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ABSTRACT:  

 

Multisensor systems are essential for autonomous navigation applications to achieve reliable accuracy. Integrating the Global 

Navigation Satellite System (GNSS) and the Inertial Navigation System (INS) is the most common integration scheme. However, this 

integration is unreliable in different scenarios since the GNSS signal may deteriorate in downtown areas or suffer from a blockage in 

underground and indoor areas. Therefore, other sensors are integrated with INS to compensate for GNSS outages. This paper proposes 

a novel algorithm for radar/INS tightly-coupled integration for autonomous navigation applications. This algorithm is applied in 

multiple steps. Radar data analysis is the first and most crucial step to remove the noisy data and the outliers and keep the useful 

objects. Then, data association is done to match the detected objects between radar frames. The tightly-coupled integration is performed 

at the measurement level through an Extended Kalman Filter (EKF), where the distance between the INS and the detected objects can 

be predicted from the INS and measured from the radar. Real data was collected from four Frequency Modulated Continuous Wave 

(FMCW) radar units in Calgary's suburban areas and Toronto's downtown area. The proposed algorithm was tested and assessed by 

introducing simulated GNSS single outages with different durations. The results show an enhancement in the vehicle's position by 

about 94% to 96%.       

 

 

1. INTRODUCTION 

GNSS is an all-weather navigation system that can estimate the 

vehicle's position with centimeter-level accuracy(Suzuki, 2020). 

However, GNSS is not reliable in some scenarios or applications, 

e.g., indoor and underground parking lots, driving through 

canyons, or in downtown areas where the GNSS signal is blocked 

or deteriorates due to multipath effects (P. Xie & Petovello, 

2015). On the other hand, INS is a dead reckoning system that 

can estimate the vehicle's relative position, velocity, and attitude 

with high accuracy but for a short period since the INS solution 

drifts with time. Therefore, GNSS and INS are integrated to 

compensate for GNSS outages and overcome INS errors (Chen 

et al., 2021). Loosely-Coupled and Tightly-Coupled are the most 

known integration techniques in autonomous navigation (Dong 

et al., 2020; R. Xu et al., 2018). However, in the case of a long 

GNSS signal outage, the dependency on INS as a standalone 

sensor to estimate the vehicle's navigation state is not sufficient. 

Thus, INS is integrated with other sensors to overcome INS 

errors and drift. For example, the magnetometer can be an update 

source to the vehicle's heading angle. However, it is affected by 

the surrounding magnetic field (Cui et al., 2021; Wu & Wang, 

2019). The onboard sensors, e.g., the odometer, measure the 

vehicle's forward speed and can aid the inertial measurement unit 

(IMU) (Kim & Bae, 2019). Odometer is affected by slippery 

roads and unequal tire pressure.  

Light detection and ranging (lidar) is used to detect the 

surrounding environments. Now, lidar is integrated with INS for 

autonomous vehicle applications and simultaneous localization 

and mapping (SLAM) (Chang et al., 2019; Zou et al., 2022). 

Nevertheless, lidar is affected by different weather conditions, 

such as fog and rainy weather. Moreover, it requires high 
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computational power due to its dense point clouds. Furthermore, 

lidar is a high-cost sensor.  

Vision sensors or cameras use visible light to detect and track 

objects. Moreover, vision sensors can detect road lanes and 

traffic signs (Jia et al., 2006; Xing et al., 2018). However, vision 

sensors are affected by varying light and weather conditions 

because they cannot work in dark or foggy weather. 

On the other hand, radio detection and ranging (radar) is known 

as an all-weather sensor, and it is the only sensor, in addition to 

INS, that can work in different weather and light conditions. 

Therefore, this paper studies the integration between radar and 

INS to estimate the vehicle's navigation state. 

This paper is organized as follows: Section 2 contains the related 

work, whereas the methodology is described in Section 3. 

Section 4 discusses the experimental work and results, and 

finally, the conclusion is shown in Section 5.     

    

2. RELATED WORK 

There are two main types of radar: 360o radar and static radar. 

The 360o radar, known as the imaging radar, rotates 360 degrees 

to scan the surrounding environment. The 360o radar measures 

only the point location of detected objects represented by its 

range and azimuth angle and provides the intensity value for each 

point. Due to the continuous movement of the vehicle and the 

rotation of the radar unit, the point clouds are distorted, and they 

need to be corrected.  

In contrast, the static radar has a specific field of view and higher 

frequency than the 360o radar unit. Moreover, it provides 

information about the location of the detected points (range and 

bearing angle) and the Doppler frequency information between 

the radar unit and the point clouds. The static radar is also known 
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as the Frequency Modulated Continuous Wave (FMCW) radar. 

The Doppler frequency information can be used to estimate the 

relative velocity between the radar unit and each point, which can 

help differentiate between static and moving objects.   

There are different studies about using radar to estimate the 

vehicle's pose. These studies can be divided into two categories: 

radar scan matching and feature detection and matching. The 

Iterative Closest Point (ICP) is the most common technique in 

radar scan matching. It depends on minimizing the distance 

between point clouds to estimate the transition and rotation 

between successive radar frames (Censi, 2008; X. Xu et al., 

2018). Normal Distribution Transform (NDT) builds a normal 

distribution model for one point cloud in each frame. These 

models are matched together to estimate the vehicle's pose (Biber 

& Strasser, n.d.). Fourier Mellin Transform (FMT) is another 

scan-matching technique (Checchin et al., 2010).  

For feature detection and matching, Scale-Invariant Feature 

Transform (SIFT), Speeded-Up Robust Features (SURF), and 

Oriented fast and Rotated Brief (ORB) are common methods in 

image processing to detect and extract the features, build the 

descriptor for each feature, and match these features together 

(Rublee et al., 2011; S. Xie et al., 2013). Thus, the transition and 

rotation between successive radar frames can be estimated. 

Constant False Alarm Rate (CFAR) is another technique to detect 

and keep the actual features by applying a moving filter to 

remove the noise and the outliers (Rohling, 2011). 

In (Cen & Newman, 2018), a 360o radar unit was employed, and 

a median filter, binominal filter, and threshold were adopted to 

remove the outliers and ghost points and keep the real features. 

The unary descriptor and Euclidean distance between the features 

were applied for data association.  

The radar solution can be integrated with IMU to improve 

navigation solution accuracy and robustness and limit IMU drift. 

(Elkholy et al., 2022) applied the ORB algorithm on 360o radar 

data to detect and match the features to estimate the vehicle's 

relative position. The radar solution was integrated with IMU 

through a closed-loop EKF to correct the navigation states.   

In (Elkholy et al., 2022), four static radar units were used for land 

vehicle navigation applications. The four radar units were 

mounted on the vehicle's roof to act as one 360o radar unit. With 

the knowledge of the vehicle's average speed and radar rate, the 

data association between radar frames can be  applied, and the 

vehicle's ego motion can be estimated. The radar solution was 

integrated with INS through an EKF to estimate the vehicle's 

position in the GNSS-denied environments.  

Radar can be used to estimate the vehicle's forward speed. 

Therefore, radar can also be integrated with the Reduced Inertial 

Sensor System (RISS). RISS uses two accelerometer sensors and 

one gyroscope. In (Abosekeen et al., 2018), the FMCW radar unit 

was mounted on the vehicle's front bumper and facing the 

ground. The estimated relative speed between the radar unit and 

the ground represents the vehicle's forward speed. The estimated 

vehicle's forward speed was integrated with RISS through an 

EKF. (Dawson et al., 2022) exploited two radar units mounted 

on the vehicle's top roof to detect static objects and estimate the 

vehicle's forward velocity. The radar solution was integrated with 

RISS to compensate for GNSS outages.  

In (Mohamed Elkholy et al., 2023), four radar units were 

mounted on the vehicle's roof. The two radar units at the front 

were used to estimate the vehicle's forward velocity, while all 

four units were used to estimate the vehicle's ego-motion. Then, 

two EKFs were applied. One was to integrate the radar solution 

with an IMU, and the second was to correct the integrated 

position by applying map matching. In (Almalioglu et al., 2021), 

the Millimeter-wave (MMwave) Radar was integrated with the 

IMU sensor through Unscented Kalman Filter (UKF) for indoor 

applications. To remove radar noise and IMU biases, the NDT 

with angular velocity from the IMU sensor was adopted. (Kwon 

et al., 2021) utilized FMCW radar to estimate the velocity for 

unmanned aerial vehicle applications. Radar velocity was 

integrated with IMU through an Adaptive EKF. 

All the previous research provided examples of loosely coupled 

integration between radar and INS. However, there is no previous 

research that focuses on the tightly coupled integration between 

radar and INS. 

This paper proposes a novel radar/INS tightly-coupled 

integration algorithm to compensate for GNSS outages and 

overcome INS errors and drift. Closed-loop EKF was exploited 

to implement the radar/INS integration.  

   

3. METHODOLOGY 

The methodology of this research is applied in multiple steps. 

The first and most crucial step is data analysis and preprocessing 

since radar data is noisy and contains outliers and ghost points, 

which could affect the proposed algorithm. Therefore, the 

preprocessing technique is adopted to remove all the outliers and 

moving objects and detect and keep only the static objects. After 

that, the data association technique is applied to match the 

detected static objects between radar frames. The detected 

objects are matched by applying motion and distance constraints 

to find the corresponding points between radar frames. Finally, 

the Radar measurements are integrated in a tightly-coupled mode 

with predicted IMU measurements to provide a continuous, 

robust Radar/INS solution.  

 

3.1. Data Analysis and Preprocessing 

Radar data analysis is a crucial step in the proposed algorithm 

since data analysis and preprocessing aim to remove all the 

outliers, ghost points, and moving objects that will affect the 

following steps.  

The radar data analysis is performed in multiple steps. The first 

step is to differentiate between static and moving objects. FMCW 

radar provides Doppler frequency information, which can be 

used to estimate the relative velocity between the vehicle and the 

surrounding objects. For example, if the vehicle is static, the 

relative velocity between the vehicle and the surrounding static 

objects should be zero, and if the vehicle is moving, the relative 

velocity between the vehicle and the static objects equals the 

vehicle speed. Moreover, in this research, four FMCW radar 

units were used and mounted on the vehicle's roof to work as a 

360o radar. If the vehicle is moving forward, static objects 

detected by the two front radar units will appear coming toward 

the vehicle, and the relative velocity sign is negative, whereas the 

static objects detected by the two rear radar units will appear to 

move away from the vehicle and the relative velocity sign 

between the vehicle and the detected objects is positive.  

The previous technique is valid when the vehicle is moving 

forward. However, if the vehicle moves backward, the relative 

velocity sign between the vehicle and the detected objects from 

the four radar units will be reversed. The heading angle 

difference can be utilized to check if the vehicle changed its 

moving direction. If there is a large drop (about 180o) in the 

vehicle's heading angle and the vehicle was statice before that 

drop, that means that the vehicle was moving in a specific 

direction and now the vehicle is moving in the opposite direction. 

To improve the previous technique in detecting the static objects 

and removing the moving objects, a median filter was applied to 

check if there are moving objects were detected and remove 

them.     

The detected static objects are filtered by removing the close and 

far points as they are considered outliers. Moreover, an intensity 

threshold is applied to remove the outliers. 
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3.2. Data Association 

After detecting and filtering the static objects and removing the 

outliers and the moving objects, the next step is to find the 

corresponding objects in the following Radar frame. The 

proposed method for data association is based on point-to-point 

matching. The change in azimuth, range, and elevation angle 

between the corresponding objects can be considered with the 

knowledge of radar data rate and the average vehicle speed. 

Therefore, the range, bearing angle, and elevation angle 

difference between any two corresponding objects should be less 

than a threshold. Moreover, the rotation angles of all the matched 

points should be similar to a certain threshold. Then, the 

corresponding points can be related.   

3.3. Radar/INS Tightly Coupled Integration  

Figure 1 shows the block diagram of the proposed tightly-

coupled Radar/INS integration. The detected objects' coordinates 

are measured in the radar frame. Since the lever arm and 

boresight angle between the radar frame and IMU frame are 

measured, the detected objects' coordinates can be transformed 

into the IMU/body frame or the vehicle frame because the IMU 

frame is aligned with the vehicle frame.  

 
Figure 1. Radar/INS tightly coupled integration technique. 

Assume that the vehicle's position (INS position) is represented 

by the latitude (𝜑𝐼𝑁𝑆
𝑡 ) and longitude (𝜆𝐼𝑁𝑆

𝑡 ) at a time (t). Then, 

with the knowledge of the coordinates of the target points, the 

target points' latitude (𝜑𝑃𝐶
𝑡 ) and longitude (𝜆𝑃𝐶

𝑡 ) at a time (t) can 

be calculated. 

𝜑𝑃𝐶
𝑡 =  𝜑𝐼𝑁𝑆

𝑡 +
𝑦

𝑅𝑚 + ℎ𝐼𝑁𝑆
𝑡  (1) 

𝜆𝑃𝐶
𝑡 =  𝜆𝐼𝑁𝑆

𝑡 + 
𝑥

(𝑅𝑚 + ℎ𝐼𝑁𝑆
𝑡 ) cos 𝜑𝐼𝑁𝑆

𝑡  (2) 

where: (𝑥, 𝑦) are the target point coordinates to the INS in the 

INS body frame,  ℎ𝐼𝑁𝑆
𝑡  is the height at time (t), and 𝑅𝑚 is the 

meridian radius of the earth. 

At the time (𝑡 + ∆𝑡), the corresponding target points have the 

same latitude (𝜑𝑃𝐶
𝑡 ) and longitude (𝜆𝑃𝐶

𝑡 ). To correct the 

navigation state at the time (𝑡 + ∆𝑡), the range between point 

clouds and the vehicle's position (𝜌𝐼𝑁𝑆−𝑃𝐶) can be calculated. 

The calculated range should be equal to the range given by Radar 

data. 

𝜌𝐼𝑁𝑆−𝑃𝐶 = √(𝜑𝐼𝑁𝑆
𝑡+∆𝑡 − 𝜑𝑃𝐶

𝑡 )2 + (𝜆𝐼𝑁𝑆
𝑡+∆𝑡 − 𝜆𝑃𝐶

𝑡 )2 (3) 

 

The tightly coupled integration is implemented through a closed-

loop EKF. The EKF consists of two models (the motion model 

and the measurement mode).  

The system model in the continuous case is described as follows: 

 

�̇� = 𝐹𝑥 + 𝐺𝑤 (4) 

 

where: �̇� = the time rate of change of the state vector. 

  𝐹 = dynamic matrix. 

 𝑥 = state vector. 

 𝐺 = noise coefficient matrix. 

 𝑤 = system noise. 

The measurement model is described by: 

𝑧 = 𝜌𝐼𝑁𝑆−𝑃𝐶 − 𝜌𝑅𝑎𝑑𝑎𝑟 =  𝐻𝑥 + 𝜂 (5) 

 

where: 𝑧 = the measurements. 

 𝐻 = the design matrix. 

 𝜂 = the measurement noise.  

 

If there are multiple detected objects (n), the measurements will 

be as follows: 

𝑧 = [
(𝜌𝐼𝑁𝑆−𝑃𝐶)1 − (𝜌𝑅𝑎𝑑𝑎𝑟)1

⋮
(𝜌𝐼𝑁𝑆−𝑃𝐶)𝑛 − (𝜌𝑅𝑎𝑑𝑎𝑟)𝑛

]  (6) 

 

The design matrix (𝐻) in this case will be as follows: 

 

𝐻 =

[
 
 
 
 
𝜑𝐼𝑁𝑆

𝑡+∆𝑡−(𝜑𝑃𝐶
𝑡 )1

(𝜌𝐼𝑁𝑆−𝑃𝐶)1

𝜆𝐼𝑁𝑆
𝑡+∆𝑡−(𝜆𝑃𝐶

𝑡 )1

(𝜌𝐼𝑁𝑆−𝑃𝐶)1
01𝑥13

⋮ ⋮ ⋮
𝜑𝐼𝑁𝑆

𝑡+∆𝑡−(𝜑𝑃𝐶
𝑡 )𝑛

(𝜌𝐼𝑁𝑆−𝑃𝐶)𝑛

𝜆𝐼𝑁𝑆
𝑡+∆𝑡−(𝜆𝑃𝐶

𝑡 )𝑛

(𝜌𝐼𝑁𝑆−𝑃𝐶)𝑛
01𝑥13]

 
 
 
 

  (7) 

 

EKF is implemented in two stages. The first stage is to predict 

the state vector at time t+∆𝑡. 

 

𝑥𝑡+∆𝑡
′ = ∅𝑥𝑡 + 𝑤𝑡 (8) 

𝑝𝑡+∆𝑡
′ = ∅𝑝𝑡∅

𝑇 + 𝑄𝑡 (9) 

 

where: 𝑥𝑡+∆𝑡
′  = the predicted state vector at the time (t+∆𝑡). 

 ∅ = the transition matrix. 

 𝑥𝑡 = the state vector at the time (t). 

 𝑝𝑡+∆𝑡
′  = the predicted covariance matrix at the time 

(t+∆𝑡). 𝑝𝑡 = the covariance matrix at the time (t). 

 𝑤𝑡 = the system noise at the time (t). 

 𝑄𝑡 = the process noise matrix.  

The second stage is to update the state based on the 

measurements. 

 

𝐾𝑡+∆𝑡 = 𝑝𝑡+∆𝑡
′ 𝐻𝑡+∆𝑡

𝑇 (𝐻𝑡+∆𝑡𝑝𝑡+∆𝑡
′ 𝐻𝑡+∆𝑡

𝑇 + 𝑅𝑡+∆𝑡)
−1 (10) 

�̂�𝑡+∆𝑡 = 𝑥𝑡+∆𝑡
′ + 𝐾𝑡+∆𝑡(𝑍𝑡+∆𝑡 − 𝐻𝑡+∆𝑡𝑥𝑡+∆𝑡

′ ) (11) 

�̂�𝑡+∆𝑡 = [Ι − 𝐾𝑡+∆𝑡𝐻𝑡+∆𝑡] 𝑝𝑡+∆𝑡
′  (12) 

 

where: 𝐾𝑡+∆𝑡  = the gain matrix. 

𝑅𝑡+∆𝑡 = the covariance matrix of the measurement 

noise. 

 �̂�𝑡+∆𝑡  = the updated state vector. 

�̂�𝑡+∆𝑡 = the updated covariance matrix of the state 

vector. 

 

So, the system model is the core of the prediction stage where the 

state vector and the covariance matrix can be predicted. The 

updated stage is based on calculating the gain matrix which 

depends on the predicted covariance matrix of the state vector, 

the design matrix, and the covariance matrix of the 

measurements. Finally, the updated state vector and the updated 

covariance matrix are calculated from the predicted ones and the 

updated measurements. 
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The novel algorithm has the advantage that it can work with only 

one target point and its corresponding point in the second Radar 

frame to be implemented. 

 

4. EXPERIMENTAL WORK AND RESULTS 

Two real driving datasets were collected to test the proposed 

algorithm. The first dataset was collected in a suburban area in 

Calgary. Four FMCW UMRR-11 Type 132 were mounted on the 

vehicle's roof. Xsens MTI-G-710 module was used to collect 

IMU and GNSS data. For reference data, a Novatel SPAN-SE 

system with an IMU-FSAS was used (Figure 2). Another data 

was collected in downtown Toronto.  Four FMCW UMRR-96 

Type 153 radar units were used. In addition, the u-blox ZED-F9R 

module was used to collect the IMU and GNSS measurements. 

Finally, the reference data were collected by a Novatel PwrPak7 

system with an IMU-KVH1750.  

 
Figure 2. The setup of radar units and Xsens MTI-G-710 during 

data collection in Calgary. 

The data association and matching algorithm was implemented. 

Figure 3 shows the matching results between two successive 

radar frames.  

 

 
Figure 3. An example of matching points between two 

successive radar frames. 

After applying the data association algorithm, The radar/INS 

tightly coupled integration was implemented, and a simulated 

GNSS signal outage was introduced for different outage 

durations. The GNSS outage durations range from 30 seconds to 

120 seconds. 

 

4.1. Calgary Data 

The proposed algorithm was applied to Calgary's data to 

compensate for the GNSS signal outage. Figure 4 shows the 

proposed integrated solution during a simulated two-minute 

GNSS signal outage.  

 

Figure 4. The estimated trajectory from radar/INS tightly 

coupled integration during a simulated GNSS outage in Calgary 

data. 

Table 1 shows the RMSE from the radar/INS tightly coupled 

integration algorithm and the INS standalone solution during 

different GNSS signal outage durations.  

 

Table 1. RMSE from radar/INS tightly coupled integration and 

INS standalone solution. 

Outage 

Duration 

RMSE (m) Traveled 

Distance 

(m) 
INS 

Standalone 
Radar/INS 

30 sec 6.65 4.8 342.5 

60 sec 11.62 4.94 415.85 

90 sec 122.15 5.8 722.55 

120 sec 255.1 9.57 977.49 

 

From Table 1, the proposed integration algorithm enhanced the 

vehicle's horizontal position by 27.82% and 57.49% for 30-

second and 60-second GNSS signal outage durations, 

respectively. For 90 seconds and two minutes of GNSS signal 

outages, the horizontal position was improved by 95.25% and 

96.25%, respectively. The average percentage error from the 

proposed algorithm was 1.09%, and the traveled distance was 

about 1 km.  

Another simulated GNSS signal outage was introduced, as 

shown in Figure 5. Table 2 illustrates the horizontal RMSE from 

the INS standalone solution and the proposed algorithm where it 

shows the enhancement in the vehicle's horizontal position after 

applying the radar/INS tightly coupled integration algorithm. 

The horizontal position was improved by 95.65% for 30 second 

GNSS signal outage and by 86.95% for 60 second GNSS signal 

outage. For 90 seconds and 120 seconds of GNSS signal outages, 
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the vehicle's horizontal was improved by 92.57% and 94.38%, 

respectively. The average percentage error was 2.09%, and the 

traveled distance was 802.33 m. 

 
Figure 5. The estimated trajectory from the proposed algorithm 

during another simulated GNSS outage in Calgary data. 

Table 2. RMSE from radar/INS tightly coupled integration and 

INS standalone solution. 

Outage 

Duration 

RMSE (m) Traveled 

Distance 

(m) 
INS 

Standalone 
Radar/INS 

30 sec 67.6 2.94 154.6 

60 sec 91.55 11.95 350.14 

90 sec 119.78 8.9 575.58 

120 sec 219.05 12.3 802.33 

 

4.2. Toronto Data      

For the Toronto dataset, the proposed algorithm was tested, and 

a simulated GNSS signal outage was introduced (Figure 6). 

Table 3 illustrates the improvements in the vehicle's position 

after the integration between radar and INS. 

 

 
Figure 6. The estimated trajectory from radar/INS tightly 

coupled integration during a simulated GNSS outage in Toronto 

data. 

Table 3 shows the horizontal position enhancement after 

applying the tightly coupled integration between radar and INS. 

For 30-second and 60-second GNSS signal outages, the position 

improved by about 82% and 92.06%, respectively. Moreover, the 

vehicle's horizontal position was enhanced by 93.64% for the 90-

second GNSS signal outage and 94.12% for the two-minute 

GNSS signal outage. The average percentage error was about 

4%, and the traveled distance was 743 m. 

 

Table 3. RMSE from radar/INS integration solution and INS 

standalone solution for Toronto data. 

Outage 

Duration 

RMSE (m) Traveled 

Distance 

(m) 
INS 

Standalone 
Radar/INS 

30 sec 60.18 10.84 176.26 

60 sec 192.14 15.25 456.47 

90 sec 304.77 19.38 527.01 

120 sec 366.53 21.45 743.16 

 

From the previous results, the proposed algorithm improved the 

vehicle's navigation solution. However, the accuracy of the 

vehicle's position depends on radar data uncertainties, the 

detection of static objects, and the efficiency of the matching 

technique between radar frames. Therefore, there is a great 

enhancement in the Calgary dataset during the first GNSS signal 

outage and a slight improvement during the other GNSS signal 

outages.  

    

5. CONCLUSION 

This paper proposes a novel algorithm for tightly coupled 

integration between radar and INS for land vehicle navigation 

applications in GNSS-denied environments. Four FMCW radar 

units were mounted on the vehicle's roof and utilized to test the 

proposed algorithm. Data analysis and preprocessing were 

implemented on radar data to detect the static objects and remove 

the outliers and moving objects. The detected static objects were 

matched to find the corresponding points. The range between the 

detected static objects and INS can be calculated and updated 

through EKF to achieve tightly coupled integration between 

radar and INS. The proposed algorithm improved the vehicle's 

horizontal position during different GNSS signal outages. The 

horizontal position accuracy was improved by an average of 

95%, and the average percentage RMS error was about 2.3%. 

Moreover, the proposed algorithm has the advantage that one 

matched static object between two successive radar frames is 

enough to apply this algorithm and limit the IMU drifts. 

However, there are some limitations in this research. Since radar 

data is so noisy, data analysis, preprocessing, and data 

association are critical and affect the vehicle's position accuracy. 

Better pre-analysis and matching techniques need to be 

considered to improve the vehicle's position accuracy, and 

applying other filtering techniques could help to improve the 

position's accuracy. 
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