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ABSTRACT:

Stereo vision has been proven to be an efficient tool for 3D reconstruction in lunar topographic mapping. However, point clouds
reconstructed from pairs of stereo images always suffer from occlusions and illumination changes, especially in Lunar environments,
resulting in incomplete geometric information. 3D point cloud completion is usually required for refining photogrammetric point
clouds and enabling further applications. In this work, we address the problem of completing and refining 3D photogrammetric point
clouds based on the assumption that 3D terrain should be continuous and with consistent slope change. We proposed a generalized
strategy for 3D point cloud completion of lunar topographic mapping, including distance-weighted point cloud interpolation, terrian-
continuous constrained outlier detection, and contour-based hole filling. We carried out experiments on two datasets of point
clouds generated from 12 pairs and 6 pairs of stereo LROC NAC images covering the Apollo 17 and the Chang’E-4 landing sites,
respectively. As a result, the holes in the initial DTM have been smoothly filled and the completeness of the whole DTM has
been greatly improved. The incomplete area of the experimental areas has dropped by 100% and 93%, respectively. Finally, we
constructed DTM with a resolution of 10 m covering a 33 km × 60 km area of the Apollo 17 landing site with RMSE of 4 m and
a 12 km × 56 km area of Chang’E-4 landing site with RMSE of 4 m compared with LOLA laser points as a reference.

1. INTRODUCTION

As an essential task in lunar exploration, topographic mapping
of lunar surfaces has drawn lots of attention (Wu et al., 2014,
Di et al., 2012, Rosiek et al., 2001), especially in the task of
geology analysis and landing site selection. Currently, differ-
ent types of data acquisition techniques and data products have
extensively promoted the resolution, precision, and coverage of
lunar topographic mapping (Beyer et al., 2018). As the data
source with the highest spatial resolution, Lunar Reconnais-
sance Orbiter Camera Narrow Angle Cameras (LROC NAC)
images have been widely used for producing large-area digital
terrain models (DTMs). For generating high-quality DTM en-
abling large-area coverage, pairs of stereo images should be
utilized for making point clouds with high density and pre-
cision. However, due to occlusions and illumination changes
when reconstructing point clouds, a loss of geometric informa-
tion and incomplete point clouds always occur. To refine point
clouds and meet the requirement of generating high-quality
DTM for further applications, the process of postprocessing,
mainly including point cloud completion is required (Huang et
al., 2020). Thus, in this work, we address the problem of com-
pleting and refining point clouds generated from pairs of LROC
NAC images. In this paper, we propose a generalized strategy
for 3D point cloud completion, including point cloud interpol-
ation, outlier detection, and hole filling.

2. RELATED WORK

To achieve large-scale topographic mapping, a common
strategy involves two key steps, namely the point cloud fusion
(Huang et al., 2021) and point cloud completion.
∗ Corresponding author

2.1 Point cloud fusion

3D point cloud fusion can be categorized into the following
three main types of methods, voxel-based, TIN-based, and
point-based methods. Voxel-based fusion partitions the space
into a voxel grid and uses different algorithms to fuse data
points that are in the same voxel. The confidence of the fused
points can be assessed by calculating the closest distance from
the voxel to the target point as well as information such as the
normal direction of the point and the angle of the inter-point
vector (Curless and Levoy, 1996, Yemez and Wetherilt, 2007).
Although this method is sensitive to splicing errors and point
cloud noise and is relatively computationally and storage in-
tensive, it is still an effective data fusion method in some applic-
ations. Triangular mesh-based fusion methods first require the
construction of a triangular mesh of the point cloud, and then
the overlapping regions are determined by various methods.
(Sun et al., 2003) retained the exact triangles of the overlap-
ping regions and reconnected the remaining triangles for data
fusion. However, this method does not handle the overlap of
the fusion region well and the process of constructing the tri-
angular mesh is time-consuming. Point-based fusion methods
deal with overlapping points directly and perform data fusion
by removing or covering the overlapping points involved in the
fusion. (Zhou and Liu, 2008) proposed a method for point cloud
fusion based on the K-means clustering method, which leads to
a redundancy-free single-layer point cloud model.

DTM fusion is an important application scenario for data fu-
sion in remote sensing (Schmitt and Zhu, 2016, Bagheri et al.,
2017). First, the simple averaging method consists of calcu-
lating the mean elevation of the input DTM on a per raster
basis (Leitão and De Sousa, 2018). The fusion of homolog-
ous data works well (Banu, 2011, Kaur et al., 2021). Based
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on this, the weighted average method was developed, which is
currently the most commonly used DTM fusion method. The
optimal solution does not always obtain new elevation values
by averaging all the corresponding elevation points (Hoja and
d’Angelo, 2009, Tian et al., 2018). In weighted averaging
(WA), weights are used to quantify the influence of the input
DTM at each grid or surface location and are a function of re-
lative elevation accuracy (Schindler et al., 2011). In practice,
weighted averaging has been shown to give desirable results
(Tran et al., 2014, Deng et al., 2019). Variations in weights
are influenced by several factors such as scene characteristics,
sensor technology, and the method used to generate the original
DTM (Schindler et al., 2011). However, even slight elevation
differences (on the order of a few meters) between datasets can
lead to rough edges at the fusion interface (Deng et al., 2019).
In weighted averaging fusion, weights are usually estimated
based on the error between the DTM and the reference data.
However, since reference data sources (and height error maps)
are not always readily available (Papasaika et al., 2011, Pham
et al., 2018), this work is still challenging.

2.2 Point cloud completion

Although the problem of missing data can be nearly solved by
fusing data from different viewpoints and sources, incomplete
geometric information is still unavoidable due to occlusions and
environmental changes. In this case, the problem of completing
3D geometry should be addressed. Recently, point cloud com-
pletion has been mainly innovated from two directions, namely
geometry-based and learning-based methods.

The geometry-based method utilizes interpolation for hilling
holes of 3D point clouds under the assumption that surfaces
should be continuous (Berger et al., 2014, Davis et al., 2002).
The geometry-based method is effective in most cases of recon-
structing surfaces without complex structures. The other obvi-
ous drawback of the geometry-based method is that it cannot
deal with large missing areas. The learning-based methods are
widely investigated in recent years and achieved excellent per-
formances (Yang et al., 2018, Huang et al., 2020, Wen et al.,
2020, Yu et al., 2021, Wang et al., 2020). By utilizing the deep
network, the complex local geometry can be learned and the
latent denoising optimization method can be involved.

Although many learning-based point cloud completion methods
have shown great potential, for the lunar surfaces, there lack of
large-scale training data. In this paper, we focus on proposing a
generalized procedure of 3D point cloud completion for precise
topographic mapping. The major contributions of this paper are
abstracted as follows:

• We proposed a general workflow that involves point cloud
interpolation, outlier detection, and hole filling for com-
pleting and refining the topographic point cloud. In the
proposed workflow, terrain continuity is addressed.

• We tested the proposed method using datasets covering
two test areas, including the Apollo 17 and the Chang’E-4
landing sites, and proved the effectiveness of the proposed
method.

3. METHODOLOGY

The workflow of 3D point cloud completion consisted of three
steps, including distance-weighted point cloud interpolation,
terrian-continuous outlier detection, and hole filling (as shown
in Fig. 1).

Figure 1. The processing workflow.

3.1 Point cloud interpolation

Point cloud interpolation is applied to transform discrete point
cloud data into a continuous terrain surface model, namely
DTM. In this paper, we used the distance-weighted interpola-
tion method. The basic idea is that in the point cloud data, the
closer the point to the target point, the greater the weight of
the point, and the farther the distance, the smaller the weight
of the point. The distance-weighted interpolation method de-
termines the weight of each point by calculating the distance
between the target point and its surrounding points, and then
the attribute values of these points are weighted and averaged
to obtain the interpolation result of the target point. The inverse
distance interpolation method requires a series of preprocessing
and parameter settings:

zp =

n∑
i=1

(d−u
i × zi)/

n∑
i=1

d−u
i (1)

where zp is the interpolated point elevation value, di is the dis-
tance between the point to be interpolated and the sampling
point, and u is the weight index. The number of nearest neigh-
bor points used for interpolation should be determined first, as
well as the weighting formula.

Figure 2. The neighboring grid points used for calculating
slopes.

3.2 Outlier detection

The second step is the detection of outliers of DTM. Although
the constraints based on elevation deviation have been applied
in the filtering of individual point clouds (Balta et al., 2018)
and the global registration of multiple point clouds (Xu et al.,
2023), there are still fewer coarse outliers in the fused DTM,
which are mainly distributed near the hole area (dome, impact
crater, etc.). Thus, before filling the missing area in the fused
DTM, a post-processing step should be conducted to detect and
reject outliers, facilitating the subsequent hole-filling process.
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Figure 3. The process of hole filling. (a) is the binarization of DTM. (b) is the contour detection. (c) is the original DTM. (d) is the
completed DTM.

In this paper, the outlier detection algorithm based on slope in-
formation (Hannah, 1981) is used to detect outliers.

As a basic attribute to characterize the terrain, the slope is ef-
fective to detect the coarse pixels in the DTM data through the
slope information. As shown in Fig. 2, take grid point A as
an example, its row and column number is (i, j), and it has 8
neighboring grid points 1 point (i−1, j−1), 2 points (i, j−1),
..., 8 points (i+ 1, j + 1), and 6 slope values are computed for
point A and the 8 neighboring grid points in the row and column
directions. Slopes of the row and column directions can be cal-
culated as:

slopex(i− 1, j − 1) =(H(i, j − 1)−H(i− 1, j − 1))

/Dist(i− 1, j)

slopey(i− 1, j − 1) =(H(i− 1, j)−H(i− 1, j − 1))

/Dist(i− 1, j)

(2)

where H(i, j) is the elevation value of the raster pixel, Dist(i−
1, i) is the spatial grid size of the DTM, and 6 slope values for
each of the row and column directions can be obtained accord-
ing to the equation as above. Using the slopes of the row and
column directions, the differences in slope change (DSC) can
be calculated:

Dslopex(i, j, 1) = slopex(i, j)− slopex(i+ 1, j)

Dslopex(i, j, 2) = slopex(i, j)− slopex(i− 1, j)

Dslopey(i, j, 1) = slopey(i, j)− slopey(i, j − 1)

Dslopey(i, j, 2) = slopey(i, j)− slopey(i, j + 1)

(3)

By using the DSC values of all data points, if grid point A is
not a coarse point, its DSC in the same direction (e.g., row
direction) should be consistent, and this property is utilized to
determine the coarse point by using the information of the rel-
evant statistics of DSC. By calculating the Root Mean Square
Error (RMSE) in the row and column directions for each grid
point, and the sum of the DSC values for each data point in
the same direction is used to calculate the RMSE value for this
summation since the sum of the DSC coefficients for the same
point in the same direction in the presence of a consistent Slope
Change should be close to zero, and inconsistent slope changes
will present a larger value for this value.

The threshold is set as K times of RMSE. The threshold value
of roughness rejection is obtained by the above equation, and

the grid cells whose DSC values in both row and column direc-
tions are greater than the threshold value are determined to be
roughness, which is rejected, and the raster value is set to null.

Taking a text area of the Apollo 17 landing site as an
example, k is set as 3, and Thresholdx=0.196135 and
Thresholdy=0.197602. 865 pixels are retrieved as the coarse
difference values in a total of 18,605,325 rasters of the fused
DTM. As the proportion of coarse difference is only 0.004%,
the slope grading map can be found that the coarse difference is
distributed at the edge of the impact crater in this localized area,
and there are more pixels with inconsistency in its slope change
in the area with larger slope, and the coarse difference elevation
values also show discontinuity, the above pixels are effectively
eliminated and nulled.

3.3 Hole filling

After removing outliers in the fused DTM, the last step is hole
filling. In this paper, the idea of hole filling is to retrieve the
hole area by detecting a set of hole contour points and fill the
holes by linear interpolation. The algorithm for hole detec-
tion in this paper is the findContours function (Suzuki and Be,
1985), which is used to determine the location and size of holes
and repair these holes by filling the contours. In the detection of
contours, all contours, including both inner and outer contours,
are detected. However, instead of establishing a hierarchical re-
lationship between contours, all consecutive contour points on
the object boundary are saved into the contours vector. With the
above contours retrieval rules, holes can be accurately detected.
In hole filling, contours can be used as masks to fill the area
surrounded by contours using linear interpolation in both dir-
ections of ranks and columns to achieve the purpose of filling
holes. Fig. 3 shows the binarization of DTM, the result of con-
tour detection, and the result of hole hilling of a test area. It
can be seen that the holes have been effectively retrieved and
smoothly filled.

4. EXPERIMENTAL RESULTS

4.1 Experimental data

In this paper, we tested the proposed point cloud completion
strategy using data obtained in two areas. The first one is the
Apollo 17 landing site (19.4◦-21.3◦N, 29.9◦-31.6◦E) with an
area of 50 km × 57 km. A total of 12 photogrammetric point
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Figure 4. Results of terrain completion of the Apollo 17 landing site. (a) and (b) are the initial DTM and the DTM after point cloud
completion. (c) and (d) are corresponding hill-shaded results.

clouds were generated after the stereo image pairs were selected
by image filtering to obtain 79 images. The second one is the
Chang’E-4 landing area (45.457◦S, 177.588◦E) with a range of
12 km × 56 km. Here, 6 stereo pairs with 72 raw images were
used for generating photogrammetric point clouds covering the
experimental area by 3D reconstruction of LROC NAC images
and global fusion of multiple point clouds. We treated the fused
photogrammetric point cloud as input for the further processing
of 3D point cloud completion.

4.2 Experimental results

Fig. 4 shows the results of point cloud completion of the Apollo
17 landing site. From the figure, we can see that the elevation
of the area is highly variable, with a difference of nearly 2800
m between the highest and lowest elevations. Both the eleva-
tion map and the rendering of the mountain shadows show that
the Apollo 17 area is characterized by steep and complex topo-
graphy, with impact craters of various sizes and depths, as well
as numerous domed landforms. The incomplete area mainly
lies on the border of the mountain. After completing and refin-
ing point clouds, all the areas with holes are filled. Evaluating
the final DTM with LOLA laser points, the RMSE between the
refined DTM and the checkpoint is about 4 m.

Fig. 5 shows the original DTM, and DTM after postprocessing
of point cloud completion of Chang’E-4 area. From the fig-
ure, we can see that the terrain of the test area is relatively flat,
and the difference between the highest and lowest elevations
is less than 500 m. From the elevation map and the mountain
shadow rendering map, we can see that there are some small-
scale impact craters in the Chang’E-4 area, and there are also a
few domed landforms above the Lunar surface. The incomplete
areas mainly lie around or inside the craters. After the process
of point cloud completion, the holes sparsely distributed in the
experimental area are effectively retrieved and smoothly filled.
The area of holes dropped by 93%. Evaluating the final DTM
with LOLA laser point, the RMSE between the refined DTM
and the checkpoints is also about 4 m, which shows that the
final DTM is of high quality.

To further evaluate the quality of the produced DTM, we

compare the generated DTM with a resolution of 10 m with
SLDEM with a resolution of 60 m. For a better illustration, we
obtained cross-sections of the two DTMs. As shown in Fig. 6,
in the terrain profile with a length of about 3000m, the over-
all degree of agreement between the two kinds of terrain data
reflects the terrain undulation, which fully demonstrates the re-
liability and effectiveness of the terrain construction method of
this paper; secondly, the DTM of this paper reflects more fully
in the degree of detail, and the more minor terrain undulation
can be reflected in the DTM constructed in this paper, especially
in the region of Chang’E-4, due to the fact that the elevation is
relatively gentle, the DTM constructed in this paper is more
accurate, and it is more accurate than the DTM constructed in
this paper, especially in the Chang’E-4 region. Especially in
the Chang’E-4 area, due to the gentle elevation, the DTM con-
structed in this paper is obviously more continuous, while the
SLDEM shows poorer continuity.

5. CONCLUSION

In this work, we proposed a 3D point cloud completion strategy
based on the assumption that terrain should be continuous and
with consistent slope change. The strategy involved distance-
weighted point cloud interpolation, terrian-continuous con-
strained outlier detection, and contour-based hole filling. By
completing 3D point clouds, the continuity of the Apollo 17 and
Chang’E-4 landing sites was improved and the incomplete areas
dropped by 100% and 93%, respectively. Finally, we achieved
a DTM mapping of the experimental area with a resolution of
10 m and the RMSE between the DTM with LOLA laser point
was about 4 m.

Although the proposed method provided satisfying results for
the two test areas, there are still some limitations of the pro-
posed method. First, the proposed method is limited to dealing
with small missing areas. Second, there is a lack of uncertainty
evaluation of the generated 3D topography, especially for the
area of hole filling. In future work, learning-based methods can
be involved in solving the filling of large areas and a process of
uncertainty measurement should also be considered.
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Figure 5. Results of terrain completion of Chang’E-4 landing site. (a) and (b) are the initial DTM and the DTM after point cloud
completion. (c) and (d) are corresponding hill-shaded results.

Figure 6. Profiles comparison of DTMs. (a) Apollo 17 and (b) Chang’E-4 landing sites.
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