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ABSTRACT 

Autonomous driving relies on high accuracy point vector map, which was generated by the point cloud map, and pre-provides the 

vehicle preliminary road environment information. Lidar Odometry and Mapping (LOAM) has always been a promising research topic 

in the field of robotics, environment sensing, and currently autonomous driving. However, in certain urban environments like basement 

parking lot, tunnels, highways, or other similar settings, the geometric features are not clearly discernible. As a result, algorithms 

resembling the LOAM framework may encounter difficulties in accurately mapping these areas. The paper utilized relative low-cost 

LiDAR expecting to propose a state-of-the-art point cloud mapping/update scheme. We compared the GNSS-challenge area with 

straight line and loop area separately, simultaneously considered the DG, ICP, NDT matching algorithm for the low-cost 

mapping/update strategy. With the realistic experiment conduction, our result evaluated by point to point corresponding mean error 

and standard error. For the straight line environment, ICP has the fastest convergence in empirical cumulative distribution under 0.4 

meters. For the loop scenario, point-to-point ICP still has the fastest convergence in empirical cumulative distribution under 0.22 

meters. Yet both of them still suffer from the fault matching. 

1. INTRODUCTION

Accurate state estimation and building maps of the surrounding 

environment are crucial for intelligent mobile robots operating in 

environments where GNSS (Global Navigation Satellite System) 

localization signals are not available. In such scenarios, SLAM 

(Simultaneous Localization and Mapping) emerges as a valuable 

sensing technology for mobile robots. SLAM assist without 

GNSS (Global Navigation Satellite System) localization signalss 

in determining the robot's localization, pose information, and 

motion control by simultaneously constructing a map of the 

environment. This map becomes a valuable resource for mobile 

robots to plan optimal routes and navigate around obstacles by 

providing essential information about the surroundings. By 

leveraging SLAM, mobile robots can effectively operate and 

adapt to complex environments, enhancing their autonomy and 

overall performance. 

The LOAM (Lidar Odometry and Mapping) approach utilizes a 

horizontal lidar sensor along with an inertial sensor to achieve 

efficient localization and mapping capabilities. Since its 

inception, several researchers have proposed enhancement 

strategies building upon the LOAM framework, such as Lego 

LOAM (Shan and Englot, 2018) and LIO-SAM (Shan et al., n.d.) 

methods. While the LOAM scheme has enjoyed considerable 

success, it still exists some limitations. 

There are two primary limitations associated with the LOAM 

scheme. Firstly, the lack of a loop closure detection module 

results in lower accuracy in localization and mapping during 

actual testing. Loop closure detection is a crucial component for 

recognizing previously visited locations and correcting 

accumulated errors. Its absence in the LOAM scheme contributes 

to reduced accuracy. 

Secondly, the LOAM algorithm relies on a uniform motion 

model assumption, which can lead to localization and mapping 

failures when the robot or carrier exhibits rapid and vigorous 

motion. The algorithm's robustness in handling such scenarios is 

insufficient, resulting in compromised performance. 

To address the aforementioned challenges, we present a novel 

framework for simultaneous localization and mapping (SLAM) 

that combines a rotating lidar and an inertial measurement unit 

(IMU). Our proposed framework offers the following solutions: 

1. Motion Distortion Compensation: We introduce a

nonlinear motion distortion compensation method

specifically designed for rotating lidar systems. By fusing

low-frequency lidar data and high-frequency inertial data,

we effectively compensate for motion-induced distortions,

resulting in more accurate localization and mapping

outcomes.

2. Improved Matching: We introduce a point cloud

matching effect evaluation module, which assesses the

quality of point cloud matching. Additionally, we

incorporate a module based on sub-map to sub-map

matching using a key-frame strategy. This module

includes a double judgment candidate loop-frame

strategy to enhance the reliability of loop closure

detection.

By integrating these advancements into our SLAM framework, 

we aim to overcome the limitations of existing approaches, 

achieve higher localization and mapping accuracy, and enhance 

the robustness of the system under challenging motion conditions. 

2. RELATED WORK

2.1 Broad Lidar Odometry and Mapping framework 

Several existing methods have been proposed to improve upon 

the LOAM framework and overcome its limitations. For instance: 

1. Lego-LOAM (Shan and Englot, 2018): Lego-LOAM

addresses the limitations of LOAM by introducing lightweight

components. It extracts ground feature points to participate in

point cloud matching and performs L-M optimization using line

and surface feature points in two steps. It also incorporates a loop

closure detection module based on European distance to mitigate

accumulated drift.
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Figure 2-1 Two-step optimization for the lidar odometry 

module. 

2. LIO-SAM (Shan et al., n.d.): LIO-SAM leverages 9-axis 

inertial data for system initialization and front-end laser 

odometry. It integrates GPS factors and loop closure factors in 

the back-end to improve the accuracy of localization and 

mapping. 

 

3. ALOAM (Zhang and Singh, n.d.) : ALOAM focuses solely on 

lidar sensors and employs the Ceres-Solver and Eigen libraries to 

reconstruct and optimize the LOAM code. It aims to enhance the 

performance and accuracy of the original LOAM algorithm. 

 
Figure 2-2 An example of extracted edge points (yellow) and 

planar points (red) from lidar cloud taken in a corridor. 

 

4. F-LOAM (Wang et al., 2021): F-LOAM employs a two-step 

procedure to correct motion distortion in the original point cloud. 

It deviates from LOAM's parallel processing of laser odometry 

and laser mapping and instead utilizes a weighted feature point 

constraint during nonlinear optimization. 

 

5. R-LIO (Chen et al., 2022): R-LIO is mainly composed of four 

sequential modules, namely nonlinear motion distortion 

compensation module, frame-to-frame point cloud matching 

module based on normal distribution transformation by self-

adaptive grid, frame-to submap point cloud matching module 

based on line and surface feature, and loop closure detection 

module based on submap-to-submap point cloud matching. 

 

6. IN2LLAMA (Le Gentil et al., 2021): IN2LLAMA is an offline 

framework that combines probabilistic methods to perform 

localization, mapping, and extrinsic calibration tasks. This 

framework utilizes a 3D lidar and a six-degree-of-freedom 

inertial measurement unit (IMU) to achieve accurate and reliable 

results. 

 

7. CT-ICP (Dellenbach et al., 2021): Continuous-Time ICP 

extend this method to encompass a full SLAM system, which 

incorporates a unique loop detection procedure. The key 

innovation of their approach lies in the integration of both 

continuity and discontinuity in scan matching. 

 

8. G-ICP (Ren et al., 2019): GICP-based 3D point cloud 

registration is based on the point-to-plane algorithm to optimize 

laser odometry constraints between consecutive frames and key 

frames without the need for additional sensors like an IMU. 

Additionally, G-ICP automatically remove noise from the point 

cloud data to enhance the consistency of the underground 

roadway map. Overall, G-ICP improves the accuracy and 

reliability of the map by combining precise registration, 

innovative roadway plane extraction, and noise removal 

techniques. However, these methods demand high computing 

resources for matching a full point cloud. 

 

 

3. METHODOLOGY 

3.1 System Overview 

 
Figure 3-1 System overview of proposed method 

 

3.2 LiDAR data preprocessing 

LiDAR data after collection will be stored in the pcap or ROS 

BAG file. To parse them into pcd file and range the threshold or 

remove the moving point, we utilized the open-source parser 

called “VLP-16 parser” with the self revision cross-hour code to 

deal with the time system inconsistent or error issues.  

To illustrate the geomatic relationship shown in Figure 3-2, we 

named Lidar as L-frame, and scanned point cloud as P-frame. 𝑟𝑙
𝑝
 

is the translation vector between LiDAR and point cloud. 𝑅𝑙
𝑝

 is 

the rotation matrix between the LiDAR and point cloud. 

 

Range the threshold is to filter out the extremly near and far point 

cloud. For example: min range is 3.5 meters and max range is 75 

meters. 
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Figure 3-2 LiDAR preprocessing 

 

3.3 Time synchronization 

Firstly, in Figure 3-3 we define the INS/GNSS as a Body frame 

so-called B-frame, LiDAR as L-frame, and mapping frame as M-

frame. Secondly, make sure the LiDAR timestamp and 

INS/GNSS are recorded as the same time system, i.e., GPS 

second of week, or UNIX or UTC. Noted that cross-hour is the 

base principal to be solved, it usually happened when using the 

open-source parser with the experiment time was crossing-hour 

at that time. Thirdly, once the timestamp is consistent, interpolate 

the nan value. 

 

As the INS/GNSS integrated solution can provide the translation 

vector at epoch time 𝑟𝑚
𝑏𝑘 , 𝑅𝑚

𝑏𝑘 which is calculated by commercial 

software IE.  

 

3.4 Motion distortion constraint  

Except for the mounting parameters (i.e., lever arms 𝑟𝑏
𝑙  and 

boresight angles 𝑅𝑏
𝑙  ) between the LiDAR and INS/GNSS. The 

other parameter following right-hand rules be calculated below: 

Let 𝑡𝑘  be the current time stamp, and recall that 𝑡𝑘+1   is the 

starting time of the sweep. The translation vector of the M-frame 

and B-frame which changed time by time named  𝑟𝑚
𝑙𝑘 =

[𝑡𝑥, 𝑡𝑦, 𝑡𝑧] , and LiDAR pose rotation matrix 𝑅𝑚
𝑙𝑘  (3*3 matrix) 

from interpolated attitude  [𝜃𝑥(ℎ𝑒𝑎𝑑𝑖𝑛𝑔), 𝜃𝑦 (𝑟𝑜𝑙𝑙), 𝜃𝑧(𝑝𝑖𝑡𝑐ℎ)]  

 

𝑟𝑚
𝑙 = 𝑅𝑚

𝑏 𝑟𝑏
𝑙 + 𝑟𝑚

𝑏     (3.3.1) 

 

𝑅𝑚
𝑙 = 𝑅𝑚

𝑏 𝑅𝑏
𝑙              (3.3.2) 

 

 
Figure 3-3 Direct georeference system   

 

3.5 Feature point extraction  

The given paragraph describes the process of extracting feature 

points from a scan plane obtained by a rotating laser scanner. The 

scanner rotates at an angular speed of 180 degrees per second and 

generates scans at a frequency of 10Hz. As a result, the resolution 

in the direction perpendicular to the scan planes is 180 degrees / 

10Hz = 18 degrees. 

 

The feature points are selected based on information from 

individual scans and their co-planar geometric relationship. Two 

types of feature points are chosen: sharp edges and planar surface 

patches. 

 

Let "i" represent a point in the scan plane "𝑃𝐾," and "𝑆" be the set 

of consecutive points of "i" returned by the laser scanner in the 

same scan. The scanner generates point returns in either 

clockwise (CW) or counterclockwise (CCW) order, and "S" 

contains half of its points on each side of "i" with 0.25-degree 

intervals between two points. 

 

(3.5.1) 

 

In the scanning process, the points obtained are organized based 

on their "c" values. Subsequently, specific feature points are 

chosen: those with the highest "c" values, known as edge points, 

and those with the lowest "c" values, known as planar points. To 

achieve an even distribution of these feature points across the 

scanned environment, the scan is divided into four equal 

subregions. Each subregion can yield a maximum of 2 edge 

points and 4 planar points. However, for a point to be selected as 

an edge or planar point, it must meet two conditions: its "c" value 

should be either higher or lower than a certain threshold, and the 

total number of selected points cannot exceed the predetermined 

maximum. This selection process ensures a balanced distribution 

of feature points for further analysis and utilization. 

 

3.6 Frame to frame scan matching 

1. ICP (“a method for registration of 3D shape,” n.d.) : The 

Iterative Closest Point (ICP) algorithm refines the relative pose 

of two overlapping scans by minimizing the sum of squared 

distances between corresponding points in the two scans. 

Corresponding point pairs are identified based on their point-to-

point distance.  

Figure 3-4 Overview of the proposed LiDAR localization and 

mapping system architecture (Li et al., 2020) 

 

2. 2D-NDT (Biber, 2003): NDT involves dividing the 2D plane 

into cells, similar to an occupancy grid. Each cell is assigned a 

normal distribution, representing the local probability of 

measuring a point within that cell. The resulting transformation 

yields a piecewise continuous and differentiable probability 

density. This density can be leveraged to match another scan 

using Newton's algorithm, eliminating the need for establishing 

explicit correspondences between points. By utilizing this 

probabilistic representation, we achieve a smooth and 

differentiable matching process, improving the efficiency and 

accuracy of the algorithm. The function from Equation 2.3.1 is 

the most straightforward 2D NDT transformation function. Let 𝑝 
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= [𝑡𝑥, 𝑡𝑦, 𝜃]𝑇, where 𝑡𝑥 and 𝑡𝑦 are the translation vectors and 𝜃 is 

the rotation angle.(Magnusson, 2009) 

 

𝑇2𝐷(𝑝, 𝑥⃗) =  [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] 𝑥⃗ + [
𝑡𝑥

𝑡𝑦
]  (3.6.1) 

 

3. 3D-NDT: The Normal Distribution Transform (NDT) 

algorithm divides into 2D and 3D registration methods. The main 

difference between 2D and 3D registration with NDT lies in the 

spatial transformation function T( 𝑝, 𝑥⃗)  its partial derivatives. 

Rotation can be shown in two dimensions with a solitary value 

for the rotation angle with respect to the origin. 

 

Despite the possible issues related to the representation of 

rotation using 3D Euler angles, they will be utilized below. The 

benefits, such as not having to constrain the numerical 

optimization process and having slightly simpler derivatives, are 

deemed more important than the danger of gimbal lock, which 

would only happen at angles so large that the local registration 

procedure would almost certainly fail. The pose's six-

dimensional parameter vector includes six parameters to 

optimize: 𝑝6⃗⃗⃗⃗⃗ = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝜃𝑥, 𝜃𝑦, 𝜃𝑧]
𝑇

three for translation and 

three for rotation. The 3D NDT transformation equation (3.6.2) 

can be obtained by employing the Euler sequence z-y-x, where 

𝑐𝜃𝑖 = 𝑐𝑜𝑠𝜃𝑖, and 𝑠𝜃𝑖 = 𝑠𝑖𝑛𝜃𝑖: 

 

𝑇3𝐷(𝑝6⃗⃗⃗⃗⃗, 𝑥⃗) = 𝑅𝑥𝑅𝑦𝑅𝑧 ∙ 𝑥⃗ + 𝑡  

 

= [

𝑐𝜃𝑦𝑐𝜃𝑧 −𝑐𝜃𝑦𝑠𝜃𝑧 𝑠𝜃𝑦

𝑐𝜃𝑥𝑠𝜃𝑧 + 𝑠𝜃𝑥𝑠𝜃𝑦𝑐𝜃𝑧 𝑐𝜃𝑥𝑐𝜃𝑧 − 𝑠𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 −𝑠𝜃𝑥𝑐𝜃𝑦 

𝑠𝜃𝑥𝑠𝜃𝑧 − 𝑐𝜃𝑥𝑠𝜃𝑦𝑐𝜃𝑧 𝑐𝜃𝑥𝑠𝜃𝑦𝑠𝜃𝑧 + 𝑠𝜃𝑥𝑐𝜃𝑧 𝑐𝜃𝑥𝑐𝜃𝑦

] 𝑥 + [

𝑡𝑥

𝑡𝑦

𝑡𝑧

] 

(3.6.2) 

 

4. RESULT 

4.1 Experiment setup  

The experimental setup employed in this study is depicted in. The 

reference system consisted of the IMU (iNAV-RQH) and GNSS 

(PwrPak). The vehicle utilized an VLP-16 LiDAR, iNAV-RQH 

and PwrPak as an IMU, and PwrPak as a GNSS antenna and 

receiver. The navigation solution was post-processing utilizing 

the tightly-coupled INS/GNSS scheme with forward and 

backward smoothing through the commercial INS/GNSS 

software, Inertial Explorer (IE). 

 

  
Figure 4-1 Experiment setup  

 

 
Figure 4-2 Experiment trajectory   

 

Table 4-1. Experiment setup Test system and reference system 

 Test system Reference system 
IMU NovAtel PwrPak7-E2 NovAtel PwrPak7-E2 

GNSS NovAtel OEM5 iNAV-RQH 

LiDAR Velodyne VLP-16 Velodyne VLP-16 

 

 

Table 4-2 The specification of Velodyne LiDAR (VLP-16) 

Velodyne VLP-16 

Max Measurement Range  100 m 

Range Accuracy  ± 3cm (typical) 

FOV (Vertical)  +15° to -15° (30°) 

FOV (Horizontal)  360° 

Angular Resolution (Vertical)  2° 

Angular Resolution 

(Horizontal/ Azimuth) 

0.1° - 0.4° 

 

4.2 Mapping result 

4.2.1 Direct Georeference Point Cloud Map 

 

 
Figure 4-3 DG frame 6200-6269   

 
Figure 4-4 DG frame 6200-7000 

 

4.2.2 ICP Point Cloud Map 
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Figure 4-5 ICP frame 6200-6269    

 
Figure 4-6 ICP frame 6200-7000    

 

Table 4-3 The specification of ICP point to point 

ICP point to point configuration 

Downsample Grid Step  0.05 

Downsample Method  Grid Average 

regInlierRatio  0.5 

 

4.2.3 NDT Point Cloud Map 

 

 
Figure 4-7 NDT frame 6200-6269    

 
Figure 4-8 NDT frame 6200-7000   

 

Table 4-4 The specification of NDT point to point 

NDT configuration 

Outlier Ratio  0.9 

Downsample Method  Grid Average 

regInlierRatio  0.5 

 

4.3 Accuracy evaluation 

4.3.1 Trajectory accuracy 

 

Table 4-5 E2 VS. RQH position error analysis 

 E N U Horizontal 3D 

Initial 0.880 0.357 0.112 0.950 0.956 

 

 
Figure 4-9 trajectory frame 6200-6269   

 

 
Figure 4-10 trajectory frame 6200-7000   

 

4.3.2 Point cloud matching accuracy 

Table 4-6 Frame 6200- 6269 Error analysis 

(meter) Mean error Std error 

  Horizontal Vertical Horizontal Vertical 

DG 0.3406 -0.1472 0.4854 0.5435 

DG-ICP 0.3376 -0.2462 0.5595 0.4017 

DG-NDT 0.3654 -0.1888 0.5958 0.4233 

 

 
Figure 4-11 Horizontal Empirical cumulative distribution frame 

6200-6269 
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Empirical cumulative distribution, which computes the function 

values (f) and the confidence bounds using different algorithms, 

depending on the censorship information. Frame period 6200 to 

6269, the tested algorithm claimed that if we expect the 80% of 

horizontal accuracy under 0.4 meters, ICP algorithms in our 

experiment scenario will perform better than NDT and DG. As 

the result of the evaluation, when it comes to ICP and NDT 

algorithm, we  still need to improve fault matching detection, and  

avoid the large outlier over the long time drift.  

 

Table 4-7 Frame 6200-7000 Error analysis  

(meter) Mean error Std error 

  Horizontal Vertical Horizontal Vertical 

DG 0.2139 -0.016 0.4269 0.2308 

DG-ICP 0.2061 -0.017 0.4644 0.2125 

DG-NDT 0.2344 -0.020 0.5237 0.2255 

 
Figure 4-12 Horizontal Empirical cumulative distribution frame 

6200-7000 

 

When it comes to loop detection (Frame number 6200-7000), we 

could get the other discovery.  From Figure 4-12 the tested 

algorithm claimed that ICP algorithm achieved 80% of horizontal 

accuracy under 0.22 meters, outperform amomg DG and NDT. 

Even though we enlarge the period of time, DG always maintains 

the advantage under this scenario. 

 

 

5. CONCLUSION 

Due to the generation in large-scale LiDAR dense HD point 

cloud map required high-cost LiDAR, relied on sufficient laser 

beams to acquire abundant information in the complicated urban 

area. This paper considered the HD map required the latest 

mapping information, therefore we compared the most popular 

LiDAR scan matching algorithm with low-cost LiDAR and find 

out that ICP has the fastest convergence in empirical cumulative 

distribution under 0.5 meters. For the loop area scenario, ICP has 

the fastest convergence as well in empirical cumulative 

distribution under 0.22 meters. Yet both of them still suffer from 

the fault matching. 

 

The paper proposed the scenario in basement parking lot where 

the GNSS is limited yet the artificial object information is 

abundant for LiDAR scanning. Technically speaking, our method 

still has amounts of discussion and improvement. For example, 

to eliminate most of the height error, fitting the plane and remove 

most of the ground points would be a suitable option. As for HD 

point cloud mapping results, it may reflect on the trajectory 

accuracy. The mapping issue would be trajectory drift over the 

distance, therefore, for the future work, author would still work 

on LOAM algorithm using loop closure, scan context, or pose 

graph to meet the same position and reduce the accumulation 

error. 
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