The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLVIII-1/W2-2023
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-85-2023
https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-85-2023
13 Dec 2023
 | 13 Dec 2023

SEMANTIC KNOWLEDGE EMBEDDING DEEP LEARNING NETWORK FOR LAND COVER CLASSIFICATION

J. Chen, X. Du, J. Zhang, Y. Wan, and W. Zhao

Keywords: Semantic Knowledge, Deep Learning Network, Land Cover Classification

Abstract. Land cover classification is essential basic information and key parameters for environmental change research, geographical and national monitoring, and sustainable development planning. Deep learning can automatically and multi-level extract the features of complex features, which has been proven to be an effective method for information extraction. However, one of the major challenges of deep learning is its poor interpret-ability, which makes it difficult to understand and explain the reasoning behind its classification results. This paper proposes a deep cross-modal coupling model (CMCM) for integrating semantic features and visual features. The representation of knowledge map is indicatively introduced into remote sensing image classification. Compared to previous studies, the proposed method provides accurate descriptions of the complex semantic objects within a complex land cover environment. The results showed that the integration of semantic knowledge improved the accuracy and interpret-ability of land cover classification.