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ABSTRACT:

In the realm of Autonomous Vehicles (AVs), accurate, reliable and uninterrupted positioning capabilities are vital to ensure
successful operations. Light Detection And Ranging (LiDAR) technology, capable of providing a high-fidelity 3D representation of
the surrounding environment, has enabled numerous odometry-based positioning algorithms. These algorithms utilize a registration
process to estimate relative motion from two successive 3D scans. However, the accuracy of the registration process can be
compromised by the presence of dynamic objects, leading to significant translational and rotational deviations. On the other
hand, Radar technology provides spatial and speed information. However, it is limited by spatial sparsity and susceptibility to
noise. In this paper, we propose combining the complementary LiDAR and Electronic Scanning Radar (ESR) measurements, along
with onboard motion sensors for improved navigation performance in complex and dynamic environments. This is achieved by
employing a radar-based filtering mechanism that refines the LiDAR’s point cloud mitigating the impact of dynamic objects. This
results in a more robust registration process, which in turn enhances the LiDAR Inertial Odometry (LIO) solution. The proposed
method was verified using real data collected from onboard motion sensors, a 3D LiDAR, and four ESRs from road tests conducted
in downtown Calgary, Alberta, Canada. Our approach achieved an improved average horizontal positioning and heading RMSE
of 0.43 meters and 0.25 degrees, respectively, compared to the 0.66 meters and 0.39 degrees observed with the standalone LIO
solution. Moreover, submeter-level and lane-level accuracies were enhanced to 95% and 100% of the time, respectively, up from
85.7% and 94.9%.

1. INTRODUCTION

Autonomous Vehicles (AVs) necessitate accurate, reliable, and
continuous positioning capabilities to ensure smooth and safe
operations. Positioning and navigation services have long
relied on the Global Navigation Satellite Systems (GNSS).
However, GNSS may face numerous challenges such as signal
attenuation, interference, multipath, and blockage, which may
critically degrade its performance significantly, rendering it
unable to maintain an accurate vehicle position (Elsheikh
and Noureldin, 2020). Traditionally, Dead Reckoning (DR)
algorithms employing onboard motion sensors such as Inertial
Measurement Units (IMUs) and vehicle odometers have been
employed to provide navigation information bridging GNSS
limitations (Noureldin et al., 2013). Despite their effectiveness
in the short-term, these algorithms, such as the Inertial
Navigation System (INS), can accumulate errors from the
integration of motion sensor measurements, particularly when
using low-cost Micro-Electro-Mechanical Systems (MEMS)
technology (Elsheikh and Noureldin, 2020).

Contemporary AVs are equipped with perception sensors, such
as cameras, Radio Detection and Ranging (RADAR), and
Light Detection and Ranging (LiDAR) sensors. These sensors
are primarily employed for perception-related tasks such as
object detection and context awareness (Marti et al., 2019).
However, their availability has revolutionized a new generation
of perception-based positioning and navigation algorithms
(El-Sheimy and Li, 2021).
∗ Corresponding author

Among these perception technologies, LiDAR stands out
as an exceptionally powerful system offering an unrivalled
high-fidelity 3D representation of the surrounding environment
in the form of a point cloud. Such capabilities enabled
the development of a wide range of robust LiDAR-based
positioning algorithms. Specifically, LiDAR Odometry (LO)
methods, have been widely studied to estimate relative motion
from two successive 3D scans employing a registration process
(Vizzo et al., 2023). Moreover, LiDAR Inertial Odometry
(LIO) utilizes complementary measurements from IMU to aid
the registration process thus providing a more robust pose
estimation (Xu and Zhang, 2021). Nevertheless, the accuracy
of these methods can be affected by various challenges such
as the presence of dynamic objects in the scene, which can
compromise the registration process leading to significant
translational and rotational deviations, thus degrading the
positioning solution.

On the other hand, Radar technologies, particularly Electronic
Scanning Radars (ESRs), are now becoming common
in contemporary vehicles, greatly enhancing features
such as Adaptive Cruise Control (ACC) and Advanced
Driver-Assistance Systems (ADAS). Furthermore, their ability
to provide valuable spatial and speed information about
the surrounding environment has motivated interest in the
positioning and navigation fields (Dawson et al., 2022).
Despite the advantages, ESR typically has limitations in terms
of sparse spatial information and susceptibility to noise, which
can constrain the effectiveness of the positioning algorithms.

In this paper, motivated by the complementary characteristics of
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LiDAR and ESR measurements, we aim to investigate efficient
ways to combine their information to provide an accurate point
cloud from LiDAR augmented with speed information from
ESR. The enhanced point cloud is to be utilized by an LIO
system to mitigate the impact of dynamic objects, resulting
in an accurate and reliable estimation of navigation states
including position, velocity, and attitude.

2. METHODOLOGY

The proposed system utilizes information from onboard motion
sensors, LiDAR, and ESRs for the goal of improving navigation
accuracy and robustness in challenging environments with
highly dynamic surroundings and prolonged GNSS outages.
The block diagram in Figure 1 illustrates the interconnections
between the system modules. Firstly, the mechanization
module utilizes onboard motion sensors to compute initial
navigation states. Secondly, the radar-based filtering module
identifies and filters out dynamic objects from the LiDAR
point cloud. Lastly, the odometry module uses the refined
point cloud aligning it with previous LiDAR scans, producing
improved position and attitude estimates. The system modules
and their interaction are thoroughly explained in the following
subsections.

2.1 Mechanization

In this work, we employ the Vehicle Sensors Dead Reckoning
(VSDR) algorithm, which we previously introduced in
(Mounier et al., 2022) for navigation states estimation. The
VSDR algorithm utilizes data from the IMU, including
accelerations and angular velocities, in conjunction with
the vehicle’s forward velocity obtained from the odometer.
At its core, the VSDR algorithm relies on the Inertial
Navigation System (INS) mechanization process to compute
navigation states, including position, velocity, and attitude
in an East-North-Up (ENU) local-level frame of navigation
(l-frame) (Noureldin et al., 2013) The vehicle’s position is
represented in geodetic coordinates in terms of latitude (φ),
longitude (λ), and altitude (h), denoted as rl = [φ, λ, h]T .
The vehicle’s velocity in the ENU directions is denoted as
vl = [ve, vn, vu]

T . Attitude, represented by Euler angles
for pitch (p), roll (r), and azimuth (Az), orients the vehicle’s
body frame (b-frame) to the l-frame via the rotation matrix
Rl

b = [Rz(−Az)Rx(p)Ry(r)], where Rz(−Az) represents
rotation around the z-axis (upward-axis) by the azimuth
angle Az, Rx(p) represents rotation around the x-axis
(transverse-axis) by pitch angle p, and Ry(r) represents rotation
around the y-axis (forward-axis) by roll angle r.

The standard INS mechanization equations can be described by
a set of continuous-time differential equations that express the

Figure 1. A block diagram depicting the proposed method.

rate of change of the navigation states: ṙl
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where, Ωb
ib is the skew-symmetric matrix of the angular

velocities ωb
ib = [ωx, ωy, ωz]

T measured by the gyroscopes in
the b-frame, and Ωb

il is a skew-symmetric matrix that accounts
for the Earth’s rotation rate and the orientation change due to
the vehicle’s motion. It should be noted that the quaternion
approach is utilized, due to its computational efficiency and
lack of singularities, to solve for Rl

b (Rogers, 2003). The
vector f b = [fx, fy, fz]

T represents the measurements from
the IMU accelerometers in the b-frame, and gl = [0, 0,−g]T

is the gravity compensation vector. The term 2(Ωl
ie + Ωl

el)v
l

is a correction term compensating for the rate of change
of velocity due to the stationary and non-stationary rotation
components caused by Earth’s rotation and the vehicle’s
motion, respectively. The transformation matrix D−1 scales
the velocity vector in the l-frame by the meridian (RM ) and
normal (RN ) Earth radii to geodetic coordinates, and it can be
expressed as:

D−1 =

 0 1
RM+h

0
1

(RN+h) cosφ
0 0

0 0 1

 (2)

The VSDR algorithm extends the standard INS algorithm
by leveraging the fact that the motion of a land vehicle
is constrained to be in the forward direction, with no
vertical or transverse motion (Georgy et al., 2009). This
non-holonomic constraint can be enforced by utilizing forward
speed measurements vf from the vehicle odometer (when
available) projected to the l-frame according to Equation (3),
thus minimizing the velocity mechanization errors.

vl =

ve

vn

vu

 = Rl
b

 0

vf

0

 =

vf sin(Az) cos(p)

vf cos(Az) cos(p)

vf sin(p)

 (3)

2.2 Radar-based Filtering

The radar-based filtering process aims to eliminate points
associated with dynamic objects from the LiDAR point cloud,
by leveraging measurements from ESRs, thereby enhancing the
registration process. First, ESRs scan the environment and
obtain measurements such as range, azimuth, elevation, and
radial speed for detected targets. For each ESR, the range,
azimuth, and elevation information are projected from the
spherical to Cartesian coordinates, forming a 3D point cloud.
For an effective filtering process, the point cloud of the jth

ESR denoted as Prj is transformed to the LiDAR sensor frame
(s-frame). Specifically, the coordinates of the ith target in the
LiDAR s-frame, denoted as rsi can be computed as:

rsi = rsrj +Rs
rjr

rj
i (4)

where, rsrj and Rs
rj represent the translation and rotation

calibration parameters between the jth ESR and the LiDAR,
respectively, while r

rj
i denotes the coordinate of the ith target

in the jth ESR frame.
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By leveraging the latest velocity estimate vl from the VSDR
algorithm described in subsection 2.1, the velocity of each
ESR, denoted as vrj , can be estimated in its own frame using
Equation (5) as:

vrj = R
rj
s Rs

b R
b
l v

l (5)

where, Rb
l represents the rotation from the navigation l-frame

to the vehicle’s b-frame, Rs
b represents the rotation from the

b-frame to the LiDAR s-frame, and R
rj
s represents the rotation

from the s-frame to the jth ESR frame. Following that, and
based on the estimated ESR velocity, assuming that all detected
targets are static, an estimation of the radial speed for the ith

target denoted as v̂i can be computed as:

v̂i = −vrj ·

cos(ϕi) cos(θi)
cos(ϕi) sin(θi)

sin(ϕi)

 (6)

where ϕi and θi represent the elevation and azimuth angle of
the ith target with respect to the jth ESR.

To identify dynamic targets, a Speed Discrepancy Index (SDI)
is introduced, which can be computed for the ith ESR target as:

SDIi = |vi − v̂i| (7)

where vi and v̂i represent the actual and estimated radial speeds
respectively. Targets with high SDI values are identified as
potentially dynamic, indicating a violation of the static target
assumption. By applying a suitable threshold to the SDI
values, targets with the highest potential to be dynamic are
retained. The dynamic points identified based on the SDI
values are spatially clustered in LiDAR s-frame using the
DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) algorithm (Schubert et al., 2017). Each obtained
cluster represents a dynamic object, while clusters with a
minimal number of points are considered outliers and rejected.

Finally, the dynamic objects represented by the cluster centroid
coordinates are used to filter the LiDAR point cloud Ps.
This is achieved by constructing a KD-tree and performing a
Radius Nearest Neighbour Search (RNNS) step to associate the
centroids of the dynamic objects with the points in Ps. The
associated points are then filtered out, resulting in a refined
LiDAR point cloud denoted as P̃s which can be used by the
LIO algorithm for enhanced performance.

2.3 LiDAR Inertial Odometry (LIO)

The LIO module utilizes the VSDR inertial-based estimations
as pose (position and attitude) initialization for the odometry
process between successive LiDAR scans. A registration
algorithm is then employed yielding a transformation matrix,
which if applied would correct the initial VSDR pose estimates.

Upon obtaining a LiDAR point cloud, it undergoes several
preprocessing steps inspired by our previous work in (Mounier
et al., 2022). Noisy points beyond the scanning range or
with attenuated laser returns are filtered out. Outliers are
further eliminated by analyzing the standard deviations of the
mean distances of the neighbouring points. Spatial cropping
is performed confining the point cloud within predefined
limits. Additionally, a voxel grid filtering is applied to the
point cloud to decrease the number of points thus reducing
the computational requirements for subsequent steps. Next,
the preprocessed LiDAR point cloud is transformed from

the LiDAR s-frame into the local navigation l-frame. This
transformation can be described for the ith point in the LiDAR’s
point cloud as:

rli = rlb +Rl
b(r

b
s +Rb

sr
s
i ) (8)

where rli represents the coordinates vector of point i in the
l-frame, rlb and Rl

b represents the coordinates vector and the
rotation matrix of the vehicle position b with respect to the
l-frame initially obtained from VSDR. rbs and Rb

s are the
calibration parameters (lever-arm and rotation matrix) of the
LiDAR sensor s with respect to the b-frame. rsi represents the
coordinates vector of the ith point in the s-frame.

With the transformed point cloud as the source cloud, it is
matched with the point cloud from the previous LiDAR scan
(target cloud) using the Iterative Closest Point (ICP) algorithm
(Besl and McKay, 1992). The ICP algorithm estimates a 4 × 4

transformation matrix T̂ expressed as:

T̂ =

[
R̂ t̂
0 1

]
(9)

where the translation vector t̂ = [t̂x, t̂y, t̂x]
T and rotation

matrix R̂ = [R̂z(θz)R̂x(θx)R̂y(θy)] if applied will tightly align
the two point clouds. The ICP algorithm iterates over two steps
to optimize T̂ . First, it finds a correspondence set K = (p,q)
from the target and source point clouds respectively. The
transformation matrix T̂ is then updated by minimizing the
correspondence set objective function. In this work, we use
the ICP algorithm from the open-source Open3D python library
by (Zhou et al., 2018), where the objective function can be
expressed as:

E(T̂ ) =
∑

(p,q)∈K

(
p− T̂q

)2

(10)

Since all point clouds are pre-transformed to the l-frame,
the output of the registration process is a corrective
transformation matrix also in the l-frame. Applying the
obtained transformation will provide a corrected position and
attitude navigation states. To ensure the robustness of the
odometry corrections, the registration results are evaluated
based on the size of the correspondence set K and the Root
Mean Squared Error (RMSE) of the point-to-point distance
within the correspondence set. Corrections are rejected if either
the RMSE or the size of the correspondence set does not fall
within specified thresholds.

3. EXPERIMENTS

To evaluate the effectiveness of the proposed method, the
Navigation and Instrumentation (NavINST) research lab’s
multi-sensor experimental vehicular setup depicted in Figure 2
was used. The setup comprises a 3D Velodyne Puck LITE
LiDAR equipped with 16 laser pulse projector channels,
capturing a 360-degree horizontal field of view and a 30-degree
vertical field of view at a rate of 10 Hz. Four automotive-grade
ESRs are mounted at the vehicle’s outer corners, offering a
130-degree horizontal field of view and a 15-degree vertical
field of view, and providing measurements of target elevation,
azimuth, and radial velocity at approximately 20 Hz. The
low-cost MEMS-based IMU from the Zed-2i front-mounted
camera provides accelerometer and gyroscope measurements at
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Figure 2. The NavINST multi-sensor vehicle setup highlighting
the primary sensors.

Figure 3. The test trajectory visualized in black with the test
scenarios highlighted in red.

a rate of 50 Hz. Forward speed from the vehicle’s odometer
is obtained using an On-Board Diagnostics version II (OBD II)
module at 3 Hz. The setup has a Novatel PwrPak7-E1 reference
system, which combines an OEM7 SPAN GNSS receiver with
a high-precision KVH-1750 IMU, enabling the generation of a
high-accuracy navigation reference solution at 50 Hz through
the incorporation of corrections from RTK base stations.

The experimental setup utilizes the Robot Operating System
(ROS) for synchronized data recording (Quigley et al., 2009).
Extrinsic sensors calibration steps were performed to estimate
calibration transformation matrices (translations and rotations)
for accurate measurement transformation across different
sensors. Initial calibration parameters were obtained from
the system’s mechanical design and rough measurements,
then further refined following the work in (Domhof et al.,
2019). A real-road test was conducted to collect multi-sensor
information from the aforementioned sensors in downtown
Calgary, Alberta, Canada as shown in Figure 3. The test
trajectory spanned approximately 35 minutes and covered a
total distance of 9.1 km.

4. RESULTS

The performance evaluation of the proposed method focuses on
scenarios with multiple dynamic objects present in the LiDAR
scene, which can potentially hinder the registration process
and degrade odometry corrections, thus the overall navigation
solution especially during the absence of position corrections
during GNSS outages. Five test scenarios were selected based
on the analysis of the test trajectory data, where the presence
of several dynamic objects allowed for thorough testing of the
proposed method. These scenarios, highlighted in red on the
test trajectory in Figure 3, spanned a duration of 3.75 minutes
and covered a total distance of 1.67 km.

In each test scenario, the VSDR algorithm described in
subsection 2.1 was employed to obtain a navigation solution
using the low-cost IMU measurements and odometer speed
updates. The LIO module utilized the initial navigation
estimates from VSDR to assist the registration process by
transforming the current point cloud and providing an initial
guess for the registration algorithm. The transformation is then
refined via the ICP registration process aligning the current and
previous LiDAR point clouds, resulting in corrected position
and attitude navigation states. We refer to this solution as the
LIO solution. Similarly, another LIO solution was executed,
but it utilized a LiDAR point cloud filtered based on the
radar-based filtering module described in subsection 2.2. This
filtered solution is denoted as RF-LIO. Both the LIO and
RF-LIO solutions were obtained at a rate of 50 Hz, and their
performance was compared to the reference solution obtained
from the Novatel system to evaluate the benefits achieved when
utilizing RF-LIO compared to the standalone LIO solution.

The effectiveness of the radar-based filtering process is
qualitatively demonstrated in Figure 4. Figure 4a showcases
the LiDAR point cloud in black, with the point cloud from the
four ESRs transformed into the LiDAR frame and colour-coded
based on the Speed Discrepancy Index (SDI). The ESR point
clouds are filtered based on an SDI threshold, followed by a
DBSCAN clustering process, resulting in the identification of
dynamic objects represented by coloured markers, as shown
in Figure 4b. Finally, the dynamic objects centroids are fed
to a KD-tree-based search algorithm to find the corresponding
dynamic points from the LiDAR point clouds highlighted in red
in Figure 4c.

For the sake of comparison, test scenario 5 was selected to
demonstrate the navigation performance of RF-LIO versus LIO
solutions as shown in Figure 5. Both solutions closely resemble
the reference trajectory; however, closer examination in Figures
5b and 5c reveals that the RF-LIO solution exhibits fewer
drifting errors and closely follows the true trajectory, especially
towards the end of the scenario. This is further supported by
Figure 6, which highlights the performance difference between
the RF-LIO and LIO solutions compared to the reference
solution in terms of horizontal position errors, with an RMSE of
0.27 meters for RF-LIO and 0.53 meters for LIO. Additionally,
the horizontal heading (azimuth) shows fewer drifting errors in
the RF-LIO solution with an RMSE of 0.21 degrees, compared
to 0.39 degrees for the LIO solution.

The comprehensive analysis of all test scenarios consistently
demonstrated the significant positive impact of the radar-based
filtering stage on enhancing the robustness of the LIO solution
in the presence of dynamic objects. The thorough performance
evaluation, summarized in Table 1, validated several key
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(a) (b) (c)

Figure 4. The stages of the Radar-based LiDAR point cloud filtering process: (a) LiDAR point cloud in black and ESRs point cloud
colour-coded based on SDI. (b) Dynamic objects identified through SDI thresholding and DBSCAN clustering. (c) Extracted dynamic

object points highlighted in red using the KD-tree RNNS algorithm.

(a)

(b) (c)

Figure 5. (a) Test scenario comparing the 2D navigation
performance. Close-up views of the 2D trajectory are shown in

(b) and (c).

Figure 6. Performance comparison highlights.

observations. Firstly, the proposed method achieved notable
enhancements in horizontal positioning accuracy, yielding an
average RMSE of 0.43 compared to 0.66 for the standalone LIO
solution. Additionally, the submeter and lane-level positioning
statistics exhibited considerable improvements, increasing from
averages of 86% and 95% to 95% and 100%, respectively.
Moreover, the proposed method achieved enhanced heading
accuracy, with an average error of 0.25 degrees compared to
0.39 degrees. These improvements are particularly valuable
in scenarios with prolonged GNSS outages. However, it is
important to acknowledge that the vertical statistics exhibited
less consistency, primarily due to the inherent challenges
associated with effectively removing dynamic objects while
accurately preserving the points representing the ground plane.
As a result, these challenges can impact the accuracy of vertical
registration estimations, including pitch, roll, and height
corrections, leading to increased susceptibility to variations.

Test Scenario # 1 2 3 4 5 Average
Distance traveled [m] 389 260 501 257 259 333

LIO RF-LIO LIO RF-LIO LIO RF-LIO LIO RF-LIO LIO RF-LIO LIO RF-LIO
Horizontal RMSE [m] 1.12 0.68 0.38 0.28 0.77 0.46 0.52 0.44 0.53 0.27 0.66 0.43
Vertical RMSE [m] 0.56 0.73 1.34 1.16 0.14 0.10 1.03 0.28 0.74 1.05 0.76 0.66
Horizontal distance traveled error [%] 0.29 0.18 0.15 0.11 0.15 0.09 0.20 0.17 0.20 0.10 0.20 0.13
Sub-meter-level accuracy [%] 70.80 80.10 100 100 71.80 100 88.97 95.24 97.00 100 85.71 95.07
Lane-level (< 1.5 m) accuracy [%] 74.60 100 100 100 100 100 100 100 100 100 94.92 100

Pitch RMSE [deg] 0.56 0.47 0.39 0.31 0.06 0.08 0.59 0.32 0.83 1.00 0.49 0.44
Roll RMSE [deg] 0.10 0.16 0.10 0.09 0.34 0.33 0.08 0.12 0.77 0.90 0.28 0.32
Azimuth RMSE [deg] 0.85 0.26 0.24 0.23 0.27 0.31 0.26 0.22 0.33 0.21 0.39 0.25

Table 1. Statistical analysis of pose estimation errors.
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5. CONCLUSION

This paper has investigated the performance and benefits of
involving Electronic Scanning Radar (ESR) measurements
with LiDAR to enhance the positioning performance of land
vehicles in challenging urban environments with GNSS outages
and dense and dynamic surroundings. The proposed method
utilizes the Vehicle Sensors Dead Reckoning (VSDR) algorithm
computing initial navigation states, a radar-based filtering
module effectively identifying and filtering out dynamic objects
from the LiDAR point cloud, based on Speed Discrepancy
Index (SDI) analysis. The refined point cloud is then utilized
by the LiDAR Inertial Odometry (LIO) algorithm to align it
with previous scans, providing precise position and attitude
corrections to minimize the mechanization drifting errors.

To verify the effectiveness of the proposed method, a real road
test was conducted in downtown areas of Calgary, utilizing
actual measurements from onboard motion sensors, four ESRs,
and LiDAR. The test scenarios encompassed various dynamic
surroundings scenarios, reflecting realistic urban driving
conditions. Our results demonstrated the effectiveness of the
proposed method in extracting and filtering dynamic objects
from the LiDAR point cloud, resulting in enhanced registration
and improved LIO positioning accuracy in densely dynamic
scenarios. Specifically, the incorporation of ESR measurements
has led to enhanced horizontal positioning accuracy and
increased sustainability of submeter and lane-level positioning
accuracies compared to the standalone LIO solution.

In the future, several strategies can be explored in order to
achieve further improvements. This includes investigating
advanced sensor fusion techniques such as Extended Kalman
Filtering (EKF) and Unscented Kalman Filtering (UKF) to
optimally integrate information from multiple measurement
sources, thereby providing an optimally integrated navigation
solution. Additionally, the radial speed information from
static detected targets from ESR can be utilized to estimate
and refine the vehicle’s velocity which can further minimize
mechanization drifting velocity errors, leading to enhanced
overall system accuracy. Such improvements, if optimally
combined, would lead to an enhanced positioning system
capable of sustaining decimeter-level positioning accuracy
during prolonged GNSS outages.
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