
weather conditions, are depicted in Figures 10 and 11. Analyzing 
these figures, we discern that the filtering algorithms of SOR and 
ROR, constrained by their principle, cannot adaptively adjust 
their constraints in line with detection distance. Consequently, 
these filters only retain environmental feature points at closer 
distances, while discarding mid to far distance points, resulting 
in a significant loss of environmental feature points. However, 
DROR, DSOR, DDIOR, and LIDSOR filters, capable of 
adaptively adjusting constraints based on detection distance, 
demonstrate notably improved filtering outcomes compared to 
ROR and SOR, successfully preserving a larger proportion of 
environmental feature points. 

 
Figure 8. Visualization result of raw point cloud in rainy 

weather. 

 
Figure 9. Visualization result of raw point cloud in snowy 

weather. 
 

A further examination of Figures 10 c), d), e), and f) suggests that 
among the four methods, the DSOR filter demonstrates the least 
effective filtering outcome. While it succeeds in eliminating rain 
noise points, it also inadvertently discards significant 
environmental feature points, particularly those represented by 
leaves (blue boxes). The DROR filter, compared to the DSOR 
filter, manages to retain more environmental feature points at mid 
to far distances, though it falls short in effectively removing noise 
points at mid to near distances (green boxes). The DDIOR filter 
almost completely removes noise points and retains more 
environmental feature points at mid and far distances than the 
DSOR filter (purple boxes). The LIDSOR filter, impressively, 
manages to nearly eliminate all noise points while retaining the 
maximum number of environmental feature points, 
demonstrating the best filtering outcome among the four filters. 
An analogous comparison of Figures 11 c), d), e), and f) indicates 
that the DROR filter retains more ambient feature points in 
snowy weather compared to the DSOR filter, particularly at mid 
and far distances (purple boxes). However, it doesn't perform as 
well as the DSOR filter at mid to short distances (blue boxes). At 
mid to near distances, the performance of the DDIOR and DSOR 
filters is quite similar, with both occasionally failing to remove 
individual noise points. Yet, at mid to far distances, the DDIOR 
filter preserves more ambient feature points (green boxes). The 

LIDSOR filter excels in denoising and retains ambient feature 
points exceptionally well. 
 
4.2 Quantitative Analysis 

4.2.1 Accuracy: The formula for the accuracy is shown in the 
following Equation: 
 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑟𝑟𝑑𝑑𝑐𝑐𝑦𝑦 =  
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑁𝑁  (5) 

 
where  𝑇𝑇𝑃𝑃 = The number of noise points recognized by the 
filter as noises 
                𝑇𝑇𝑁𝑁 = The number of  non-noise points identified by the 
filter as non-noise points 
                𝑁𝑁 = Total number of samples 
 
Table 2 displays the accuracy results. In rainy weather, the 
DROR filter achieves the highest accuracy, with the LIDSOR 
filter following closely. However, the LIDSOR filter outperforms 
others in snowy weather. A deeper analysis indicates that the 
accuracy of every filter, barring ROR and SOR, is lower in rainy 
weather than in snowy weather. This suggests a diminished 
robustness of these filters in rainy weather as compared to their 
performance in snowy weather. 
 
4.2.2 Precision and Recall: The formula for the precision is 
shown in the following Equation:  
 

𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑑𝑑 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 (6) 

 
where  𝑇𝑇𝑃𝑃 = The number of noise points recognized by the 
filter as noises 
                𝐹𝐹𝑃𝑃 = The number of non-noise points recognized by 
the filter as noises 
 
The formula for the recall is shown in the following Equation: 
 

𝑅𝑅𝑒𝑒𝑐𝑐𝑑𝑑𝑒𝑒𝑒𝑒 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁 (7) 

 
where  𝑇𝑇𝑃𝑃 = The number of noise points recognized by the 
filter as noises 
                𝐹𝐹𝑁𝑁  = The number of noise points identified by the 
filter as non-noise points 
 
Table 2 presents the precision and recall outcomes for the six 
filters in rainy and snowy weather. The ROR and SOR filters 
sacrifice a substantial number of environmental feature points in 
rainy and snowy weather, thus reflecting low precision rates. A 
more detailed examination of the other four filters shows that the 
DROR filter, operating in rainy weather, records the lowest recall 
due to its domain search-based algorithm, failing to effectively 
eradicate non-sparse noise points generated by water reflections 
on the road surface. As an advancement, the LIDSOR filter 
significantly boosts precision while reducing recall relative to the 
DSOR filter, yet overall, it demonstrates the most balanced 
precision and recall rates among all filters. This balance suggests 
its capability to eliminate noise points whilst preserving as many 
environmental features as possible, thereby delivering high-
quality point cloud data. In snowy weather, the DROR filter 
exhibits the strongest noise removal ability among the four, while 
the DDIOR filter struggles with retaining environmental features. 
As an improvement, the LIDSOR filter achieves an effective 
balance of precision and recall, outperforming the DSOR filter in 
retaining more environmental features. 
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a) Point cloud visualization result after ROR filtering. b) Point cloud visualization result after SOR filtering. 

  
c) Point cloud visualization result after DROR filtering. d) Point cloud visualization result after DSOR filtering. 

  
e) Point cloud visualization result after DDIOR filtering. f) Point cloud visualization result after LIDSOR filtering. 

Figure 10. Visual comparison of point cloud filtering results in rainy weather. 

  

a) Point cloud visualization result after ROR filtering. b) Point cloud visualization result after SOR filtering. 

  

c) Point cloud visualization result after DROR filtering. d) Point cloud visualization result after DSOR filtering. 

  

e) Point cloud visualization result after DDIOR filtering. f) Point cloud visualization result after LIDSOR filtering. 

Figure 11. Visual comparison of point cloud filtering results in snowy weather.
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Table 2. Quantitative analysis results. 

Filters Rain Snow 
Accuracy Precision Recall Time(ms) Accuracy Precision Recall Time(ms) 

ROR 0.9053827 5.009 33.979 96.862 0.7401034 2.776 79.376 101.446 
SOR 0.8470597 4.717 54.545 117.381 0.7797307 3.04 74.297 154.093 

DROR 0.9831053 19.352 7.454 5284.036 0.9906161 52.618 68.808 4891.679 
DSOR 0.9577436 8.546 22.441 105.250 0.9920792 61.235 62.608 143.596 

DDIOR 0.9632657 10.216 18.525 105.155 0.9661649 21.063 64.653 165.484 
LIDSOR 0.9734935 10.276 12.373 104.907 0.993089 67.49 64.764 143.519 

4.2.3 Algorithm efficiency analysis: Table 2 reveals the 
average filtering time of the six filters for each frame point cloud 
in rainy and snowy weather. The ROR filter demonstrates the 
quickest filtering time, followed by the LIDSOR filter, while the 
DROR filter takes the longest, significantly exceeding the others. 
The superior efficiency of the ROR filter can be attributed to its 
lower algorithmic time complexity at O(n). The SOR, DSOR, and 
DDIOR filters, with a complexity of O(logn), are less efficient. 
The DROR filter's extensive filtering time stems from its 
methodological requirement to traverse all data points and 
conduct iterative radius searches, resulting in an algorithmic time 
complexity of O(nlogn), despite kd-tree preprocessing. The 
LIDSOR filter, an enhancement to the DSOR filter, shares the 
O(logn) complexity but manages to reduce filtering time due to 
the implementation of distance and intensity thresholds. These 
reduce computational demands and enhance algorithmic 
efficiency, especially as the volume of point cloud data increases. 
 

5. CONCLUSION 

In an effort to eliminate noise points caused by rain and snow 
within LiDAR point cloud data, we initially conduct an analysis 
of these noise points' unique characteristics. Our experimental 
findings demonstrate that the spatial distribution characteristics 
of these noise points can be proficiently defined using a gamma 
distribution fitting function. Subsequently, utilizing these 
characteristics, we propose a LIDSOR filter, which operates on 
the basis of intensity and distance thresholds. This innovative 
method incorporates two primary constraints: the intensity of the 
points and the detection range of the LiDAR sensor. By doing so, 
it capitalizes fully on both the intensity and spatial distribution 
characteristics of the noise points, thereby facilitating effective 
removal of noise points generated by rain and snow. Compared to 
existing filters, the filter we propose in this paper effectively 
retains a larger proportion of environmental feature points, 
ensures the elimination of noise points, and maintains real-time 
performance in rainy and snowy weather. The filter we propose 
in this paper significantly contributes to the safe operation of the 
autonomous driving system in diverse complex environments. 
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