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ABSTRACT: 

 

With the rise of self-driving cars, an increasing number of vehicles are equipped with low-cost light detection and ranging (LiDAR) 

sensors that could potentially serve as a massive mobile mapping resource, particularly for jobs that require multiple and frequent 

scanning, such as maintaining dynamic high-definition maps or digital twins. However, low-cost LiDAR sensors produce sparser point 

clouds during scanning which can make deep learning techniques for the automatic retrieval of features difficult like extracting road 

markings. In this work, we aim to improve the performance of a convolutional neural network (CNN) model for road marking 

extraction from sparse mobile LiDAR scanning (MLS) point cloud-derived images. We propose the modification of the Fast-SCNN 

model structure by adding a 2D convolution branch with masking in the feature fusion step: MFSCNN. To retain speed we only use 

MFSCNN to boost model training and still utilize Fast-SCNN for inference. Our results indicate potential, with a 4.6% increase in 

mean f1-score and an 8% decrease in uncertainty for the road marking class after multiple trials. Additionally, this research aims to 

support and increase research interest in lower-cost LiDARs for mobile mapping.  

 

 

1. INTRODUCTION 

1.1 Background 

Successful extractions of road markings from dense point cloud-

derived images using convolutional neural networks (CNN) have 

been demonstrated in many works, such as in Wen et al. (2019) 

and Lagahit and Tseng (2020) among others. These works take 

advantage of the road marking’s reflective property. Which 

provides strong intensity values during light detection and 

ranging (LiDAR) scanning, clearly distinguishing them from 

other features. Recently, this approach has extended to sparse 

point cloud-derived images from low-cost mobile LiDAR 

scanning (MLS) as an alternative to expensive mobile mapping 

systems (Lagahit and Matsuoka, 2023). This was done in an 

attempt to utilize low-cost LiDAR sensors onboard self-driving 

vehicles as a mobile mapping resource for updating and making 

digital twins or high-definition (HD) maps more dynamic.  

 

However, since points clouds generated by low-cost LiDARs 

during MLS are sparse, the road markings become poorly 

represented and hardly identifiable. This situation makes it 

challenging for CNN models to extract the desired road marking 

features. One way of addressing this issue is to tweak the deep 

learning framework to be more suitable for detecting harder-to-

classify features. Lagahit and Matsuoka (2013), tackled the loss 

function, which aids guide the model during training, and showed 

promising results. However, other aspects of the framework have 

yet to be explored, such as the structure of the CNN itself. 

 

Currently, there are already a multitude of CNN models with 

varying structures available, U-Net and Fast-SCNN to name a 

few (Poudel et al., 2019; Ronneberger et al., 2015). Both of these 

models have already demonstrated potential in extracting road 

markings from sparse MLS point cloud-derived images (Lagahit 

and Matsuoka, 2023). It is worth noting, however, that Fast-

SCNN, which was built for real-time segmentation, has shown 

15x quicker prediction speeds than U-Net. Given that one of the 

envisioned applications is map updating, speed would be an 

advantageous feature. Unfortunately, Fast-SCNN still provides 

poorer segmentation accuracy than that of U-Net. 

 

Anchoring on Fast-SCNN’s speed, we propose a modification to 

its structure in an early attempt to improve its classification 

capabilities. As was tackled in its paper, we will introduce an 

additional 2D convolutional branch in the feature fusion 

procedure. But, we will also be adding a masking procedure to 

this branch in order to retain only regions with corresponding 

point cloud values in order to control misclassifications and 

strengthen extractions in such areas. 

 

1.2 Objective 

The goal of this study is to improve road marking extraction on 

sparse MLS point cloud-derived images by proposing a Masked-

Fast-SCNN (MFSCNN), a modified version of the Fast-SCNN 

model, for boosting model training. Moreover, the following has 

been done in support of the proposed model: (1) the extractions 

are compared to those of Fast-SCNN, (2) different cases of the 

additional branch have been analyzed, (3) multiple kernel sizes 

of the masking procedure have been investigated, (4) results of 

the masking procedure implementation in Fast-SCNN have been 

tested, and (5) prediction speeds have been observed. 

 

2. METHODOLOGY 

2.1 Dataset Gathering and Preparation 

The dataset for this study was collected using a low-cost 

Robosense 16-channel LiDAR, positioned in front of a vehicle 

tilted 45 degrees down, inside the North Ookayama Area of 

Tokyo Institute of Technology. The point clouds were initially 

restricted to an area in front before projecting top-down to a 2D 

plane with a ground resolution of 1 by 1 centimeter and a size of 

2048 by 512 pixels. The roadways had several road markings but 

mainly lane lines and crosswalks. Moreover, because the original 

images depict sparse features, all subsequent sparse MLS point 
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cloud-derived images shown on this paper have been dilated with 

a 3x3 kernel for better visualization, as shown in Figure 5-1.  

 

 
Original 

 
Dilated 

Figure 2-1. Sample sparse MLS point cloud-derived image 

using intensity as pixel values. (Top) Original image and 

(Bottom) dilated version for visualization purposes.   

To train and test the model a manually labelled dataset, assisted 

by intensity thresholding, was created for this study. It is divided 

unto three class categories: (1) ‘black’ which are the black pixels 

with no point cloud value, (2) ‘others’ which are the white pixels 

with non-road marking features, and (3) ‘road marking’ which 

are green pixels with the target road markings. 

 

 

 

Figure 2-2. A sample labeled sparse MLS point cloud-derived 

image showcasing the three classes. 

The dataset statistics are shown in Table 2-1. A total of 1200 

intensity and labeled image pairs were produced after undergoing 

simple augmentation (e.g. flipping). A distribution of roughly 

80%, 10%, and 10% are used for training, validation, and testing 

datasets, respectively. Looking at the pixel distribution, it is 

evident that the ‘black’ class dominates the dataset while the 

target ‘road marking’ class is barely present.      

Table 2-1. Dataset statistics. 

Dataset 
Number of 

Images 

Number of Pixels per Class 

Black Others 
Road 

Marking 

Training 1000 99.13% 0.84% 0.03% 

Validation 100 99.10% 0.86% 0.04% 

Testing 100 99.16% 0.80% 0.04% 

 

2.2 CNN Structure and Model Training 

The base structure of the proposed MFSCNN is based on the 

Fast-SCNN model, indicated by the black arrows in Figure 2-3. 

Fast-SCNN was designed for real-time segmentation utilizing 

techniques like inverted residual bottlenecks among others 

(Poudel et al., 2019).  This paper attemps to make use of Fast-

SCNN’s speed and improve its accuracy by  appending an 

additional masked 2D convolutional branch to control 

misclassifications, indicated by the blue arrows in Figure 2-3. 

The idea stems from the paper of Lagahit and Matsuoka (2013), 

wherein misclassifications in areas with no corresponding point 

cloud values are removed. 

 

To further support the model’s capability in detecting sparsely 

represented road markings, Combo loss will be used for the loss 

function. The loss function takes the difference between initial 

predictions and the labels and uses it, after going through an 

activation function and in an optimizer, to adjust the weights of 

the model. Combo loss, is a loss function that takes the weighted 

sum of two loss functions to take advantage of their individual 

properties in order to improve the model’s capability in detecting 

harder features such as our target road marking on sparse MLS 

point-cloud derived images (Taghanaki et al., 2019).   

 

Combo Loss = 

𝛼 (𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠) + (1 − 𝛼) (𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠), 
(1) 

 

The proposed method was implemented using python on a 

computer with an 11th Gen Intel i7 processor, 32 GB of RAM, 

and an NVIDIA GeForce RTX 3060 Laptop GPU. During 

training the following hyperparameters were set: batch size of 16, 

a learning rate of 1 × 10−4, and an Adam optimizer. 

Furthermore, each models were trained three times to determine 

uncertainty, using a fixed seed value for each trial for good 

comparison in the different CNN structures. Finally, 100 epochs 

were used for all trials, using the model with lowest loss value. 

 
Figure 2-3. MFSCNN structure. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W2-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-829-2023 | © Author(s) 2023. CC BY 4.0 License.

 
830



 

2.3 Assessment 

The performance of MFSCNN to conduct road marking 

extraction on sparse MLS point cloud-derived images will be 

assessed using precision and recall, which are computed from the 

confusion matrix when comparing the CNN predictions to its 

corresponding image labels, as shown in Equations 2 and 3. In 

addition, when precision and recall values are far apart, the f1-

score, which is the harmonic mean of precision and recall, will 

be used to act as a final evaluation criterion, as shown in Equation 

4. Because the harmonic mean leans toward the smaller value 

among the inputs, it also serves as a reliable criterion for properly 

evaluating the classified images (Powers, 2011).  

 

Recall =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 , ...........................(2) 

 

Precision =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 , .......................(3) 

 

F1score =  
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ...........................................(4) 

 

As Lagahit and Matsuoka (2023) have observed, since the pixels 

in the black class regions do not reflect any point cloud value they 

can be omitted in the assessment computations, as depicted in 

Figure 2-4.  This is important because of the severe class 

imbalance at hand. Huge numbers of misclassifications in the 

black regions will greatly influence the resulting evaluation, and 

failure to remove them can be misleading to the intended final 

output, which is a classified sparse point cloud.  

 

 

Figure 2-4. Precision value differences when computed without 

(orange box) and with (blue box) the removal of 

misclassifications in the black region. 

3. RESULTS AND DISCUSSION 

3.1 Comparison with Fast-SCNN 

In Figure 3-1, we show some selected sample results among 

multiple trials to showcase the performance of MFSCNN in 

comparison to that of Fast-SCNN and the reference labeled 

image.  We also present the raw prediction results as well as the 

projected results, where misclassifications in the black regions 

are removed to highlight and depict only those road marking 

pixels with corresponding point cloud values. We can observe 

that there are cases where MFSCNN can depict road marking 

geometry far better off than Fast-SCNN. 

 

 
Reference 

 
Fast-SCNN (Predicted) 

 
Fast-SCNN (Projected) 

 
MFSCNN (Predicted) 

 
MFSCNN (Projected) 

Figure 3-1. Sample predictions of Fast-SCNN and MFSCNN. 

Table 3-1 shows the corresponding numerical evaluation of the 

resulting performance of MFSCNN as compared to Fast-SCNN 

in road marking extraction from sparse MLS point cloud-derived 

images. The resulting evaluations of the raw predictions and their 

projected counterparts are also shown side by side, revealing a 

roughly 40% difference in the mean f1-scores, emphasizing the 

importance of excluding misclassifications in the black regions 

in the resulting evaluations. Looking at the projected evaluation, 

we could see an increase in precision but a decrease in recall. Due 

to the contradiction, we could take a look at the f1-score, and we 

can see that MFSCNN not only gains a  3.8% increase in mean 

f1-score but also gains an 8% decrease in uncertainty, resulting 

in more accurate and dependable road marking extractions.   

Table 3-1. Evaluation results for the road marking class of MFSCNN as compared to Fast-SCNN (%). 

Model Recall 
Predicted Projected 

Precision F1-Score Precision F1-Score 

Fast-SCNN 59.3 ± 9.3 4.2 ± 1.0 7.8 ± 1.7 40.3 ± 10.2 46.7 ± 9.8 

MFSCNN 

(Kernel=5) 
56.8 ± 10.6 5.2 ± 0.4 9.5 ± 3.4 46.4 ± 0.5 50.5 ± 1.8 
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3.2 Analyzing the Additional Branch 

In this sub-chapter, we compare the results of our proposed 

additional branch as compared to adding and making use of the 

main branch of Fast-SCNN as well as their masked versions to 

justify the proposed additional branch and see the significance of 

the masking procedure. Figure 3-2, shows the trial cases and 

Figure 3-3 and Table 3-2 shows the corresponding results. We 

will refer to the additional Conv2D branch as ‘+Ghost’ and the 

additional branch with multiple procedures as ‘+Main’. 

Furthermore, an additional ‘-Mask’ will be placed in the name if 

the masking procedure is in place. 

 

○A  

 

○B  

 

○C  

 

○D  

 

Figure 3-2. ○A  and○C  depicts the +Ghost and +Main branches 

while ○B  and ○D depict their corresponding masked versions. 

From the sample projected predictions below, it is still clear that 

no matter the additional branch, they all perform relatively poorly 

for lane lines that illustrate extreme class imbalance. However, 

taking a look at the numerical evaluations of multiple trials we 

can see that an additional ‘+Ghost-Mask’ branch provides the 

highest precision and recall values. This follows that it would 

also achieve the best mean f1-score. Also, after factoring in 

uncertainty it has the highest minimum f1-score, highlighting its 

consistency and thus its capability to increase the dependability 

of the CNN in its predictions. 

 

Table 3-2. Evaluation results of MFSCNN for the road marking 

class as compared to other additional branch cases (%). 

Branch Recall Precision F1-Score 

+Ghost 52.1 ± 22.1 46.0 ± 7.1 46.0 ± 7.8 

+Ghost-Mask 

(MFSCNN) 
56.8 ± 10.6 46.4 ± 0.5 50.5 ± 1.8 

+Main 50.9 ± 22.1 37.1 ± 10.8 39.4 ± 1.2 

+Main-Mask 52.4 ± 3.6 42. 2 ± 0.4 46.8 ± 1.3 

 

 
Reference 

 
+Ghost 

 
+Ghost-Mask (MFSCNN) 

 
+Main 

 
+Main-Mask 

Figure 3-3. Sample projected predictions of MFSCNN and 

other additional branch cases. 

3.3 Analyzing Masks at Varying Dilation Kernel Sizes 

In this sub-chapter, we investigate the effects of different kernel 

sizes when dilating the image mask used in the masking 

procedure. In the previous results shown, a kernel size of 5x5 was 

used, as such we will be exploring one step smaller and larger 

kernel sizes of 3x3 and 7x7, respectively. As seen in Table 3-3, 

all kernel sizes outperform the resulting mean f1-score of Fast-

SCNN by 0.6% to 4.6%. Moreover, the resulting uncertainty also 

proves to be better by 2% to 8% in all cases. It is also interesting 

to see that as the kernel size increase so does the resulting mean 

f1-score, however the difference in improvements did get smaller 

meaning that at a certain kernel size larger than 7x7, MFSCNN’s 

performance could decline. Visually, larger kernels also tend to 

hinder overreaching misclassifications, where neighboring pixels 

are misidentified as the target feature, as seen in Figure 3-4. 

 

Table 3-3. Evaluation results of MFSCNN for the road marking 

class at varying kernel sizes of the masking procedure (%). 

Kernel 

Size 
Recall Precision F1-Score 

3 70.1 ± 14.7 37.7 ± 11.0 47.3 ± 7.8 

5 56.8 ± 10.6 46.4 ± 0.5 50.5 ± 1.8 

7 55.7 ± 12.7 49.4 ± 5.7 51.3 ± 2.2 
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Reference 

 
Kernel = 3 

 
Kernel = 5 

 
Kernel = 7 

Figure 3-4. Sample projected predictions of MFSCNN at 

varying kernel sizes of the masking procedure. 

3.4 Comparison with Masking Fast-SCNN 

In this sub-chapter, for a fairer comparison, we take a look at the 

effects of the masking procedure in Fast-SCNN. Similar to the 

naming convention in the additional branches, we call the branch 

with the 2D convolution ‘ghost’, the branch with the multiple 

procedures ‘main’, and simply ‘both’ for the two branches. 

Figure 3-5 illustrates the cases where the masking procedure has 

been implemented. Like the proposed additional branch all of 

them are implemented before fusing.   

 

○1  

 

○2  

 

○3  

 

Figure 3-5. The masking procedure has been implemented in 

the Fast-SCNN model before the end of the feature fusion step 

in the cases: ○1 of both the main and ghost branches,  ○2  only 

the ghost branch, and ○3  only the main branch. 

Figure 3-6 show the sample projected prediction results of doing 

the masking procedure within Fast-SCNN and Table 3-4 show 

the corresponding numerical assessment. All resulting mean f1-

score fall behind that of both Fast-SCNN and MFSCNN. This 

implies that masking alone deteriorates performance and instead 

should be added as an additional factor to improve and control 

the misclassifications of Fast-SCNN. 

 

Table 3-4. Evaluation results of Fast-SCNN for the road 

marking class with the masking procedure (%). 

Branch Recall Precision F1-Score 

Both 70.1 ± 46.1 25.5 ± 30.9 18.3 ± 7.2 

Ghost 65.5 ± 33.4 34.0 ± 28.2 32.5 ± 33.9 

Main 88.8 ± 11.2 15.8 ± 9.3 25.7 ± 11.8 

 

 
Reference 

 
Both 

 
Ghost 

 
Main 

Figure 3-6. Sample projected predictions of Fast-SCNN with 

the masking procedure. 
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3.5 Prediction Speeds 

In this sub-chapter, we observe the prediction speeds of Fast-

SCNN and MFSCNN, to support the use of Fast-SCNN during 

the inference step. For this test, a tensor with the same size as the 

input image in our dataset is done 5 times for the models to get 

our prediction speeds. Unfortunately, MFSCNN is 1.5x slower 

than Fast-SCNN, as shown in Table 3-5. So, in attempting near 

real-time or real time predictions, Fast-SCNN is still 

recommended but it is advised to be trained with MFSCNN.  

 

Table 3-5. The resulting prediction speeds of MFSCNN in 

comparison to Fast-SCNN (seconds). 

Model Speed 

Fast-SCNN 0.182 ± 0.003 

MFSCNN 0.280 ± 0.003 

 

4. CONCLUSION 

In this paper, we have attempted to improve road marking 

extraction from sparse MLS point cloud-derived images through 

our proposed MFSCNN, which adds a 2D convolution branch 

with masks to Fast-SCNN.  Our results have shown that at 

varying kernel sizes, our proposed model was able to produce a 

maximum of 4.6% increase in mean f1-score and an 8% decrease 

in uncertainty after multiple trials. Extensive analysis has also 

shown MFSCNN outperformed varying additional branch cases 

as well as varying masking implementations on Fast-SCNN. 

However, due to the additional branch MFSCNN became slower 

as compared to Fast-SCNN, so using MFSCNN only to boost 

model training and using Fast-SCNN at the inference step is 

recommended to retain speed but improve accuracy as was 

demonstrated. Overall, along with previous works of using more 

suitable loss functions during training, little by little, this work 

contributes to the improvements in road marking extraction from 

sparse MLS point cloud-derived images for the goal of 

supporting the utilization of lower-cost LiDAR alternatives as a 

practical approach for mobile mapping tasks. In future work, 

further modifications in the CNN structure would be explored 

such as the addition of image processing procedures and the 

reduction of branches. 
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