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ABSTRACT:

In autonomous driving systems, a positioning method that can be used in scenarios with no satellite signals or long signal
interruptions is a must. In this paper, we address the problems in map construction methods and map matching methods in scenes
without satellite signals or long signal interruptions, and construct a semantic map matching-based localization method to meet the
localization requirements by means of monocular vision sensors on the basis of weighing the accuracy and cost of map construction
and localization. In this paper, firstly, the method of map construction is studied and a static semantic map construction method based
on monocular camera is constructed. Then the map matching localization method is studied, and a semantic map matching based
localization method is constructed to align the local map built during localization with the pre-built global semantic map to obtain the
current location information. Finally, this paper constructs a method to fuse the visual odometry and map matching localization
results, so as to obtain more accurate localization results.

1. INTRODUCTION

In autonomous driving system, accurate real-time acquisition of
the vehicle's position and attitude is critical, and accurate
positional position is the basis for planning and control
decisions. In general, combining GNSS with inertial
measurement units and using real-time differential technology
can provide accurate, real-time position information for
autonomous driving systems. However, in some urban scenarios,
the satellite signal is susceptible to interference or occlusion,
resulting in discontinuous reception of the satellite signal. The
situation can cause the combined navigation system to degrade
rapidly and produce large errors, which seriously affects the
positioning accuracy and makes the positioning results no
longer applicable to the subsequent decision judgment of the
autonomous driving.Therefore, a localization method that can
be used in scenarios without satellite signals or with prolonged
signal interruptions is necessary for autonomous driving
systems.

Semantic map-based matching localization, as a popular
problem for unmanned collar research in recent years, has
accumulated some experience, and a variety of algorithms for
map matching localization have been proposed. Feature point
method SLAM is currently more mature, such as ORB-SLAM3
(Campos C et al.2020) is able to represent the whole image by
selecting feature points in the image, which can work used
when the noise is high or the camera movement is fast, and
many feature points usually have better robustness to scale
change and rotation, and also insensitive to the change of
illumination in the environment. VINS-Mono (Tong et al.2018)
is a sliding window-based SLAM algorithm that uses
monocular cameras and IMU sensors for simultaneous
localization and map construction. However, the feature point
method needs to extract feature points and calculate descriptors,
which will consume more computation time. The direct method
SLAM such as LSD-SLAM (Fleet D et al.2014) does not need
feature extraction and operates on pixels directly, which can

theoretically utilize all the information of the image, but the
direct method is based on the assumption of grayscale
invariance, which causes it to be very sensitive to changes in
ambient illumination and more affected by changes in
illumination intensity.

(a) (b)

Figure 1. (a)Visual odometry with feature point method
(b) Visual odometry with direct method

Map matching algorithms such as Road-SLAM (Jeong J et
al.2017) and RoadMap (Qin T et al.2021) have the following
problems: firstly, the contradiction between the fully utilized
semantic information and the map updating efficiency, which is
difficult to guarantee the effectiveness when the map
information is complete and requires high update frequency;
then, the current map construction relies too much on GNSS
systems to provide real-time positional information, and the
positioning method in the satellite signal blocked area needs
Finally, when there are unstable dynamic objects in the
environment, it will affect the accuracy of positioning and map
construction and reduce the quality of final positioning.
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For semantic recognition and segmentation of road scenes, a
real-time high-performance DCNN-based (Dong G et al.2018)
semantic segmentation method for urban street scenes, which
achieved a good balance between accuracy and speed. a new
deep dual-resolution network for real-time semantic
segmentation (Hong Y et al. 2019) of road scenes. The method
achieves a new optimal balance between accuracy and speed on
the Cityscapes dataset and the CamVid dataset, reaching the
latest optimal performance. PP-Liteseg (Peng J et al.2022), in
which a flexible and lightweight decoder is used to reduce the
computational burden. And in order to enhance the feature
representation, a unified attention fusion module is added,
which uses spatial and channel attention to generate weights,
and then fuses the input features with the weights, combined
with a simple pyramid pooling module to aggregate the global
context with low computational cost.

To address the problems of autonomous driving localization
systems in satellite signal blocked areas at the current stage, this
paper investigates how to build a lightweight, accurate map
containing the necessary localization semantic information
based on some currently available localization and map
construction techniques, and completes the localization process
by map matching based on the built map. In this paper, the
semantic map construction algorithm and the map matching
based positioning algorithm are implemented with the data of
road environment scenes in the park obtained from open source
datasets and self-built collection platforms, and experiments are
designed to verify the accuracy of map construction and
positioning.

Our main contributions are as follows:
A monocular camera-based static semantic map construction
method is constructed to convert 3D point cloud maps into 2D
maps using projection.
A localization method based on semantic map matching is
constructed to align the local map created during localization
with the pre-built global semantic map to obtain the current
location information.
A method of fusing visual odometry and map matching
localization results is constructed to reduce the disadvantages of
each of the two localization methods by fusing the two different
localization information.

2. METHODS AND EXPERIMENTS

2.1 Semantic Map Construction

Firstly, the semantic segmentation method is used to obtain the
semantic information of the image, segment the image and
extract the region of interest; then, the geometric constraint
information of the feature points in the feature point method
SLAM is combined to eliminate the feature points in the
dynamic region of the current camera acquisition image to
ensure the accuracy of the feature point matching positional
estimation; secondly, the meaningless part of the localization
process is eliminated, and the semantic information in the
region of interest is used to combine with the The semantic map
is built by combining the semantic information in the region of
interest with the odometer pose results to ensure the validity of
the map. Finally, the accumulated errors of key frame poses in
the map construction process are corrected by loopback
detection or intermittent GNSS information to ensure the
positioning accuracy.The semantic map construction process is
shown in Figure 2.

Figure 2. Semantic map construction framework

2.1.1 Semantic Segmentation of Road Environmen：The
information contained within the road scene image contains
many interfering factors for localization and map building,
which need to be filtered by some methods. The semantic
information provided by the semantic segmentation based on
deep learning can effectively distinguish different semantic
regions in the image, and the more common semantic categories
include pedestrians, vehicles, sky, buildings, lane markings and
so on. Pedestrians and vehicles are common dynamic objects,
which have an impact on localization and map building. The
feature points detected in the sky can be regarded as invalid
feature points, and their depth can be regarded as infinite, which
have no practical significance for inter-frame matching and
subsequent localization and map building, so the above regions
can be segmented out and eliminated. Buildings and road signs
and markings can generally be detected as stable feature points,
which are necessary features for map building.

The semantic segmentation method based on deep learning first
uses the pre-labeled dataset information as the training set,
divides the common semantic categories in road scenes and
adds semantic labels to the corresponding regions, then uses
convolutional neural networks to build a deep learning model,
and iteratively trains the training set into the model to obtain a
prediction model. Finally, the prediction model is evaluated,
and the model is considered to be applicable to semantic
segmentation when the input validation set can meet the
expected goal when validation is performed. Finally, in practical
applications, the image data captured by the input sensor is used
to complete the segmentation of the image semantics. At the
present stage, deep learning based semantic information
acquisition methods have been widely used in SLAM
technology (Ganti P and Waslander S L .2018) and (Li P et al.
2018) and (Liang H J et al.2018).
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In this paper, we use PP-LiteSeg model for training and
prediction of semantic segmentation model. PP-LiteSeg is a
lightweight model with a speed of 273.6 FPS on 1080ti model
GPU when the average intersection ratio of segmentation
accuracy is 72.0, which meets the real-time requirement. The
training data uses data images captured through CARLA self-
driving car simulator and semantic annotation files, whose
semantic labels are divided into 13 categories, unlabeled,
buildings, fences, pedestrians, poles, routes, roads, sidewalks,
vegetation, cars, walls, traffic signs, and others. Its
segmentation effect is shown in the figure 3.

Figure 3. Semantic segmentation of road scenes

2.1.2 Feature Point Processing in Dynamic Environments:
When using SLAM methods for map construction, dynamic
objects have a large impact on both the map construction and
localization processes. In the feature point visual odometry
process, a feature point acquired on the dynamic object, the
feature point will be displaced on the pixel coordinate system on
the adjacent frame image, if the point is not recognized and
rejected by other algorithms, it will make the reprojection error
increase in the optimization, and when there are too many
feature points in the motion state, it will affect the current
odometry calculation results. And in the process of map
construction, dynamic objects generally do not want to be
represented in the map, such as pedestrians, cars, etc.. Therefore,
dynamic objects should be excluded from the map elements.
Therefore, the identification and rejection of dynamic areas can
improve the positioning accuracy and keep the stability and
validity of the map building content.

Acquisition by deep learning semantic segmentation is a very
effective means to acquire dynamic regions. For the feature
point method SLAM, the feature points on the segmented
dynamic objects can be eliminated in the feature point selection
stage based on the semantic information provided by the
semantic segmentation, and the stable feature points on the non-
moving objects on the image can be selected for the localization
and map building work. However, distinguishing dynamic
feature points only based on the semantic information provided
by semantic segmentation will cause some feature points on
potential dynamic objects in non-motion state to be eliminated,
such as cars in unstarted state, stationary pedestrians, etc. In
some scenes, such objects may occupy a larger proportion of the
image, resulting in the odometer part of the feature points need
to be provided by stationary vehicles, and if they are eliminated
instead, it will have an impact on the bit-pose settlement As a
result, some other methods are still needed to improve the
SLAM method in dynamic environments.

Figure 4. Projection relationship of motion feature points in
dynamic environment

To ensure that the camera pose provided in the visual odometry
is not affected, geometric constraints are added to the semantic
segmentation to determine the dynamic objects that are moving
in the current frame. Combining the geometric constraints with
the semantic segmentation results can increase the accuracy of
the judgment. As introduced in section 2.1.2, there is a certain
relationship between the pixel pose and the polar line in two
frames, and the object point corresponding to the pixel point in
the previous frame has the image point on the polar line in the
second frame, which is not satisfied when the object is in
motion, as shown in Figure 4. Due to the influence of the
camera distortion model, the pixel points of adjacent frames
may not perfectly meet the requirements for the polar constraint,
so it is necessary to set the threshold value according to the
actual situation, and consider the point does not meet the polar
constraint when the distance between the pixel point and the
polar line is greater than the threshold value. According to the
above constraints, firstly, the more stable point is selected
according to the semantic information, and the preliminary
camera motion pose between two frames is calculated, and the
motion feature points are filtered by combining the geometric
constraints that should be between this pose and the pixel points.
The relationship between the corresponding pixel coordinates of
two adjacent frames is:
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Let the distance between the actual pixel point and the polar line
be D. The expression is:
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If the distance D is greater than the threshold, the point is
considered as not matching the polar line constraint. There are
two cases that cause this result; first, these points themselves are
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mismatched; second, these points exist on dynamic objects and
these points move with the object, causing the mismatch, i.e.,
such points are dynamic feature points. In both cases, the
unsatisfied feature points need to be eliminated. Therefore, all
feature points that do not meet the polar constraints can be
screened out based on this geometric constraint approach.
Combined with the semantic information for judgment, when
dynamic feature points are within the detected dynamic region,
such feature points are considered as invalid feature points,
which can neither be used for visual odometry position
estimation nor semantic map construction; when dynamic
feature points do not fall within the dynamic region, the object
is considered as a non-usually considered dynamic object and is
in motion; when static feature points other than those satisfying
the geometric constraint are within the dynamic dynamic When
the static feature points, except for the geometric constraints,
fall within the dynamic region, the dynamic region is considered
to contain potentially dynamic objects, and such feature points
are only used for pose estimation of visual odometry, but not for
semantic map construction.

Figure 5. Feature matching in dynamic environments

Figure 6.Motion object feature point rejection

As shown in Fig. 5 and 6 The feature point detection is
performed on two adjacent frames and matched according to the
descriptiveness, the hollow circle mark is the detected ORB
feature point, and the connecting line indicates that the pair of
feature points has been matched, where dynamic feature point
removal is not performed in Fig. 6, and Fig. 7 shows the feature
matching algorithm of the visual odometer method in dynamic
environment constructed in this paper, which can be seen that
the method retains the feature point's extracted on the vehicle at
rest, removes the feature point matching on the vehicle in
motion, and realizes the reduction of the impact of dynamic
objects on the visual odometer.

2.1.3 Map Semantic Information Processing ： In most
scenarios, the vehicle driving process is a ground-constrained
moving process, so it can be considered that the positioning
result of the vehicle in the vertical direction is known as the
elevation of the road surface, so the vehicle positioning
information is the two-dimensional information on the road
plane. Therefore, based on the map matching localization
method, the vehicle only needs to obtain the two-dimensional
coordinates of the current location through the a priori map to

know its own location, so the map can be downscaled to make
the matching process more concise and reduce the matching
computation. And in order to avoid significant differences in
feature point extraction in different viewpoints in the sparse
point cloud map established by feature point method SLAM, a
map building method that projects feature points on the road
plane is adopted to establish a more stable two-dimensional
semantic map.

The map point cloud projection is performed by post-processing.
First, the road surface is determined based on the semantic
information of each frame with the ground feature points after
triangulation and plane fitting in the visual odometer key frame.
Then, the feature points in the environment are screened, and
only the valid information, such as indication signs, tree trunks,
street lights, building facades and other stable areas, are retained
and projected onto the road 2D plane; again, the grid is divided
to count the semantic labels of the points falling into each grid,
and the semantic information of the grid is given according to
the maximum number of semantic labels; finally, according to
the camera bit pose corresponding to the key frame, the
projection image of adjacent frames is completed Finally, the
map is built by matching the projection images of adjacent
frames according to the corresponding camera pose.

Figure 7. Bird's eye view semantic map

Bird's Eye View (BEV) is a top-down view of the vehicle
environment perception map, which can provide the plane
location information required for the positioning of the
autonomous driving system on the road surface, and the bird's
eye view can show the positioning problem more intuitively.
The method constructed in this paper projects the point cloud
data generated during the map building process combined with
its semantic information vertically onto the road plane to
generate a semantic map in the form of a bird's-eye view. The
projection is shown in Figure 7.

Figure 8. 3D sparse semantic point cloud map
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The point cloud map established by the SLAM method of
feature points based on vision sensors is often sparse, as shown
in Figure 8, and the detection of feature points is affected by the
viewpoint, and the feature points detected by the same object
under different viewpoints have large differences, resulting in
poor results achieved by 3D point cloud matching. Therefore,
the feature points in 3D space are projected and converted into
2D form. The road scene has more vertical structures, such as
tree trunks, street lights, signage and building facades, etc. The
vertical projection of the bird's-eye view enables their positions
to be enhanced according to semantic information, as feature
points on a pole-like object will be superimposed and projected
onto the same area. By the projection method described in the
previous section, the feature points in the key frame have been
projected into the road plane to obtain a semantic point cloud in
the road plane, and now the point cloud obtained is aligned with
the world coordinate system by rotation, translation and
deflation. The map gains the ability to provide absolute position
information.

2.2 Map Matching

After the map format is determined, a map matching-based
positioning method needs to be built around the map
information to obtain the position information from the map.
Compared with other odometry-based positioning methods, the
map matching method not only can obtain absolute position
information, but also the positioning result has no influence of
cumulative error, which is an effective method to solve the
positioning in the restricted area of GNSS. Under the premise
that the map accuracy is guaranteed, the positioning method
needs to meet the positioning accuracy requirements of general
vehicle driving. This chapter will elaborate on the constructed
semantic map matching-based localization method to improve
the accuracy and real-time efficiency of the localization
information by fusing the map matching results with the visual
odometry poses. Firstly, to solve the scale uncertainty of
monocular camera, a method is constructed to recover the scale
of the motion trajectory by combining the monocular camera
pose provided by the visual odometer with the semantic
segmentation information, and using the mounting height of the
camera to calculate the depth of the feature points on the road
plane, so as to determine the scale of the translation vector
between two frames of the camera, and thus recover the scale of
the whole motion trajectory; then, according to the map
construction Then, the monocular camera data are processed to
obtain a local point cloud map with semantic information, and
then in the process of matching, the map is matched using the
semantic constraint ICP algorithm, using the visual odometry
poses as the initial poses for iterative calculation, and using the
semantic information constraint in the nearest point selection,
and finally, the final positioning results are obtained by fusing
the matching positioning results with the visual odometry poses.

2.2.1 Monocular Visual Scale Recovery: In the monocular
vision odometry method, the initialization process obtains the
bit pose of the adjacent two camera frames by calculating the
essential matrix, and the depth information is calculated by
triangulation based on the adjacent two frames to recover the
spatial position of the feature points, however, since the
translation vector solved in the essential matrix is a unit vector.
Therefore, only the shape of the object can be determined but
not its size attribute can be obtained, as shown in Figure 9.
Therefore, the magnitude of the camera translation vector
obtained at each initialization of the monocular vision odometer
is not the true distance.

Figure 9.Monocular visual scale uncertainty problem

In order to obtain accurate camera trajectories, it is necessary to
determine the depth values of the pixel points in the image
corresponding to the depth in 3D space. Therefore, a scale
recovery method is constructed in this paper to perform the
initial scale calculation by selecting a stably identified and
scale-invariant ground as a marker in combination with the
camera poses.The semantic information provided in the
semantic segmentation can segment the pixel points in the
image that represent the road surface, and the relative poses of
the camera can be obtained in the essence matrix during the
initialization of the visual odometer. At this point, it is only
necessary to know the coordinate values of several ground
points within the road in the camera coordinate system, and by
fitting the road plane through these points, the distance from the
camera optical center position to the ground point within the
camera coordinate system can be solved using the point-to-
plane distance formula. The real coordinate scale can be
obtained by solving the distance with the actual camera height
value. Thus, the scale of the whole motion process can be
recovered.

According to the camera height and the current position of the
camera, the coordinates of ground feature points in the world
coordinate system can be obtained. This way can compensate
for the missing depth during monocular camera measurement,
and then recover the scale of the translation vector during the
initialization of the odometer, so that the established map scale
can be recovered. In order to avoid the influence of
measurement errors as much as possible, the ground points
should be selected to avoid too far and should be far from the
segmentation edge, and the ground feature points should be
plane fitted to remove outliers to ensure accuracy. As shown in
Figure 10, where the left image is the semantic segmented road
plane, the right is the feature point extraction, and the yellow
box line is the ground feature points selected to fit the road
plane.

Figure 10. Ground feature point selection
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2.2.2 Map Matching Based on Semantic Information：
When the positioning end acquires the processed semantic map,
it needs to do the same processing of the visual sensor data first,
and build a local map by projection, combining multiple frames
of images, and match the local map with the previously
established global semantic map to obtain the precise position
of the local map, and then get the bit position pose when the
vehicle acquires the image.

In order to improve the matching effect it is necessary to build a
local map to avoid the difficulty of matching ground marker
points containing too little information in a single frame and the
semantic feature points above the road surface are too sparse
leading to the loss of semantic meaning due to the low
percentage of their semantic labels in the projection grid, the
local map is built at intervals, firstly by moving the distance
constraint, when the distance exceeds a threshold, the map built
in that time is used to match with the global semantic map, then
the matching score is used to control the size of the local map.
matching, and then control the size of the local map by the
matching score, when the matching score is too low, the result
of this matching is not saved and the local map is extended to
the next distance threshold moment. However, when the moving
distance exceeds the maximum value, the expected matching
score is still not reached, and the localization is considered to
have failed.

2.2.3 Fusion of Semantic Maps and Visual Odometers for
Localization：The previous section describes how to perform
semantic map-based matching to obtain the location and pose
information of the current collection information in the semantic
map to achieve the positioning function, but due to the sparsity
of the ground marker feature points and ground markers, for
example, in some areas only lane lines exist within the road
surface and there are no obvious indication markers, which will
make the positioning result in the direction of travel constraint
reduction, the accuracy of the map matching positioning result
decreases sharply, requiring This results in discontinuous map-
based matching results. Therefore, it is necessary to combine
the visual odometry to provide continuous inter-frame
transformation positional relationships to obtain global and
continuous localization results.Due to the effect of systematic
error and chance error, it is necessary to fuse the positions
acquired by the two position acquisition methods.

Using the nature of the rotation matrix and translation vector, so
that the sliding window contains n minus m bit position
information, then the i-th(m i n  ) bit position and the current
bit position relationship is as follows:
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Combined with the visual odometry results:
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Let the observed value of the rotational translation parameter of
the n-th map matching localization result position in the world
coordinate system be ,W W

n nR t Then the optimization problem can
be constructed:
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The positions obtained by the two position acquisition methods
need to be fused because of the systematic and chance errors. In
order to calculate the optimal position of the vehicle, a sliding
window is designed so that it contains several positions of the
map-matched positioning results in the world coordinate system,
and all the positioning results in the window are optimized.

3. PRECISION EVALUATION

First, for the relative accuracy verification, this paper verifies
that the relative accuracy of the constructed positioning method
should be kept within 0.2m (Liu et al.2018) by the data
collected by LIDAR. The LIDAR sensor performs ranging by
actively emitting a signal source, and its accuracy is relatively
high, usually its range accuracy is centimeter per hundred
meters. The specific steps are to first complete the semantic
map construction using the map construction method, and
determine the road edge location based on the semantic points.
Then, the localization is performed by the map matching
method constructed in this chapter, and the position of the
localization trajectory in the map is determined. Secondly, the
single-frame LiDAR road edge line position is extracted using
the LiDAR collected simultaneously in the localization process,
and the LiDAR data is aligned with the localization key frames
according to the time stamps, and finally, the relative positions
of the localization results in the road are compared by the
aligned coordinate system. Within this framework, this paper
compares and analyzes the effects of different semantic map
division accuracy on localization, and obtains the best map
processing parameters by comparing the effects of different
semantic grid division sizes on relative accuracy during the
semantic processing stage.

Second, for the absolute accuracy verification, this paper uses
the image data of the public dataset for verification, so that the
absolute positioning accuracy is held within 1m (Fischler M A
and Bolles R C.1981). Firstly, in the dataset, repeatedly passing
road sections are selected as the experimental data, and the
positioning results are calculated using the first passing images
as the map building data and the subsequent passing images as
the positioning data. And according to the true value of the
trajectory provided in the dataset and the localization results in
the method of this paper are compared and analyzed, while
adding only the visual odometry method in ORB_SLAM2 is
used for comparison to verify the effectiveness of the method of
this paper.

Some line routes in the Kitti dataset 00 sequence were selected
for the experiment. In the 00 sequence, 388 frames to 938
frames of images are used as map construction data, and 3398
frames to 3842 frames of images are used as localization data.
The complete data of the sequence all constitute the loopback,
and the bit pose correction of the map construction using data of
key frames is performed by loopback detection.
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Figure 11. Kitti dataset 00 sequence trajectory

According to the trajectory true value data provided by the
dataset, the length of the line in the 00 sequence part of the
dataset is 385.328 m and the length of the line in the 00
sequence part is 284.62 m. According to the experimental
results in the previous paper, 0.1m resolution maps were used in
the lines. The positioning results were analyzed and visualized
using the evo tool, and the absolute error values were calculated
by comparing the ground truth with the positioning results At
the same time, the visual odometer method without fused map
matching results was used as a comparison term to calculate the
absolute error of the positioning results. In this experiment, the
visual odometer trajectory has been aligned with the true value
of the trajectory by rotation and translation operations to reduce
the influence of the initial angle and position on the accuracy.
The absolute positioning error results of the 00 sequence are
shown in Figure 12. After that, the absolute error value of the
line is then counted, and the absolute error is divided by interval
according to the error size, and the distribution is counted to
indicate the stability of the positioning results, where the error
distribution of 00 sequence is shown in Figure13.

Figure 12. Kitti dataset 00 sequence absolute position error

Figure 13. Distribution of Kitti dataset 00 sequence absolute
position error

As shown in Figure 13, the ground truth of the trajectory is used
as the comparison, and the length of the trajectory route is used
as the x-axis, and the positioning error value of the results of
this paper and the visual odometry results is used as the y-axis,
it can be seen that the absolute positioning accuracy of the map
matching-based positioning method is better than that of the
visual odometry results in this data set. The error distribution of
the map matching method is smaller and more concentrated
than that of the visual odometer, with a median error of 0.47 m
for the map matching method and 0.78 m for the visual
odometer, so the map matching method effectively corrects the
offset of the trajectory route in the visual odometer and reduces
the cumulative error of positioning during driving.

4. CONCLUSIONS

In this paper, accuracy verification experiments are designed for
the reliance on absolute and relative positions during vehicle
driving. First, the relative positioning accuracy of the
positioning method is verified by comparing the positioning
results in the lateral direction in the road through the camera
and LiDAR equipped on the data collection platform built by
the team. Second, the absolute localization accuracy of the
semantic map matching-based localization algorithm is
evaluated by comparing the localization results in the public
dataset with their ground truth values, and adding visual
odometry results for comparison to prove the effectiveness of
the localization method in this paper. The positioning method
constructed in this paper is comprehensively evaluated by two
experiments.
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