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ABSTRACT: 

The world relies heavily on wheat, corn, and rice for nutrition, with global challenges such as population growth and climate change 
threatening food security. To tackle this, plant breeding, supported by digital technologies, focuses on improving food quality and 
quantity. Currently, crop yield estimation uses indirect observations through hyperspectral data and spectral indices, such as NDVI, 
which suffer from low sensitivity in breeding scenarios. Terrestrial laser scanners (TLS) present an alternative, allowing observations 
of the quantity and morphology of wheat ears from point clouds, which are directly linked to grain yield. However, exploiting these 
observations under field conditions presents challenges, mainly due to reduced resolution and non-homogenous properties of point 
clouds. In response, we propose an approach for in-field wheat yield estimation using machine learning and stochastic features of 
TLS point clouds that are specifically handcrafted to be less sensitive to the abovementioned phenomena. This approach avoids the 
need for explicit 3D reconstruction of individual plants and plant organs. Our initial results show limited success in yield estimation 
when posed as a regression problem. However, when framed as a classification problem focusing on detecting top- and bottom-
performing plant phenotypes, we achieved a promising accuracy of 84.4% and AUC of 0.93. While encouraging, these are only the 
first results under relaxed conditions and further work is needed to enhance practical applicability. 

1. INTRODUCTION

Today, 50% of the calories consumed worldwide come from 
three main crops: wheat, corn, and rice (Awika, 2011). In the 
last decades, yields for wheat and rice have mainly stopped 
increasing, while the world population is expected to reach 9.7 
billion in 2050 (United Nations, 2017). One of the ways to 
tackle this challenge is plant breeding, which focuses on 
modifying desired plant characteristics to improve the quality 
and quantity of food (Guo et al., 2018). Plant breeding efforts 
are increasingly supported by digital technologies for detecting 
superior plant phenotypes (phenotyping) and for estimating the 
main traits of interest, such as yield (Watt et al., 2020). 

Currently, the estimation of crop yield by remote sensing relies 
on spectral data and indices such as the Normalized Difference 
Vegetation Index (NDVI), which indirectly infers yield from 
leaf properties (e.g., Ali et al., 2022). This and related 
approaches are well-established, however, their utility in plant 
breeding is limited by their sensitivity. Namely, a reported 
drawback of such methods is an underestimation of yields in 
high-yielding plants, posing the risk of overlooking high-
yielding varieties, which are the focus of plant breeding (Fei et 
al., 2023).  

There is a consensus that combining the abovementioned 
spectral data with plant structural parameters could alleviate this 
problem (Fei et al., 2023) and some research efforts 
demonstrated the feasibility of this hypothesis (Li et al., 2022; 
Sun et al., 2022). The latter studies supplemented spectral data 
with structural traits related to crop canopy (e.g., height, 
volume, and leaf area) derived from LiDAR point clouds. Their 
promising results were reported for phenotyping experiments 
where different plant varieties are treated with varying 

fertilization regimens, leading to substantial differences in yield 
among treatment groups. Hence, despite progress, the necessary 
sensitivity of in-field yield estimation for a normal plant 
breeding setting is still not achieved. 

The latter studies used canopy-level 3D structural parameters, 
which are only indirectly related to yield. Laboratory-based 
experiments demonstrated that, for example, it is possible to 
estimate wheat grain yield with high accuracy by observing the 
quantity and morphological properties of wheat ears, such as 
length, width, and perimeter (Korohou et al., 2020). However, 
transferring these observations to the in-field application at a 
large scale carries significant challenges. One step towards this 
goal is estimating wheat grain yield based on wheat ear 
counting using high-resolution RGB images. However, this 
approach so far achieved only moderate success due to various 
obstacles, including challenging illumination conditions 
(Fernandez‑Gallego et al. 2018). Also, such approaches fail to 
extract and utilize information on wheat ear morphology. 

Using terrestrial laser scanners (TLS), it is possible to directly 
observe both wheat ear quantity and morphology (Lumme et al. 
2008) without illumination-related problems. However, utilizing 
TLS data for in-field phenotyping poses its own challenges 
(Medic et al., 2023). Namely, the limited quality of the point 
clouds acquired in the field makes explicit 3D reconstruction of 
wheat ears infeasible, and inhomogeneous point cloud 
properties can make yield predictions more dependent on the 
plants' position relative to the TLS rather than on the yield 
itself. Hence, developing a strategy that would overcome these 
challenges is a prerequisite for further supporting accurate grain 
yield estimation using information obtained by TLSs. 
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To account for these challenges, we propose an approach for in-
field estimation of wheat yield using stochastic features of TLS 
point clouds as an alternative to explicit geometrical 3D 
reconstruction. So far, such approaches were only used to 
estimate crop biomass (e.g., Xu et al., 2020) and are generally 
suitable only for point clouds with homogenous properties. 
Herein, we test the feasibility of the approaches for wheat yield 
estimation and present a feature engineering strategy that can 
reduce the impact of inhomogeneous TLS point clouds. 
 
To demonstrate the plausibility of the approach for the grain 
yield performance analysis (our umbrella term for estimation 
and classification), we posed a problem both as a regression 
(estimation) and as a simplified classification task. Namely, the 
main goal of plant breeding is to detect top- and bottom-
performing plant varieties to know which ones should be 
retained and which removed for the next breeding cycle. Hence, 
we demonstrate the performance of the proposed approach both 
on the task of explicitly estimating grain yield as well as the 
task of classifying top and bottom performers regarding yield.  
 
This article is structured as follows. A short overview of the 
relevant state of the art, the motivation, and the goal of our 
study are given in this section (Section 1). Section 2 presents 
the implemented workflow used for grain yield regression and 
for classifying the top- and bottom-performing plants from TLS 
point clouds; Section 3 presents the experimental setup used to 
evaluate the implemented workflow; Section 4 presents our first 
results and related discussion, while the main conclusions are 
drawn in Section 5. 
 
 

2. IMPLEMENTED WORKFLOW 

The proposed workflow for TLS point cloud processing and 
grain yield performance analysis is established as follows. The 
necessary input for the algorithm are the point clouds of field 
plots with individual wheat varieties (see, e.g., Figure 1).  For 
extracting the information that is related to the wheat ears' 
quantity and morphology, we first selected the top 40% of all 
points and computed per-point stochastic features (see, e.g., 
Weinmann et al., 2014) based on the principal component 
analysis (PCA) of the local point neighborhoods (3 cm radius, 
educated guess). Specifically, we compute: 
 
• height (z-coordinate), 
• 1st, 2nd and 3rd eigenvalue, 
• number of neighbors, 
• verticality, 
• roughness, 
• normals change rate, 
• 1st order moment, 
• sum of eigenvalues, 

• ominivariance, 
• anisotropy, 
• planarity, 
• linearity, and 
•  ratio of 1st and 2nd eigenvalue vs. sum of all eigenvalues.  
 

As different plant organs are related to different characteristic 
point distributions in the point clouds (Paulus et al., 2013), we 
expect these stochastic features to also capture distinctive 
information related to wheat ears. The stochastic features 
extraction was implemented using the functions of 
CloudCompare software. 
 
The point clouds of different field plots can have different 
properties depending on the relative TLS position during 
measurements, primarily impacting point distribution and 
density (see Figure 2 for the extreme case in our dataset). This 
effect can, in turn, bias the values of the stochastic features. 
Therefore, we computed normalizing features that are either less 
sensitive to inhomogeneous densities or can be used for 
quantifying the differences and accounting for them. Namely, 
we computed a relative point density as a ratio of point densities 
(number of neighbors) calculated using two neighborhood radii 
(3 cm and 25 cm). As additional plot-based normalizing 
features, we computed: per-plot point count, plot area, point 
number per area, mean point density, average plot height, and 
height difference between the top and bottom of the plot point 
cloud (estimated from 0.5 and 99.5 z-coordinate percentiles for 
robustness). Furthermore, we generated more descriptive 
features by computing the non-linear combinations 
(multiplications and divisions) of the previously computed 
stochastic features with the following three key features, which 
were present in each case: relative point density (our main 
normalizing feature), height, and verticality.  
 
Such engineered features allow for the approximate isolation of 
points related to wheat ears, as shown in Figure 3 (top) on the 
example of a complex feature consisting of the following 
features: relative point density, verticality, height, linearity, and 
the sum of eigenvalues. The frequency and distribution of the 
feature values are related to wheat ear quantity, shape, and size. 
Instead of simple thresholding, segmentation, and instance 
counting (as exemplary presented in Figure 3, bottom), we 
further pursued the stochastic approach toward yield estimation 
and computed the discrete descriptors of the feature value 
distribution as the final feature engineering step. 
 
First, we detected and removed points with extreme values 
using a simple 3 x MAD (median absolute deviation) threshold, 
i.e., we truncated eventual long tails of the feature values 
distribution. Then we generated histograms with 10 bins and 
used them to calculate the following parameters: 
 

  
 

Figure 1. Left - Overview of the wheat variety testing field at the Eschikon Field Station of ETH Zurich; Right – Field Phenotyping 
Platform (FIP) carrying Faro Focus 3D S120 TLS. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-741-2023 | © Author(s) 2023. CC BY 4.0 License.

 
742



 

• mean feature value, 
• absolute frequency of the values in the distribution tails, 
• relative frequency of the values in the distribution tails, 
• absolute mean values in the distribution tails, 
• relative mean values in the distribution tails, 
• absolute cumulative sum of the values in the distribution 

tails, and 
•  relative cumulative sum of the values in the distribution tails. 
 

The distribution tails are defined as the following combinations 
of the histogram bins, where the number represents bin position 
from left to right: 1, 1+2, 1+2+3, 1+2+3+4, 7+8+9+10, 8+9+10, 
9+10, 10. The relative frequency, mean and cumulative sum are 
calculated by dividing the values of the latter bin combinations 
by the values of the remaining bin combinations. 
 
The described feature engineering procedure produced 2877 
features in total, which were subsequently normalized using z-
score normalization. As such a feature set is too large for 
effective training of regression and classification models using 
common machine learning algorithms, we added a two-step 
feature selection procedure. First, we computed the following 
custom metric for feature selection: 
 

   (1) 

 
where x denotes one of the 2877 features, subscript i denotes the 
field plot (i = 1,2, … k), and superscripts top and bottom denote 
n % sub-selected plots with the highest and lowest grain yield 
based on the reference observations (in our study n = 3 %). We 
retained 10% of the initial features with the highest score based 
on Eq. 1. This selection criterion assures that the remaining 
features allow for separability between the top and bottom yield 
performers, which is the main requirement for breeding. In the 
second step, we used MRMR (maximum correlation, minimum 
redundancy) feature selection algorithm (Peng et al., 2005) to 
select only a set of 50 features (+ six plot-based normalizing 
features that were omitted from the feature selection procedure). 
Finally, a set of 56 features was used in the grain yield 

prediction step. For the training and evaluation of both 
regression and classification models, we used a random 25/75 
test-train split. In the process of selecting the algorithms, we 
examined several popular options and conducted tests on them.  
 

 

 
 

Figure 3. Point cloud of a single wheat plot colored by the 
values (dark - high, bright - low) of one complex handcrafted 

feature (combining linearity, verticality, local point density, and 
height) before (top) and after (bottom) simple thresholding (red – 

above threshold, grey – below threshold). 
 

 
 

Figure 2. Left: Registered TLS point cloud of wheat variety testing field (top-down view). Right: cross-sections of individual 
wheat variety plots with notably different point densities - extreme cases (Up - a point cloud of a wheat plot directly below the TLS; 

Down – a point cloud of a wheat plot located approx. 8 m diagonally away from the TLS). Legend:  TLS station positions, 
  terrain heights (dark – high, bright – low). 
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We tested: random forest and other bagged and boosted 
decision tree ensembles; support vector machines with different 
kernel functions (SVM), k-nearest neighbors (KNN) with 
different weighting functions (classification only), Gaussian 
Process Regression (GPR) with different kernel functions 
(regression only). The hyperparameters for all algorithms were 
tuned automatically using the Bayes optimization algorithm 
(Snoek et al., 2012) over 100 iterations. A 10-fold cross-
validation was used to ensure a robust hyperparameter selection 
while preventing overfitting. The analysis was implemented in 
MatLab. In the results section, we present only the results of the 
best-performing algorithms, and the analysis is based on the 
standard evaluation metrics. 
 
 

3. EXPERIMENT AND DATA PRE-PROCESSING 

The dataset for the experimental evaluation of the workflow 
presented in Section 2 was collected at the Eschikon Field 
Station (Figure 1, left), run by the professorship of crop science 
at the Institute for Agricultural Science (IAS) - ETH Zurich. 
The point clouds were acquired using a cable-suspended field 
phenotyping platform (FIP) developed by the professorship 
(Kirchgessner et al., 2016). The platform covers an area of 
about 1 ha, operates from 2-5 m above the canopy, and was 
equipped with a Faro Focus 3D S120 TLS during the 
experiment (Figure 1, right). 
 
The point clouds were acquired in the crop growing season of 
2018, focusing on a winter wheat variety testing experiment 
consisting of 378 filed plots with dimensions of 1.7 × 1.4 m2 
(Figures 1 and 2, left) and hosting 360 different plant genotypes. 
All plots received equal treatment during the growing season, 
mimicking common practices in commercial wheat breeding. 
For more information about the agricultural practices applied 
within the experiment, see, e.g., Roth et al. (2020). The data was 
acquired with the FIP 6 times during the growing season in 
regular time intervals.  The dataset investigated in this work was 
acquired on the 14th of June, shortly before the harvest. 
 
TLS data were acquired at 16 stationary scanning positions 
(Figure 2, left) with a scanning resolution of 6.2 mm at a 10 m 
distance. The point clouds were bundled in a common (local) 
coordinate system using a target-based registration. Eight 
spherical laser-scanning targets with a radius of 10 cm were 
regularly distributed over the wheat variety testing field. The 
sphere detection and point cloud registration were done using an 
automatic pipeline in the manufacturer's software Faro Scene 
V2021.1.0. 
 
The registered point cloud was further processed using the 
Open3D Python library (Zhou et al., 2018). The individual field 
plots were separated based on geojson files containing the 2D 
polygons encompassing individual plots. To avoid border 
effects and account for registration inaccuracy, the original plot 
size of 1.7 × 1.4 m2 was reduced by a 25 cm buffer. This 
resulted in segmented plot point clouds covering an area of 1.2 
× 0.9 m2. The geojson files were generated using QGIS 
software. 
 
Following, ground filtering was applied for each individual plot 
to isolate only the points related to wheat plants. This was done 
by computing the C2M (cloud-to-mesh) distances between the 
abovementioned point clouds and the TLS data of the reference 
epoch acquired on the 23rd of November, containing only the 
bare soil, i.e., the reference surface. The point cloud of the 
reference epoch was converted into a mesh using a Poisson 

surface reconstruction algorithm implemented in Open3D – see, 
e.g., Becirevic et al. (2019) for more info on common practices 
of reference surface generation in agricultural applications. All 
points with the C2M distance larger than 0.1 m relative to the 
reference soil surface were considered as vegetation and 
retained for further processing.  
 
Figure 2 (right) presents the cross-sections of two exemplary 
field plots with extreme differences in the point density and 
information content. These stark differences were the main 
motivations for developing the handcrafted features with a 
reduced sensitivity towards inhomogeneous point cloud density 
(Section 2). To reduce the problem complexity somewhat 
further, we used additional preprocessing steps to tackle the 
inhomogeneous point cloud density. First, we applied a spatial 
subsampling with a minimum point distance threshold of 2 mm, 
which primarily affected the wheat variety plots with extremely 
high point densities located directly below the TLS stations 
(Figure 2, right). Additionally, a subset of all 378 plots was 
completely removed from data processing. Namely, the plots at 
the low end of the point density had so poor information content 
that any wheat ears were barely observable (Figure 2, right). 
Hence, we removed 15% of the plots with the lowest point 
density reducing the number of plots to 320. Even after these 
two steps, the difference in point number between the highest 
and lowest density point cloud was ≈ 8.7 times (600 000 vs. 72 
000 points), almost an order of magnitude. 
 
Such pre-processed and separated point clouds of individual 
plots were used as the input data for grain yield performance 
analysis presented in Section 2. The reference measurements 
were acquired by manual harvesting done at the end of the 
growing season. The reference values are given as grain yield 
expressed in t / ha (ton per hectare). 
 
 
4. RESULTS AND DISCUSSION 

We initially posed the grain yield performance analysis as a 
regression problem, intending to establish a regression model 
capable of explicit grain yield estimation using the selected 
subset of 56 handcrafted features. The first attempt of 
estimating a regression model using all the 320 plot point 
clouds remaining after data pre-processing described in Section 
3 failed. The trained models were unable to explain any portion 
of the variance in reference grain yield values resulting in 
negative or close to zero R2 values. We presume that the 
following influencing factors were causing this outcome: non-
negligible noise in the reference values, limited explanatory 
power of the handcrafted features, limited dataset size, and 
imbalanced dataset (small number of samples in the tails of the 
normally distributed reference values). We applied several 
strategies intending to improve the regression results (e.g., 
weighting the observations according to the distance from the 
mean value to tackle the scarcity of data at the tails of grain 
yield distribution), however, without notable success. Hence, 
these results are omitted from this work. 
 
In the second attempt, we simplified the problem and restricted 
our analysis only to a subset of 320 point clouds. Namely, we 
separated only the top and bottom 20% of the plots with the 
highest and lowest grain yield, reducing the dataset to 128 point 
clouds. To increase the sample size for training the regression 
model, we implemented a data augmentation strategy. After the 
25/75 test-train split, the field plots selected for training (96 
plots) were segmented (cropped) from the whole point cloud 
(Figure 2, left) additional three times with smaller 2D polygon 
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sizes of 0.85 × 0.55 m2 (see Section 3): once centered, once 
shifted 15 cm along, and once shifted 15 cm perpendicular to 
the sowing direction. This data augmentation strategy mimics 
commonly used strategies in image processing that induce 
image translations and cropping, and we used it to generate 
small but realistic variations in the extracted feature values. The 
training dataset, in the end, consisted of 384 point clouds. 
 
The best regression results for the test data of this reduced 
subset of point clouds are presented in Figure 4. These results 
are attained using the SVM algorithm with the Gauss kernel, 
which marginally outperformed the GPR algorithm with the 
exponential kernel. The model exhibited some discriminative 
power reaching R2 of 0.31, which is not negligible in such a 
challenging task as grain yield estimation in wheat breeding. 
The RMSE and MAE values of 2.28 and 1.80 t/ha are too high 
for explicit yield estimation within the required tolerance levels. 
However, the model was, to some degree, capable of relative 
ranking of the analyzed field plots considering their grain yield, 
which is a relevant accomplishment for plant breeding. 
 

 
 
Figure 4. Regression results (test dataset): Wheat grain yield 
estimation based on 56 handcrafted point cloud features using 
a selected subset of plots present in the wheat variety testing 

field (top and bottom 20 % of the performers considering grain 
yield). 

 
To further investigate these ranking capabilities, we transformed 
the grain yield estimation problem into a classification problem. 
Hence, we generated the ground truth class labels as: Class 
"Top" for the top 20 % of the plots with the highest grain yield 
and Class "Bottom" for the bottom 20 % of the plots. Figure 5, 
A) shows the classification results in the form of a confusion 
matrix between the top and bottom performers on a test dataset 
(32 plots). The results are presented for the classification with 
the Ensemble of Decision Trees based on Adaptive Boosting or 
AdaBoost (Freund and Schapire, 1995), which outperformed the 
other algorithms that we tested (see Section 2) on this dataset. 
 
The implemented approach achieved a classification accuracy 
of 84.4 % and the AUC, the Area Under the ROC (Receiver 
Operating Characteristic) curve, of 0.93, which can be 
considered as a very good classification performance. The 
results achieved after repeated random test/train splits were 
comparable. These results are encouraging, however, they 
should be treated with reservation. Namely, in this simplified 
evaluation, we merely confirmed that it is possible to 
distinguish between the plots with the highest differences in the 

grain yield, despite the limited spatial resolution of point clouds 
in the in-field phenotyping experiments and despite 
inhomogeneous point density. We also confirmed that the 
proposed handcrafted stochastic features could capture some 
information on the wheat ears' quantity and/or morphology. 
 
However, in the real use case, it is necessary to solve at least a 
3-class classification problem of successfully separating top, 
bottom, and average-performing wheat genotypes. We tested 
how well this extended classification task is solvable based on 
the proposed workflow, where we assigned three classes as 
follows: Class "Top" – top 20 %, Class "Middle" – middle 60 
%, and Class "Bottom" – bottom 20 % performing plants 
considering grain yield. In this instance, the sample size was 
correspondingly larger (80 plots for testing and 960 plots for 
training after data augmentation), and the best estimation results 
were achieved with a different algorithm (SVM with a quadratic 
kernel function). The confusion matrix with the results for this 
classification problem is presented in Figure 5, B). 
 
 

 
 

Figure 5. Classification results (test datasets): Confusion 
matrices for the classification task of separating wheat plots on 
A) top and bottom 20 % performers considering grain yield; B) 

top-middle-bottom performers (20-60-20 %). 
 
The drop in the classification accuracy is significant, dropping 
to only 58.8 %. The AUC scores for different classes (Top: 
0.75, Bottom: 0.55, Middle: 0.61) demonstrate that some 
discriminative power is still present, especially in the case of 
identifying the top-performing plants, which are of the main 
interest to plant breeders. Despite demonstrating some 
discriminative power, the presented workflow and the 
classification model quality need to be improved before such a 
procedure could be used for supporting industrial breeding 
procedures. Nevertheless, our analysis based on the regression 
and classification tasks confirmed that approaches relying on 
stochastic features of TLS point clouds could be used beyond 
biomass estimation and that they could support grain yield 
estimation efforts in plant breeding. 
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5. CONCLUSION 

Within this work, we demonstrated an approach for in-field 
wheat yield estimation in wheat variety testing experiments 
using machine learning and stochastic features of TLS point 
clouds. The approach is designed to circumvent the need for the 
challenging explicit 3D reconstruction of individual plants and 
plant organs while still capturing information on the quantity 
and morphology of wheat ears. Moreover, the features were 
specifically handcrafted to be less sensitive to inhomogeneous 
TLS point cloud density, which is recognized as one of the main 
challenges for 3D plant phenotyping with TLS. 
 
Our initial results, achieved with the SVM algorithm after 
feature and data selection, showed limited success in yield 
estimation: R2 of 0.31 and MAE of 1.8 t / ha. If the problem of 
detecting top and bottom yield-performing wheat phenotypes is 
reframed as a classification problem, the results were more 
promising under relaxed conditions (analyzing only a subset of 
all field plots). We achieved an accuracy of 84.4% and AUC of 
0.93 using the SVM algorithm for yield-based separation of top 
and bottom performing 20 % of the plots in a wheat variety 
testing experiment. These results were achieved despite almost 
an order of magnitude large differences in the point cloud 
densities between field plots (extremes: 600 000 vs. 72 000 
points). 
 
When the analysis was extended to all available filed plots, the 
results were notably poorer, indicating that the presented 
approach needs to be enhanced and/or integrated with other 
methods to achieve practical applicability. To that end, we plan 
to investigate the possibility of substituting a handcrafted 
features-based approach with end-to-end deep learning (DL), as 
well as combining this geometrical information extracted from 
TLS point clouds with the spectral information acquired with 
multispectral cameras. As employing DL will require solving 
the data scarcity problem, we will also explore a few more 
easily reachable options: exploring estimation methods 
specifically designed for predicting the tail events and exploring 
the information content of dynamic features derived from TLS 
point cloud time series. 
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