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ABSTRACT:

Navigation is of paramount importance for land vehicles as it enables efficient and accurate movement from one location
to another. Whether it is for personal navigation, commercial transportation, or emergency services, reliable navigation
systems play a crucial role in ensuring safety, optimizing routes, and enhancing overall operational efficiency. This pa-
per presents the integration of classical Topological Map Matching (TMM) with the Global Navigation Satellite System
(GNSS) and the Inertial Navigation System (INS), addressing the limitations of relying solely on road centerlines. A
novel solution is proposed, leveraging the ray-casting algorithm to determine the predicted position’s area and employing
a two-stage kinematic update process for enhanced positioning accuracy. The solution’s efficacy is evaluated through tests
conducted on simulated GNSS outages within a road experiment conducted in the City of Toronto, demonstrating sub-
stantial improvements compared to the classical TMM approach. Notably, the proposed method achieved a considerable
82.33% reduction in RMS positioning error and a 33.71% improvement in maximum positioning error during the longest
GNSS outage. By overcoming the limitations of classical TMM algorithms, this research contributes to the advancement
of navigation and tracking systems, with future work focusing on practical implementations and optimization for diverse
navigation scenarios.

1. INTRODUCTION

Navigating the intricacies of road traffic effectively is
pivotal to the success of autonomous passenger vehicles,
which span various scales of autonomy. Given that road
traffic accidents are responsible for approximately $1.35
million deaths annually according to the World Health Or-
ganization, and that traffic congestion has been estimated
to cost the US economy around $87 billion in 2018, it
is evident that efficient and reliable navigation solutions
are instrumental in optimizing our transport systems (Uh-
lemann, 2020). The benefits of such navigation solutions
are manifold, ranging from increased passenger safety and
improved route planning to environmental sustainability
via reduced fuel consumption, and potentially even trans-
formative urban design. Historically, Global Navigation
Satellite Systems (GNSS) have been the favored naviga-
tion solution. However, their performance diminishes in
urban environments due to obstructed sky views, neces-
sitating the integration with Inertial Navigation Systems
(INS) (Noureldin et al., 2013). Despite INS’s capacity
to compensate for short GNSS outages, it cannot sustain
accuracy over extended periods due to the accumulation
of errors over time. In response to this, researchers have
sought to integrate other exteroceptive sensors such as
cameras, LiDARs, and radars with INS to correct inertial
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Figure 1. Topological map showcasing map elements and
connectivity, integral to the art of land vehicle navigation.

measurement unit (IMU) sensor biases and position, velo-
city, and attitude (PVA) errors, thereby enhancing the over-
all navigation accuracy (Dawson et al., 2022). However,
despite these advancements, odometry-based techniques
remain susceptible to drift, particularly in prolonged GNSS
outages. As a result, there has been a growing trend in
building and utilizing maps at the topological as well as
visual levels to enhance positioning accuracy and mitig-
ate drift-related challenges. While visual mapping offers
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a level of precision, it requires frequent updates and is
memory-intensive compared to topological maps (Wei et
al., 2019). Localization using HD maps has gained signi-
ficant attention in the field of robot localization, offering
centimeter-level accuracy in various environments while
minimizing computational costs associated with full sim-
ultaneous localization and mapping (SLAM) systems (Ma
et al., 2019). In fact, self-driving vehicles (SDVs) often
rely on them for navigation, guidance, and control (NGC)
(Liu et al., 2020). However, HD maps for cities around
the world are predominantly owned by mapping compan-
ies or the automotive industry, creating challenges for col-
laborative map research efforts especially when dealing
with different grades of navigation units, as part of our
endeavor to reduce costs related to our integrated navig-
ation solution that works in synergy with them. On the
other hand, topological maps are widely available glob-
ally and offer lightweight solutions that require minimal
hardware and computing resources while achieving lane-
to-road level of positioning accuracy in most cases. Fig-
ure 1 illustrates a topological map, highlighting its crucial
role in land vehicle navigation. Various map formats, such
as shapefiles and raster maps, exist, but OpenStreetMap
(OSM) has gained popularity among researchers (Kasmi
et al., 2018) due to its openness and accessibility, en-
abling open access and unification of map research efforts.
Topological map matching (TMM) encompasses a range
of techniques (Chao et al., 2020), including HMM-based
methods for matching GNSS measurements to road net-
works. The matching granularity can range from point-to-
point to point-to-curve and curve-to-curve. Nevertheless,
existing methods rely solely on road centerlines for match-
ing (Cossaboom et al., 2012, Kasmi et al., 2018). Despite
the abundance of road features, incorporating road edges
to enhance the matching process has not been extensively
explored. Moreover, only a few studies have addressed the
problem of positioning using topological maps in conjunc-
tion with INS, which in itself provides uninterrupted posi-
tioning and navigation (POS/NAV) solutions. In this paper,
we demonstrate the benefits of utilizing road edges to en-
hance classical TMM during GNSS outages. Our object-
ive is to contribute to the development of vehicular navig-
ation systems that achieve a harmonious blend of portab-
ility, cost efficiency, and reliable and robust performance.
By doing so, we aim to make navigation technology more
accessible and usable for a wide range of users. Our con-
tributions can be summarized in the following aspects:

1. A thorough exploration of the merits and obstacles of
classical topological map matching.

2. Introduction of a novel TMM paradigm, utilizing a
two-stage kinematic update process.

3. Empirical validation of our proposed methodology
through actual road test experiments.

The remainder of the paper is organized as follows: Sec-
tion 2 dives into the methodology, first addressing the over-
all navigation system design, then detailing each subsys-
tem, with an emphasis on the TMM paradigms under eval-
uation. Section 3 outlines the experimental setup, road
test details, and displays the results along with discussions.
Some concluding remarks are summarized in Section 4.

2. METHODOLOGY

2.1 System Design Choice

In this research, we utilize a simple single-antenna, low-
cost, commercial-grade GNSS receiver to provide posi-
tioning, navigation, and timing (PNT) capabilities to a
moving test vehicle. While dual-antenna designs have
gained attention in recent navigation systems to enhance
accuracy, our emphasis is on applications prioritizing mo-
bility and simplicity, such as personal navigation. Dual-
antenna GNSS systems offer improved heading estimation
but require additional hardware and complexity. In con-
trast, single-antenna GNSS receivers provide a lightweight
and straightforward solution, estimating the course over
ground (COG) instead of direct heading information. For
the fusion with GNSS, we choose a low-cost commercial-
grade MEMS-based IMU and incorporate real-time Wheel
Speed Sensors (WSS) for direct speed measurements.

GNSS

IMU
Navigation 

Filter
TMM

WSS

Topological 

Map

Map Matched 

Navigation Solution

Figure 2. Navigation system architecture.

Lastly, we augment the conventional GNSS/IMU integ-
rated navigation system with topological maps acquired
through the City of Toronto Open Data Portal (City of
Toronto Open Data, 2017). Figure 2 shows a block dia-
gram of the overall system architecture. Each block will
be described independently in the following sections be-
ginning with the navigation filter design choice as it plays
a central role in this architecture.

2.1.1 Navigation Filter The navigation filter utilized
in this research adopts a loosely coupled (LC) integra-
tion approach, employing a combination of Global Nav-
igation Satellite System (GNSS), Inertial Measurement
Unit (IMU) data aided with an onboard WSS through
an Extended Kalman Filter (EKF) integration scheme.
The loosely coupled integration approach is favored over
tightly coupled integration due to its ability to provide a
more robust evaluation of map-matching algorithms (Coss-
aboom et al., 2012). Tightly coupled integration relies on
a combination of GNSS and IMU measurements, where
even during a partial GNSS outage, the positioning solu-
tion can still depend on two or three satellites (Georgy et
al., 2010). This reliance on limited satellite data during
an outage can potentially impact the accuracy of the map-
matching results. In contrast, the loosely coupled integ-
ration approach does not have access to any satellite in-
formation during a GNSS outage. This lack of satellite
data places greater emphasis on the performance of the
map-matching algorithm itself, enabling it to play a more
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significant role in enhancing the accuracy of the position-
ing solution. By employing a loosely coupled GNSS/IMU
EKF-based integration approach, this research aims to ex-
plore the potential advantages of relying on map-matching
algorithms during GNSS outages. This approach is ex-
pected to contribute to improved accuracy and reliability
in navigation systems, particularly in challenging environ-
ments where GNSS signals may be compromised.

2.1.2 GNSS Measurables At time epoch k, the GNSS
measurements yield latitude φk, longitude λk, and alti-
tude hk, eastward velocity vek , northward velocity vnk

,
and upward velocity vuk

components, respectively. Single-
antenna GNSS receivers estimate the COG by leveraging
the variations in the Doppler shift of received signals. This
can be mathematically expressed using the following equa-
tion:

AG
COGk

= arctan

(
vek
vnk

)
, (1)

where AG
COGk

represents the GNSS COG azimuth at epoch
k. By employing this equation, the COG azimuth can be
estimated based on the derived velocity components, en-
abling the GNSS to determine the direction of movement.

2.1.3 IMU Measurables For the IMU-based dead-
reckoning solution, we opted for the use of the reduced
inertial sensor system (RISS) as opposed to the full-IMU
for its simplicity and relatively good performance, es-
pecially when considering the employment of low-cost
commercial-grade MEMS-based IMUs for land vehicle
navigation. To obtain a full 3D motion estimate, one gyro-
scope (gyro) was used to monitor the vertical axis of the
vehicle while three accelerometers were used to monitor
the pitch and roll rotational components. We denote the
Earth’s rotation rate as ωe, the bias-compensated vertical
gyro measurement as wzc , the forward and transversal ac-
celerometer measurements as fx and fy , and the vehicle’s
forward speed measurements obtained through live read-
ings of OBD-II messages as vf . To accurately estimate the
vehicle’s position and velocity, the IMU measurements are
mechanized in the local- level-frame (LLF), more specific-
ally in the Easting, Northing, and Up (ENU) navigational
frame. Equations (2) through (4) describe the calculation
of the pitch (p), roll (r), and azimuth (A) at epoch k within
a time interval ∆tk.

pk = arctan

(
− fyk√

f2
xk

+ f2
zk

)
, (2)

rk = − arctan

(
fxk

fzk

)
, (3)

Ak = Ak−1 +
[
− cos(pk) cos(rk) ωzck

+ ωe sin(φk−1)

+
vek−1

tan(φk−1)

RN + hk−1

]
∆tk.

(4)

Calculating the vehicle’s attitude enables the conversion of
its forward speed to ENU velocities. This involves using
a rotation matrix to transform the velocity vector from the

body frame (b-frame) to the ENU frame as follows:

vk =

vekvnk

vuk

 =

vfk sin(Ak) cos(pk)
vfk cos(Ak) cos(pk)

vfk sin(pk)

 . (5)

It then follows the relative position calculation in geodetic
space as:∆φk

∆λk

∆hk

 =

 0 1
RM+hk

0
1

(RN+hk) cosφk
0 0

0 0 1

·
vekvnk

vuk

 , (6)

where RM and RN denote the Meridian and Normal radius
of curvature of the earth’s ellipsoid measured in meters.
The position update equations for epoch k are then:

rk =

φk = φk−1 +∆φk

λk = λk−1 +∆λk

hk = hk−1 +∆hk

 . (7)

2.1.4 GNSS/IMU Integration When GNSS is avail-
able, the GNSS/IMU integration model takes advantage of
the additional data. It calculates the difference between the
predicted RISS position and velocity (PV) state estimates
and the actual PV state estimates obtained from the GNSS.
This difference is used to improve the model’s accuracy. In
the absence of GNSS data, however, the RISS continues to
operate in prediction mode, using the latest EKF-estimated
bias and PVA corrections made prior to the GNSS outage.

2.2 Map Matching Algorithms

Map matching is a fundamental task in navigation sys-
tems, where the goal is to find the most likely path or
road segment that corresponds to a given set of GNSS co-
ordinates. In multi-sensor fusion positioning and naviga-
tion frameworks, it is expected that the integrity of each
aiding system is reported to the navigation filter in order
to either weight the filter’s measurement covariances or
discard measurements that may result in unreliable integ-
rated navigation solutions (Noureldin and Elhabiby, 2023).
In this section, we describe the topological map matching
paradigms that are evaluated further in the paper all taking
into account that the initial GNSS coordinate is accurate
enough for integration with topological maps. The estima-
tion of the initial GNSS position marking the beginning of
a GNSS outage is beyond the scope of this paper and read-
ers are encouraged to read the work of (Lee et al., 2021),
which tackles such a problem via the infrastructure.

2.2.1 Classical Topological Map Matching Despite
the existence of numerous variants and approaches to to-
pological map matching in the literature, there has been
no explicit definition of what constitutes the classical to-
pological map matching procedure. We believe it is es-
sential to have a benchmark or a generic representation,
which we refer to as the classical algorithm. This sets the
groundwork upon which refinements and advancements
can be developed. Thus, we define classical topological
map matching as the generic algorithm that associates a
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given GNSS point with the most probable point on a road
segment, based on positional and directional data. The
first step of such a process is the loading of the map. For
the classical approach, only the road centerlines are con-
sidered in the matching process.
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Figure 3. A visual representation of the
TMM P paradigm (not to scale).

We denote the set C contained within a bounding box with
a predetermined size around a query GNSS coordinate rk
with direction Ak to match against. The map consists
of elements V C , EC representing vertices and edges of
the road centerlines, respectively. Each segment s cor-
responds to the i-th edge, EC

i , within the set EC , and is
distinguished by its azimuth αs (in degrees) and a unique
identifier IDs (integer). The steps of the algorithm are
described in Algorithm 1 within a routine process called
TMM P. Figure 3 displays the TMM P paradigm, showcasing
road centerline elements as defined. A fundamental as-
pect of this algorithm is the process of associating a query
GNSS point to a specific point on a road segment. This
association is accomplished by considering the geograph-
ical coordinates and direction of the GNSS point, as well
as the topology of the road network. For the sake of effi-
ciency, especially when working with large-scale road net-
works, only the road data within a ±30m bounding box
around the query GNSS point is loaded in each epoch.
This localized approach significantly reduces the compu-
tational overhead by limiting the road segments that need
to be considered during each iteration. The algorithm sys-
tematically scans all the road segments within this subset,
computing the perpendicular distance d⊥ from the query
GNSS point to each segment, as well as the difference in
direction (azimuth) between the GNSS point and each road
segment (line 5-10). The road segment with the smallest
perpendicular distance and directional difference provided
the direction difference does not exceed a certain threshold
αth, is selected as the matched segment sm (line 11).
The GNSS point is then associated with the correspond-
ing point rm on this matched segment (line 12-14). The
process described, although straightforward, can encounter
several challenges when applied to real-world scenarios.
Key among these challenges is handling complex road in-
tersections. In these situations, multiple road segments
may present near-identical perpendicular distances from
the query GNSS point, complicating the task of definitively

Algorithm 1 Generic TMM algorithm with a position-only
update based on road centerlines

input: C ⊇ {V C ,EC , α, ID}, (λk, φk, Ak), αth

output: sm, rm, d⊥min

1: procedure TMM P(C, rk, Ak, αth)
2: sm ← NaN ▷ Matched segment ID
3: rm ← (0, 0, 0) ▷ Matched position
4: d⊥min ←∞ ▷ Matched position residual
5: for each segment s ∈ EC with endpoints r1 and r2

where r1 = (λ1, φ1, h1) and r2 = (λ2, φ2, h2),
and associated αs and IDs do

6: u = (φk−φ1)(φ2−φ1)+(λk−λ1)(λ2−λ1)
∥r2−r1∥2

7: u = min(max(u, 0), 1)
8: (λ⊥, φ⊥, h⊥) = r1 + u(r2 − r1)
9: d⊥ =

√
(λ⊥ − λk)2 + (φ⊥ − φk)2

10: ∆α = min(min(|Ak − αs|, 360− |Ak − αs|),
min(|Ak−(αs+180)|, 360−|Ak−(αs+180)|))

11: if d⊥ < d⊥min and ∆α < αth then
12: d⊥min ← d⊥

13: sm ← IDs

14: rm ← (λ⊥, φ⊥, h⊥)
15: end if
16: end for
17: return sm, rm, d⊥min

18: end procedure

identifying the correct match. Furthermore, after a turn or
change in direction, there can be a delay before the moving
vehicle’s azimuth (heading direction) aligns with the cor-
rect road segment, which introduces further complexity to
the map-matching process.

2.2.2 Two-stage Kinematic Update TMM Topolo-
gical maps of cities around the world are constantly
evolving to include more features including but not lim-
ited to location and attributes of road edges, traffic lights,
and so much more. This ongoing initiative aims to benefit
public works, transportation, and related entities. In this
study, we propose utilizing road edges and their associated
area attributes stored in the map to determine whether a
predicted position falls within an intersection. We define
P as the set of polygons representing road edges, each ac-
companied by its attribute subtype that indicates whether it
corresponds to a road segment or an intersection. In math-
ematical terms, P ⊇ {V P ,EP , subtype}. To identify
the specific polygon containing a given point, we employ
the ray-casting algorithm. The ray-casting algorithm is a
method used to determine if a given point is inside or out-
side a polygon. Figure 4 illustrates an example of apply-
ing the ray-casting algorithm in the context of topological
maps. In the figure, we have multiple locations of a vehicle
represented by points scattered across the map, and vari-
ous polygons that define the road edges and intersections.
The purple-highlighted polygon represents an intersection.
The algorithm starts by casting a ray from the vehicle’s po-
sition, as depicted by the black arrows in the figure. It then
counts the number of intersections between the ray and the
edges of the selected polygon. In this case, as the ray in-
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Figure 4. Ray-casting: Solving the point-in-polygon (PIP)
problem for intersection checks in topological maps.

tersects the edges of the purple polygon an odd number
of times, it indicates that the vehicle’s position lies within
the intersection. Conversely, if the ray intersects the edges
of a different polygon an even number of times, the al-
gorithm determines that the vehicle’s position lies outside
of that polygon. By leveraging the parity of the intersec-
tion count, the ray-casting algorithm provides an efficient
way to determine whether a given point is inside a polygon.
This valuable information enables us to make informed de-
cisions on whether to utilize TMM updates or not. Addi-
tionally, the GNSS/IMU integration offers the advantage of
uninterrupted and relatively accurate PVA estimates, par-
ticularly when integrating the vehicle’s proprietary WSS
readings. These benefits have led to the development of the
proposed algorithm as illustrated in Algorithm 2, TMM Az,
which incorporates a two-stage kinematic update process
(line 26 and line 1-7). Firstly, a prediction is generated
through dead-reckoning, and then a correction is applied
using TMM, but only if the predicted position falls within
a road segment rather than an intersection (i.e., Φ = 0 in
Algorithm 2). Unlike the classical TMM P, where the pre-
dicted position is snapped to the road centerline, TMM Az
outputs the matched azimuth Am, which is subsequently
used in a second stage of kinematic update to obtain the
matched position rm. Figure 5 shows a visual represent-
ation of the proposed TMM paradigm applied at the be-
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Figure 5. A visual representation of the
TMM Az paradigm (not to scale).

Algorithm 2 Two-Stage Kinematic Update TMM

1: function KINEMATICUPDATE(rk−1, hk, vf , Am,
∆tk)

2: ∆φ =
vf ·sin(Am)·∆tk

RM+hk
▷ Longitude update

3: ∆λ =
vf ·cos(Am)·∆tk

(RN+hk)·cos(φk−1)
▷ Latitude update

4: φm = φk−1 +∆φ ▷ Longitude position update
5: λm = λk−1 +∆λ ▷ Latitude position update
6: return (λm, φm, hk)
7: end function
8: procedure TMM Az(C,P , rk, rk−1, Ak,∆tk, αth)
9: Φ← RAYCASTING(rk,P) ▷ Intersection flag

10: if Φ = 0 then
11: sm ← NaN ▷ Matched segment ID
12: Am ← 0 ▷ Matched heading/azimuth
13: d⊥min ←∞ ▷ Matched position residual
14: for each segment s ∈ EC with endpoints r1

and r2 where r1 = (λ1, φ1, h1) and r2 =
(λ2, φ2, h2), and associated αs and IDs do

15: u = (φk−φ1)(φ2−φ1)+(λk−λ1)(λ2−λ1)
∥r2−r1∥2

16: u = min(max(u, 0), 1)
17: (λ⊥, φ⊥, h⊥) = r1 + u(r2 − r1)
18: d⊥ =

√
(λ⊥ − λk)2 + (φ⊥ − φk)2

19: ∆α = min(min(|Ak − αs|, 360− |Ak − αs|),
min(|Ak−(αs+180)|, 360−|Ak−(αs+180)|))

20: if d⊥ < d⊥min and ∆α < αth then
21: d⊥min ← d⊥

22: sm ← IDs

23: Am ← αs

24: end if
25: end for
26: rm ← KINEMATICUPDATE(rk−1, hk, vf , Am,∆tk)
27: else
28: rm ← rk
29: end if
30: return sm, rm, Am, d⊥min

31: end procedure

ginning of a GNSS outage. It is important to note that
the TMM Az procedure assumes the initial position (repres-
enting the start of a GNSS outage) to be well within the
road. The navigation framework is responsible for timing
the switch to ensure uninterrupted and reliable positioning
until the GNSS signal is recovered.

3. EXPERIMENTAL SETUP AND RESULTS

In this section, we present the equipment used and describe
the road tests conducted to evaluate the effectiveness of the
TMM algorithms. The tests were performed on a 13.8km
long trajectory within the City of Toronto, covering down-
town, suburban, and rural driving areas. Figure 6 displays
the complete trajectory with overlaid topological map fea-
tures on a satellite image. We provide a detailed discus-
sion of the results obtained from the augmented TMM Az-
GNSS/RISS integration method, comparing them with the
outcomes of the classical TMM P-GNSS/RISS and the tra-
ditional GNSS/RISS integration.
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© 2023 Google

Figure 6. Toronto trajectory and topological map data overlaid
on a satellite image generated using the © Google Maps API.

3.1 Experimental Setup

To test our algorithms, multiple road test trajectories were
performed using a mini van equipped with a multi-sensor
suite for positioning and navigation. Figure 7 shows the
sensors as they were placed inside and around the vehicle.

(a) Mini van equipped with a
multi-sensor suite.

(b) High-end (left) and low-cost
(right) GNSS antennas.

(c) Testbed with different grades of IMUs and GNSS receivers.

Figure 7. Experimental setup for advancing land vehicle
positioning and navigation research and development.

The navigation system used to validate our positioning
and navigation solutions comprises a high-end NovA-
tel triple-frequency GNSS ProPak6TM integrated with the
tactical-grade FOG-based KVH1750 IMU through NovA-
tel’s SPAN® technology. This advanced navigation system
played a crucial role in verifying the accuracy and perform-
ance of our solutions especially when dealing with GNSS
challenging environments such as downtown Toronto. As

for the low-cost solutions, a simple u-blox LEA-6 GNSS
unit was used (placed as shown in Figure 7b) along with the
MEMS-based VTI-IMU SCC1300-D04 (housed within
the grey box, illustrated in Figure 7c).

3.2 Results and Discussions

To begin, we conducted an initial analysis by running the
standalone low-cost GNSS solution through the classical
TMM algorithm (referred to as TMM P). Additionally, we
compared the resulting positioning residual d⊥min versus
the actual horizontal positioning error. We then employed
the ray-casting algorithm to classify each position obtained
from the reference NovAtel unit as either within the road or
an intersection. By applying this classification to both the
standalone GNSS solution and its integration with the iner-
tial sensor system, we gained insights into the impact of the
area type on the accuracy of the classical TMM. The find-
ings are visualized in Figure 8, indicating that the area type
(road or intersection) significantly affects the accuracy of
the classical TMM. Notably, a substantial decrease in pos-
itioning accuracy was observed in intersections. It is worth
noting that the directional difference tolerance (αth) was
set at 20◦ for the standalone GNSS and LC integrated solu-
tions. In the standalone approach, the matching process re-
lied on the COG azimuth, while the integrated solution de-
termined the azimuth through the mechanization process.
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Figure 8. Discrepancies between estimated positions obtained
via classical map matching approach TMM P and the true

horizontal positioning error.
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To provide quantitative results, Table 1 presents the hori-
zontal positioning error statistics of the TMM P paradigm
when applied on each navigation system, illustrating the
effect of the area type on the end map-matching accuracy.

NAV System Polygon subtype Avg Max Std

GNSS
Intersections 20.72 84.74 16.09
Road 3.60 46.35 3.09
Any 6.65 86.86 9.83

GNSS/RISS
Intersections 12.57 28.73 7.09
Road 4.40 19.91 3.30
Any 5.87 34.79 5.27

Table 1. Horizontal positioning error (in meters) of TMM P when
applied on standalone GNSS and on integrated GNSS/RISS.

For the map-matched standalone GNSS system, higher po-
sitioning error was exhibited at intersections, averaging
20.72m, compared to 3.60m on road segments. On
the other hand, the map-matched integrated GNSS/RISS
navigation system demonstrated improved performance,
achieving lower error values at both intersections and over-
all. These findings highlight the impact of area type on the
accuracy of the TMM algorithm, with intersections pos-
ing a challenge in achieving reliable positioning. To ad-
dress this issue, we introduced the two-stage kinematic up-
date TMM Az algorithm and compared it against the clas-
sical TMM P algorithm and the traditional GNSS/RISS in-
tegrated navigation solution. We evaluated these methods
in five distinct GNSS outages, ranging from approximately
∼ 30sec to ∼ 6.5mins in duration. Outages are shown in
Figure 6, delimited by colored squares. It is worth not-
ing that the vehicle’s starting and ending positions in the
trajectory coincide. Table 2 presents a comparative ana-
lysis of the RMSE performance for the positioning solu-
tions during simulated GNSS outages along the Toronto
trajectory.

RMSE [m] G/R TMM P-G/R TMM Az-G/R
Outage 1 (380 sec) 35.20 18.5989 15.6123
Outage 2 (55 sec) 3.694 4.26665 2.94331
Outage 3 (31 sec) 1.2896 8.82372 1.55655
Outage 4 (32 sec) 1.3923 3.91953 1.27334
Outage 5 (110 sec) 11.693 6.11657 3.28319

Table 2. Comparative analysis of RMS Error performance
within simulated GNSS outages along the Toronto trajectory.

Note: G (GNSS) and R (RISS).

During these GNSS outages, the TMM Az algorithm consist-
ently outperforms the other methods, demonstrating im-
proved positioning accuracy, particularly in complex man-
euvers. For example, during Outage 1, TMM Az achieved
an RMSE of 15.61m, resulting in a percentage improve-
ment of 15.69% compared to TMM P and 55.59% com-
pared to RISS. Similarly, in Outage 2, TMM Az achieved
an RMSE of 2.94m, resulting in a percentage improve-
ment of 31.06% compared to TMM P and 20.30% compared
to RISS. During Outage 3, there was an improvement of
82.33% observed with respect to TMM P. However, no sig-
nificant difference was observed compared to RISS. This
can be attributed to the outage being limited to a brief turn,

and the inertial sensor biases and PVA errors were effect-
ively reset at the start of the outage. Figure 9 provides
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Figure 9. Positioning performance in Outage 1.

a visual representation of the positioning and navigation
performance, focusing on two distinct intersections where
the classical TMM algorithm exhibits degraded accuracy
compared to the proposed TMM paradigm. To distinguish
between the road areas, intersections were shaded in or-
ange, while road polygons were presented in a green hue.
The horizontal positioning error plot, depicted in Figure
10, reflects the performance, with enclosed peaks indicat-
ing increased errors within intersections. Additionally, the
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Figure 10. Horizontal positioning error for Outage 1.

accumulation of WSS-derived forward distance (i.e, along-
track distance) error over time is presented to illustrate its
impact on the solutions, as it was employed by all the al-
gorithms. In terms of maximum error performance, the
classical TMM algorithm resulted in a maximum error of
41.99m, whereas the proposed TMM algorithm achieved a
maximum error of 30.42m, signifying an improvement of
33.71% during this relatively long GNSS outage.

4. CONCLUSIONS

This paper introduces classical topological map matching
and its integration benefits with GNSS and inertial navig-
ation systems. It addresses the limitation of relying solely
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on road centerlines in map-matching algorithms. Our pro-
posed solution utilizes the ray-casting algorithm to determ-
ine the predicted position’s area and employs a two-stage
kinematic update process for improved positioning. We
conducted tests on five simulated GNSS outages, demon-
strating significant improvements in accuracy compared to
the classical approach. Our method achieved an 82.33%
reduction in RMS positioning error and a 33.71% improve-
ment in maximum positioning error during a GNSS outage
lasting around 6.5 minutes. Moreover, the system’s effect-
iveness scales with an increase in the number of turns and
distances, particularly during GNSS outages. However,
our method depends on automotive WSS measurements,
which accumulate errors over time. This cumulative error
along with the drift caused by the gyro bias can adversely
affect the system during prolonged GNSS outages, poten-
tially causing an erroneous predicted position outside the
road boundary, encouraging the need to correct position in
a single kinematic update stage. Despite these challenges,
our approach has demonstrated promising results. As part
of our future work, we plan to bolster the system’s capab-
ilities by integrating perception systems, such as cameras.
This would enable accounting for lane changes, provide
longitudinal position updates through visual map match-
ing, and allow for further monitoring of vehicle dynamics.
Lastly, we foresee the potential of our approach’s usage of
road edges - as opposed to merely centerlines - in augment-
ing particle filtering algorithms, potentially delivering sub-
stantial improvements in overall navigation performance.
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