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ABSTRACT: 
The simultaneous localization and mapping (SLAM) is one of the well-developed positioning technology that provides high accuracy 
and reliability positioning for automatic vehicles and robotics applications. Integrating Light Detection and Ranging (LiDAR) with an 
Inertial Measurement Unit (IMU) has emerged as a promising technique for achieving stable navigation results in dense urban 
environments, outperforming vision-based or pure Inertial Navigation System (INS) solutions. However, conventional LiDAR-Inertial 
SLAM systems often suffer from limited perception of surrounding geometric information, resulting in unexpected and accumulating 
errors. In this paper, we proposed a LiDAR-Inertial SLAM scheme that utilizes a prior structural information map which is generated 
from opensource OpenStreetMap (OSM). In contrast to conventional solutions of OSM-aided SLAM approaches, our method extracts 
the vectorized models of road and building and synthetically generates dense point maps for LiDAR registration. Specifically, a 
structural map processing module extracts the road models and building models from OSM and generates a structure information map 
(SIM) with dense point clouds. Secondly, a map aided distance (MD) constraint is calculated by registering selected keyframes and 
the prior SIM. Finally, a factor graph optimization (FGO) algorithm is involved to integrate the relative transformation obtained from 
LiDAR odometry, IMU pre-integration, and the map aided distance constraints. To evaluate the proposed LiDAR-based positioning 
accuracy, experimental evaluation is implemented in an opensource dataset collected in the urban canyon environments. Experimental 
results demonstrates that with the help of the proposed MD constraint, the LiDAR-based navigation solution can achieve accurate 
positioning, with a root mean square deviation (RSME) of 4.7 m.  
 

1. INTRODUCTION 

Accurate and reliable navigation is a crucial requirement for 
autonomous driving, providing real-time localization 
information for path planning, vehicle control, and decision 
making (Ai et al., 2022). While the fusion of onboard sensors has 
obtained reasonably accurate position in most types of urban 
environments, leveraging static urban structural information and 
traffic data, particularly high-definition (HD) maps, can further 
enhance the accuracy in urban canyon environments. 
Consequently, integrating an HD map with a fused multi-sensor 
system has emerged as a critical technique for advancing 
autonomous driving beyond Level-3.  
 
Recent studies on HD map-aided navigation have primarily 
focused on utilizing HD maps to provide static geo-referencing 
traffic information and enhance localization performance. These 
studies can be classified into two groups based on the 
representation of HD maps: model-based algorithms and point-
based algorithms. Model-based algorithms utilize vectorized HD 
maps (e.g., Opendrive) to provide landmarks and traffic shapes 
as constraints, improving local odometry estimation (Bender et 
al., 2014; Pai et al., 2022). While traffic model can encode the 
traffic in a mathematical representation, it’s performance of 
corresponding association for place recognition is limited due to 
the sparsity of the parametric model. In contrast, point-based 
algorithms involve point cloud maps that consist of rich semantic 
and geometric points (e.g., Lanelet map) and can be registered 
with onboard LiDAR using registration algorithms, such as 
normal distributions transform (NDT) and iterative closest point 
(ICP) (Bender et al., 2014). Inspired by these solutions, to 
enhance the positioning in urban canyon environments, this work 
incorporates a point map-aided solution to provide matching 
constraints. 
 

Despite the advancements in current map-aided navigation 
solutions, there remain challenging issues which can be discussed 
in two aspects. Firstly, the construction of point maps relies on 
extensive manual work and data collection. A mobile vehicle 
equipped with LiDAR and INS should scan and register each 
local area along the trajectory based on a high accurate trajectory.  
This process becomes particularly challenging in urban canyon 
environments where there are plenty of moving objects. 
Secondly, current solutions primarily formulate the map 
matching as an additional constraint, which bringing in 
unexpected registration errors into the localization system. 
Consequently, achieving accurate positioning in urban canyon 
environments still surfers from the challenging issues of the 
construction and utilization of point clouds map.  
 
To address the issues, we propose a localization framework that 
combines the opensource OSM and the integration of LiDAR-
Inertial system. Prior to the navigation task, the proposed 
framework incorporates a structural map processing module that 
generates a structural information map (SIM) from the vectorized 
road and building models which are available in OSM. During 
the localization stage, the initialization involves providing a 
manually provided coarse positioning and refining the 
positioning by aligning the LiDAR and the SIM. In the tracking 
stage, the relative trajectory is estimated based on LiDAR 
odometry estimation, IMU pre-integration, and the absolute 
distance between the LiDAR and SIM. Finally, all the relative 
poses are integrated based on a factor graph optimization (FGO) 
and the global trajectory is estimated by solving the non-linear 
function using iSAM2 (Kaess et al., 2011).  
The contributions of the proposed method can be summarized as 
follows:  
• A map-aided LiDAR-Inertial navigation framework is 

proposed to integrate the relative positioning from LiDAR 
odometry, IMU pre-integration and the map aided absolute 
constraints.  
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• A structural map processing module is introduced to 
generate a structural information map that is composed of 
synthetic points from opensource OSM.  

• An absolute distance constraint based on map matching is 
proposed to enhance the performance of map-aided LiDAR 
-Inertial system. 

2. RELATED WORKS 

The map aided LiDAR-based navigation aims to estimate the 
relative pose between consecutive frame and IMU measurements 
while integrating the positioning based on the alignment between 
the onboard sensor and the prior map. This section provides a 
brief review of map-aided LiDAR-based navigation, focusing on 
two aspects: the algorithms of feature association, and the 
optimization model for odometry estimation.  
 
To align the onboard LiDAR with the prior global map, there are 
two forks of research that focuses on alignment of point clouds: 
registration-based algorithms, and feature-based algorithms (Li 
et al., 2022). The registration-based algorithms involve dense 
point clouds map as the prior map to provide the geometric 
information of the surrounding environments. For example, in 
(Chiang et al., 2023), initial position is estimated based on the 
NDT alignment between the point clouds and dense point clouds 
map. In (Gui et al., 2022), NDT is implemented to align the 
LiDAR to a pre-built offline map to estimate the relative pose 
along the trajectory and the map matching constraints is to be 
optimized in the factor graph. These registration-based 
algorithms can estimate stable relative positioning but with a 
limited computational efficiency. On the other hand, feature-
based algorithms extract geometric and semantic features and 
register the corresponding features with the prior LiDAR maps. 
For example, in (Chen et al., 2019; Liu et al., 2020; Schaefer et 
al., 2019), semantic patches (e.g., pole like objects) are 
considered as stable points to provide environmental context for 
localization tasks. In (Cho et al., 2022; Yan et al., 2019), feature 
spaces consist of semantic descriptors generated from the 
vectorized models of roads and building boundaries, representing 
the distribution of traffic elements. However, the performance of 
feature description may be affected due to the dynamic objects 
and seasonal variation. Inspired by the utilization of OSM, we 
propose a point-based SIM to represent the environmental 
context including the road shape and building boundaries.  
 
To integrate the relative positioning estimated based on the 
alignment with the prior map, and other heterogenous 
measurements, researchers have formulated navigation as an 
optimization problem or employed filter-based frameworks. In 
(Elhousni et al., 2022), Monte Carlo localization solution, as 
known as a particle filter solution, is implemented to estimate the 
trajectory based on a designed cross-modal localization 
framework. In (Liu et al., 2019), the Kalman filter is involved to 
estimate the position, velocity, as well as an attitude which is 
calculated based on map alignment. For optimization-based 
solutions, error functions integrated distance errors are designed 
to mitigate accumulative errors when constraints are available. 
For example, in (Frosi et al., 2023), the pose graph optimizer is 
designed to fuse the relative pose estimated from local pose 
trackers. With the advantage of efficient data fusion, a factor 
graph optimization is selected to fuse the LiDAR odometry, IMU 
measurement, and the map matching constraints in this paper.  

3. OVERVIEW 

In this section, we will introduce an overview pipeline of the 
proposed navigation algorithm and the predefined coordinate and 
the notations.  
 

To make the proposed framework clearer, the notations and 
coordinate definition are used by the rest of this paper: The local 
world frame 𝑊{𝑋!, 𝑌!, 𝑍!} is defined as a world coordinate 
which is fixed with the original start point of the vehicle. The 
SIM 𝑋"{𝑥"!, 𝑦"!, 𝑧"!} obtained from OSM is transformed into 𝑊 
using the start point as the reference point. The LiDAR frame 
𝐿{𝑋#, 𝑌#, 𝑍#}  denote the LiDAR coordinate at each LiDAR 
frame and is fixed with the LiDAR odometry coordinate. The 
vehicle body frame 𝐵  is fixed with IMU coordinate. The 
transformation matrix 𝑇$# between 𝐿 and 𝐵 is pre-calibrated in a 
calibrated system. The coordinate definition is shown in Figure 
1.  

 
Figure 1. The coordinate definition.  

 
The overview of the proposed navigation framework is shown in 
Figure 2. Assuming a vehicle is equipped with an onboard 
LiDAR and an IMU, raw point clouds and raw IMU 
measurements are continuously captured from the sensors with 
synchronized timestamps. Prior to the online navigation task, the 
proposed structural information map is generated using the road 
and building models from OSM. During the initialization process, 
a coarse position is manually provided for the fine alignment with 
SIM	𝑋"  using Iterative Closest Point (ICP) algorithm. For the 
tracking stage, relative pose is estimated based on LiDAR 
odometry estimation and the IMU pre-integration. In addition, 
the absolute distance constraint is generated during the trajectory 
by aligning the keyframes from LiDAR and the SIM, which 
represents the main contribution. Finally, the relative pose and 
the map matching constraint are integrated using an FGO, which 
enhance the fusion of heterogeneous measurements and 
constraints.  

 

Figure 2. The workflow of the proposed algorithm. 

 
The structure of the FGO is shown in Figure 3. The factor graph 
consists of three factors and one variable, which are used to 
model the relative transformation obtained from LiDAR 
odometry estimation, IMU pre-integration, and the map-aided 
distance constraint. The vehicle state, represented as node 𝑥, can 
be described using Equation 1,  
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x = [R%, p%, v%, b%]%                         (1) 
where  𝑅 = rotation matrix  
 𝑝 = position vector  
 𝑣 = speed 
 𝑏 = IMU bias 
 
The estimation of the robot state is formulated as a maximum a 
posteriori (MAP) problem. To model this problem, a factor graph 
is used to model the MAP problem and the solution is obtained 
through a nonlinear least squares problem (Shan et al., 2020). The 
functional equation for constructing the factor graph consists of 
three types of factors and one variable type, as described in 
Equation 2,  
 

T$!
∗ = argmin	 ∑  &'(,.+ D∥∥e&#,-./∥∥0"LDAR 

1 + ∥∥e2345∥∥0#IMU 
1 +

∥∥e,4-∥∥0$MD 
1 H(2) 

 
where the T$!

∗  denotes the estimated trajectory, which can be 
represented as 𝑇$! = [𝑅|𝑝]. e&#,-./ , e2345 , and e,4-  denotes the 
relative pose estimated from LiDAR, IMU and map aided 
distance constraints, while Σ&LDAR , Σ2IMU , and Σ,MD  denotes the 
information matrix, respectively. 𝐾 denotes the number of nodes 
that will be optimized within the factor graph.  
 

 
Figure 3. The structure of factor graph optimization.  

 
4. METHODOLOGY 

This section introduces the generation of the proposed SIM, and 
factors generation including the LiDAR odometry estimation, 
IMU pre-integration, and the map aided distance constraint.  
 
4.1 Structural map processing module 

Before the navigation task, the structural map processing module 
is introduced to generate the point map based on OSM. To make 
the implementation clearer, a brief introduction of the OSM is 
presented firstly. The OSM provides five layers of data for a 
selected area, including: strings, points, lines, multiline polygons, 
and the spatial relationship. In our approach, we extract the 
vectorized lines of the building boundary and the line points as 
raw data to represent the structural information. Figure 4 shows 
an example of the visualization of raw OSM points.  
 
For the road shape, a Delaunay mesh is firstly implemented to 
estimate the shape of the building. Then an interpolation process 
is implemented to generate the road points within the obtained 
mesh and a predefined density, 	
𝜎 . As for road points, a linear interpolation function is 
implemented to generate the dense points around a centre point 
on the road, following the Equation 3. An example of the SIM 
map and the original OSM data is shown in Figure 5.  

𝑑7∗ ≤ ∆𝑑 + 𝑑7, 𝜃7 ≤ ∆𝜃 + 𝜃1                  (3) 

Where ∆𝑑, ∆𝜃 denotes the interpolated value of a raw centre road 
point.  

 
Figure 4. An example of raw OSM map. Road points and 

buildings points are coloured in blue and green, respectively. 
 

 
Figure 5. The zoom-in visualization of SIM of a selected area. 
(a) and (b) shows the raw data (blue points) and synthetic data 
(red points). In this example, the density of the interpolation 

𝜎=3.  
 

As OSM is an open-source dataset, there may be discrepancies 
between the raw OSM data and the observation from the dataset. 
To address this issue, a consistent evaluation and alignment are 
implemented to assess the similarity between the ground-truth 
point cloud map and the generated SIM. Specifically, the ground-
truth point map is generated by aligning the LiDAR frames using 
the ground-truth trajectory and manual labelling. Then an ICP is 
implemented to align the SIM and the generated point map. As 
the OSM only provide latitude and altitude information of the 
selected area, the vertical information and the building 
information are obtained from by extracting the shape of the 
building from OSM building and semantic point clouds. In 
addition, a downsampling rate is predefined to balance the 
density of the SIM.  
 
4.2 LiDAR odometry estimation  

The goal of LiDAR odometry estimation model extracts the 
feature points from raw point clouds, perform the feature 
association, and estimate the relative pose from the consecutive 
frames. In this paper, three steps are implemented to estimate the 
relative motion, including feature extraction, scan-to-map 
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matching, and LiDAR mapping (Zhang and Singh, 2014). A brief 
introduction is presented in this section.  
 
For each new point clouds 𝑃 in LiDAR frame 𝐿, feature points 
are firstly extracted using a design smooth value, which is 
calculated using the following Equation 4,  

𝑠,,9 =
:

‖<‖‖=$‖
S∑ (𝑝9 − 𝑝,)<

9':,9>, S                  (4) 
where 𝑆 is the surrounding sub-region around the center point 𝑝,. 
By calculating all the smooth value, the feature points including 
corner points and planar points are extracted by sorting all the 
smooth value. When the smooth value is larger than a threshold, 
the point is selected as a corner point, otherwise, the point is 
labelled as a planar point. As a result, the output of the feature 
extraction is the feature point set, 𝐹#{𝐹?#, 𝐹=#}.  
 
The relative pose between relative frames is estimated using the 
process of scan-to-map, which is estimated by minimizing the 
distance of feature points between the feature points 𝐹#{𝐹?#, 𝐹=#} 
and the map	𝑀!. The map 𝑀is generated by transforming the 
feature points set using the transformation matrix 𝑇,#→!. Then 
the distance of point-to-plane and edge-to-plane is designed as 
the error function to estimate the relative pose between, as 
Equation 5,  

min
A
( 𝑑(′𝐹?#, 𝐹?#), 𝑑(′𝐹=#, 𝐹=#))                   (5) 

where the ′𝐹?# and ′𝐹=# are the transformed points in coordinate 
𝑊. To solve this error function, the Gauss-Newton is used to 
solve the non-linear function to calculate the transformation 
matrix.  
 
By minimizing the distance between relative frames, the 
transformation matrix between two states can be represented as 
the Equation 6,  

∆𝑇,,,B: = 𝑇,A𝑇,B:                                (6) 
where ∆𝑇,,,B: denotes the relative transformation between state 
nodes. To eliminate the computation cost of factor graph 
optimization, keyframes are selected based on the motion 
distance and angle. Only relative transformation between 
keyframes will be optimized in the FGO. As a result, the LiDAR 
odometry factor can be represented as follows,  

∥∥e&#,-./∥∥0"LiDAR 
1 =	∥∥𝑓(D𝐓$,&

! C:𝑻$,&B:! H , D𝐓$,&#
C:𝑻$,&B:# H)∥∥𝚺"'$()*

1
 

(7) 
where e&#,-./  denotes the information matrix of the error 
function. 𝑓 denotes the minor operator.  
 
4.3 Map matching aided distance constraints 

In this section, the integration of the generated SIM and the 
LiDAR-Inertial system is introduced. There are two stages that 
integrated with the map matching constraint. Firstly, for the stage 
of initialization, a fine matching is implemented to estimate the 
accurate initial position based on a manual positioning. Note that 
if the manual positioning is not accurate enough, the initialization 
will be failed, and the tracking stage will not start. Second, the 
map matching can provide distance error as a constraint and 
eliminate the accumulative error for the long-term navigation. In 
short, keyframes are aligned with the corresponding SIM and the 
relative distance is jointly optimized in the FGO as the MD 
factors.  
 
For each keyframe, an ICP algorithm is implemented to match 
the corresponding featured points. Note that the mismatching of 
the ICP will be ignored for the following steps. Given the pose 
estimation 𝑇#,&!  at timestamp 𝑘 , the transformed feature points 
transformed in world frame can be represented as,  

𝑃&! = 𝑇#,&! 𝑃&#                                (8) 
 

where 𝑃&! and 𝑃&# denote the keyframes in the LiDAR frame and 
world frame. Then the error distance of the map matching can be 
derived as follows:  
 

𝑑& = ∑ 𝐷,(𝑇#,&! ′)1E
,':                                 (9) 

 
where 𝑇#,&! ′ is estimated transformation matrix between the 𝑃&# 
and the SIM. 𝐷,  denotes the minor operator based on ICP 
algorithm. Therefore, the error function for the MD constraints 
can be represented as Equation 10,  

∥∥𝐞,4-∥∥∑ 4-$

1 = ‖𝑑& − 𝑑(‖∑ 4-$
1                      (10) 

Where Σ4-  denotes the information matrix of the error function. 
The error distance is expected to zero according to the MD 
constraint.  

 
4.4 IMU pre-integration  

When raw measurements from IMU are available, the velocity 
and acceleration can be represented using Equation 11 and 
Equation 12,  
 

𝜔c2 = 𝜔2 + b2G + n2G                            (11) 
ad2 = R2HI(a2 − g) + b2J + n2J                     (12) 

 
where 𝜔c2  and ad2  are the raw IMU measurements in the body 
frame coordinate 𝐵 , while 𝑏  and 𝑛  denote the bias and white 
noisy, respectively.  
 
Based on the raw data, the relative motion including velocity, 
position, and rotation based on IMU pre-integration method can 
be represented as the following Equations (Forster et al., 2017): 
 

ΔvK7 = R,L(v7 − vK − gΔ𝑡K7)

ΔpK7 = RKL Dp7 − pK − vKΔ𝑡K7 −
:
1
gΔ𝑡K71 H

ΔRK7 = RKL R7

 (13) 

where ΔvK7, ΔpK7 and ΔRK7 denote the pre-integrated relative 
pose between the timestamp 𝑚 and timestamp 𝑛.  
 
Based on the relative pose estimated using IMU measurements, 
the IMU pre-integration factor can be represented as following 
Equation 14,  

∥∥𝐞K→7345 ∥∥0+,-
 
1 = i𝑓(𝐓$,K!

C:𝑻$,7! )i
1
                (14) 

Where 𝐞K→7345  represents the error function for the relative 
motion. Σ345  denotes the information matrix of the IMU factor 
error function. 𝐓$,K!  and 𝑻$,7!  denote the state node at timestamps 
𝑚 and 𝑛. 𝑓 denotes the minimization operation.  
 

5. EXPERIMENTAL RESULTS 

In this section, experimental results are presented to evaluate the 
proposed navigation solution in an opensource SLAM dataset, 
Urbannav (Hsu et al., 2021). Implementation details and 
performance analysis are presented as follows.  
 
5.1 Experimental details 

To evaluate the performance, all the experiments are 
implemented on a Linux system with Robot Operating System 
(ROS) 18.04. As for the data collection in Urbannav dataset, 3D 
LiDAR (Velodyne 32) and an IMU (Xsens Mti 10) are integrated 
on the mobile vehicle. OpenStreetMap are downloaded from the 
website within the trajectory area. The parameters used in this 
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experiment are given in Table 1. During the evaluation, we 
compare our proposed solution to two state-of-art algorithms, 
including LEGO-LOAM and Map aided NDT-based algorithm 
(Kato et al., 2018; Shan and Englot, 2018). Here, to eliminate the 
influence of feature association and the sampling rate, we use the 
global points map as the prior map for the NDT-based navigation.  
Table 1. Parameters settings for the experimental evaluation 

Parameters Value Description 
𝛿M 5 m Keyframe selection 
𝛿2 15° Keyframe selection 
𝜇 4 Density 
𝜎 0.2 Down sample rate 

 
5.2 Performance analysis 

As shown in Figure 6, the proposed navigation solution can 
successfully estimate a high accurate trajectory compared to the 
ground truth trajectory. With the help with the proposed MD 
constraint, the positioning is still stable when the vehicle moves 
with a turning (Point A) and after a turning (Point B). In addition, 
during the long-term straight movement, the accumulative error 
is eliminated by optimizing the map matching constraints for 
each keyframes.  
 

 
Figure 6. (a) shows the estimated trajectory based on the 

proposed algorithm, LEGO-LOAM, NDT-based algorithm and 
ground truth trajectory. (b) and (c) shows the zoom-in 

comparison at point A and point B.  
 
5.3 Experimental evaluation  

Figure 7 shows the trajectory evaluation in translation direction. 
Compared to LEGO-LOAM solution, the proposed algorithm 
can significantly improve the accuracy in 𝑧 value, as shown the 
location with red arrow. The maximum error from LEGO-LOAM 
can achieve around 40 meters, while the proposed algorithm can 
achieve stable positioning error in 𝑧 direction is deviating from 0 
to 3 meters. The reason is that the proposed MD can constraint 
the accumulating errors even without a global constraint, such as 
loop closure. In addition, compared to the NDT-based solution, 
the proposed method involves more measurements and 
constraints, which achieve better positioning accuracy than it.  
 
To further evaluate the performance of the proposed algorithm, 
we applied EVO toolkit to calculate the relative error for the 
translation and rotation using RMSE and Mean (Grupp, 2017). 

Table 2 and Table 3 show the performance of the translation and 
rotation of using LEGO-LOAM, NDT-based algorithm, and the 
proposed algorithm, respectively. Note that we didn’t apply the 
loop closure in the proposed solution to evaluate the contribution 
of the proposed MD constraints. Regarding the translation, both 
MEAN and RMSE are reduced in the proposed algorithm. In our 
experiments, the NDT-based solution also achieves similar 
accuracy even without the integration of IMU pre-integration. 
The reason is that both point clouds map and the estimated 
trajectory are performed on the same datasets, which means that 
the NDT matching can perform well between the onboard 
LiDAR and generated point cloud map.  
 

Table 2. Accuracy evaluation in translation (RPE).  

Accuracy Algorithms (m) 
 Lego-LOAM NDT-based 

method 
Our 

algorithm 
MEAN 19.46 5.72 4.73 
RMSE 50.00 16.10 15.26 

 

Table 3. Accuracy evaluation in rotation (RPE).  

Accuracy Algorithms (degree) 
 Lego-LOAM NDT-based 

method 
Our 

algorithm 
MEAN 12.87 8.13 5.36 
RMSE 29.36 15.36 9.49 

 

 
Figure 7. Trajectory evaluation in translation direction.  

 
5.4 Discussion 

To evaluate the improvement of the proposed MD, we compare 
our proposed solution with the pure LiDAR-Inertial odometry 
(LIO) estimation solution. The pure LIO solution is implemented 
based on the integration of LiDAR and 6 axis IMU, with the loop 
closure constraints (Shan et al., 2020). The absolute errors in 
three translation direction are shown in Table 4. Compared to the 
LIO solution, the mean errors in 𝑥 direction and 𝑦 direction are 
significantly reduced, with the help of the proposed MD 
constraints. The error in 𝑧  direction is similar, with the pre-
integration of IMU.  
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Table 4. Accuracy evaluation in translation 

Algorithm Accuracy (Absolute Error, m) 
 MEAN (X) MEAN (Y) MEAN (Z) 

LIO solution 33.92 56.83 1.61 
Our algorithm 4.41 4.12 2.21 

 
6. CONCLUSION AND FUTURE WORK 

In this work, we propose a navigation solution that combines a 
LiDAR-Inertial system with OpenStreetMap to enhance the 
positioning performance in urban canyon environments. We 
introduce a distance constraint based on map matching and 
integrate this constraint with LiDAR odometry and IMU pre-
integration within a factor graph optimization structure. The 
evaluation results demonstrate that the proposed solution can 
achieve high accuracy in urban canyon environments.  
 
One of the limitations of the work is that manual corrections for 
the consistent evaluation are necessary before the navigation task 
since the OpenStreetMap may open-source dataset that may not 
always be up-to-date and are less height information. Deviation 
of the OSM or wrong elements will decrease the accuracy of map 
matching and bring in wrong constraints for the whole navigation 
system. In our future work, we will study the automatically 
updating for the OSM and the generated SIM to enable large-
scale navigation. 
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