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ABSTRACT: 

Urban landscapes are characterized by a multitude of diverse objects, each bearing unique significance in urban management and 

development. With the rapid evolution and deployment of Unmanned Aerial Vehicle (UAV) technologies, the 3D surveying of urban 

areas through high resolution point clouds and orthoimages has become more feasible. This technological leap enhances our capacity 

to comprehensively capture and analyze urban spaces. This contribution introduces a new urban dataset, called YTU3D, which covers 

an area of approximately 2km2 and encompasses 45 distinct classes. Notably, YTU3D exceeds the class diversity of existing datasets, 

thereby enhancing its suitability for detailed urban analysis tasks. The paper presents also the application of three popular deep learning 

methods in the context of 3D semantic segmentation, along with a multi-level multi-resolution (MLMR) integration. Significantly, our 

work marks the first application of deep learning with MLMR in the literature and shows that a MLMR approach can improve the 

classification accuracy. The YTU3D dataset and research findings are publicly available at https://github.com/3DOM-FBK/YTU3D.  

1. INTRODUCTION

Fully semantically enriched 3D point clouds play a significant 

role in urban planning, documentation, and management. 

Semantic segmentation of large-scale point clouds is the process 

to assign each point a semantic label, such as road, tree, roof, 

sidewalk, etc. Machine and deep learning algorithms offer crucial 

methodologies for understanding 3D point clouds at various 

scales (Matrone et al., 2020a; Xie et al., 2020; Grilli et al., 2021). 

However, the semantic enrichment of large-scale point clouds 

remains an open research challenge. Available urban datasets 

generally lack class diversity, impeding the representation and 

understanding of detailed urban areas. Consequently, imbalanced 

classes are often present in the available datasets/benchmarks, 

and most learning methods struggle to accurately predict such 

imbalanced classes. Numerous techniques for 3D semantic 

segmentation, with deep learning standing out, have gained 

prominence within the realms of computer vision and 

photogrammetry (Guo et al., 2020). However, annotating large 

urban scenarios is time-consuming and prone to errors, resulting 

in training data riddled with issues that negatively affect learning 

methods. Deep learning methods heavily rely on the quality and 

quantity of provided training data.  

Despite the growing availability of different point cloud 

benchmarks/datasets (Niemeyer et al., 2014; Matrone et al., 

2020b; Kölle et al., 2021; Hu et al., 2021; Li et al., 2023), 3D 

semantic segmentation still faces major challenges such as low 

accuracy, dealing with imbalanced classes, misclassifications, 

generalization, upscaling, etc. 

To address these challenges, authors have proposed various 

solutions, such as neuro-symbolic logic rules (Grilli et al., 2023), 

data augmentation (Achlioptas et al., 2018; Chen et al., 2020), 

class weighting (Lin et al., 2017; Griffiths and Boehm, 2019), 

oversampling/undersampling techniques (Lin and Nguyen, 2020; 

Ren and Xia, 2023), or a multi-level multi-resolution approach 

(Teruggi et al., 2020). 

1.1 Paper motivations and aims 

Urban areas are complex environments featuring a multitude of 

objects, changing scales, irregular point distribution, etc. A 

proper 3D semantic mapping of urban areas holds significant 

importance for city management and monitoring operations. 

However, existing methods for 3D classification fall short on the 

abovementioned challenges also due to the lack of proper 

datasets for methods development and evaluation. There is a need 

for (i) large-scale point cloud datasets that encompass a wide 

class diversity, including imbalanced classes, (ii) a reduction in 

misclassifications through a better understanding of complex 

urban areas, allowing for detailed 3D scene representation and 

(iii) very accurate annotation data.

Therefore, the objectives of this paper are:

• to introduce a new urban dataset, called YTU3D, with rich

semantic annotations;

• to evaluate various deep learning methods to assess issues

related to generalization and performance;

• to propose a novel methodology for classifying large datasets

while minimizing misclassifications using a hierarchical

classification approach.

The contribution of this study lies in the creation of a unique 3D 

photogrammetric point cloud dataset, which contains the most 

extensive range of semantic classes specific to urban areas found 

in the literature. Additionally, for the first time, this study 

pioneers the application of a multi-level multi-resolution 

(MLMR) classification approach coupled to deep learning in the 

context of urban scenes. We comparatively assess three popular 

3D semantic segmentation methods (Point Transformer (Zhao et 

al., 2018), KPConv (Thomas et al., 2019), and RandLA-Net (Hu 

et al., 2020)) and their integration with MLMR approach, to 

provide a benchmark and investigate the effect of hierarchical 3D 

classification for large urban-scale scenarios. 

1.2  Related works 

Urban-level airborne 3D point cloud datasets can be categorized 

based on the inclusion of color information, number of classes or 

used sensor (Table 1). The ISPRS - Vaihingen (Niemeyer et al., 

2014), DublinCity (Zolanvari et al., 2019), DALES (Varney et 

al., 2020), and LASDU (Ye et al., 2020) datasets, despite their 

large scale, deny the use of color-related features. In contrast, the 

Campus3D (Li et al., 2020), Swiss3DCities (Can et al., 2021),  
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Name Reference Classes Points (mil) Spatial Size (m2) RGB Sensor 

ISPRS Niemeyer et al. (2014) 9 1.2 1.6 x 105 No ALS / LiDAR 

DublinCity Zolanvari et al. (2019) 13 260 2 x 106 No ALS / LiDAR 

IEEE-GRSS Bosch et al. (2019) 5 102 34 x 106 No ALS / LiDAR 

DALES Varney et al. (2020) 8 (9) 505 10 x 106 No ALS / LiDAR 

LASDU Ye et al. (2020) 5 3.12 1.02 x 106 No ALS / LiDAR 

Campus3D Li et al. (2020) 24 937 1.58 x 106 Yes UAV Photo 

Swiss3DCities Can et al. (2021) 5 226 2.7 x 106 Yes UAV Photo 

Hessigheim 3D Kölle et al. (2021) 11 73 8 x 104 Yes UAV LiDAR 

OpenGF Qin et al., (2021) 2 500 47 x 106 No ALS 

SensatUrban Hu et al. (2022) 13 (31) 2847 7.64 x 106 Yes UAV Photo 

STPLS3D Chen et al. (2022) 6 (18) - 6 x 106 Yes Synthetic + UAV Photo 

HRHD-HK Li et al. (2023) 7 273 9 x 106 Yes UAV Photo 

YTU3D (our) - 45 1700 2 x 106 Yes UAV Photo 

Table 1. A summary of some representative aerial datasets for urban-scale 3D point cloud classification. The number of classes is the 

one used for evaluation while in brackets we report the annotated classes. ALS: Airborne Laser Scanning, Photo: Photogrammetry. 

 

and Hessigheim3D (Kölle et al., 2021) datasets, which do contain 

color information, cover smaller areas and have few class labels. 

STPLS3D (Chen et al., 2022) and HRHD-HK (Li et al., 2023) 

were acquired on large urban areas but they exhibit a small 

number of classes. Furthermore, since the STPLS3D dataset is 

predominantly synthetic, it contains a lack of noise and 

discontinuities, limiting its usability (and generalization) to learn 

complex real-life scenarios. The HRHD-HK dataset, despite 

encompassing a vast area, does not exhibit a significant contrast 

compared to existing datasets due to its limited number of 

classes. The proposed YTU3D dataset is similar to Zachar et al. 

(2023), being a large-scale photogrammetric acquisition with 

more than 30 classes. 

 

 

2. MLMR CLASSIFICATION 

The multi-level multi-resolution (MLMR) methodology follows 

a hierarchical approach to classify 3D data based on diverse 

geometric resolutions, thereby enhancing the learning process 

and optimizing classification outcomes (Teruggi et al., 2020; 

Russo et al., 2021; Mazzacca et al., 2022). By adopting this 

approach also for urban-scale point cloud:  

• it becomes possible to alleviate classification errors that may 

arise when dealing with visually similar objects belonging to 

distinct categories, due to the consideration of their geometric 

relations; 

• the use of sub-sampled points facilitates the extraction of 

primary objects while reducing processing time, allowing a 

more detailed classification at each level; 

• complex structures and large scale variations could be better 

tackled; 

• model's generalization capability can be boosted by allowing 

for the identification and extraction of small-scale objects 

within the primary classes, particularly in scenarios 

characterized by an imbalanced distribution of data; 

• class standardization could be supported, having the primarily 

levels alike to various users and the final/sub-levels specific for 

other users.  

We propose the use of MLMR, in combination with a deep 

learning network, for the classification of large-scale high-

resolution point clouds over urban scenarios. For the MLMR 

methodology (Figure 2), the full-resolution point cloud (Level-5) 

is subsampled at 20 cm (Level-1), 10 cm (Level-2), 6 cm (Level-

3), and 3 cm (Level-4). At Level-1, models are trained for the 

initial target classes: ground and non-ground. Classification 

results from this process are then interpolated back to a higher 

resolution, i.e., Level-2, using a nearest-neighbour algorithm. A 

new classification stage is then applied to identify new classes in 

Level-2, including impervious surface, low vegetation, and 

soil/gravel classes for ground, as well as building, high 

vegetation, and non-building classes for non-ground. These 

operations are subsequently repeated until the original resolution 

is reached (Level-5) and all subclasses are identified. 

At Level-3, the focus shifted to the identification of classes such 

as stairs, tennis courts/football pitches, sidewalks, streets/roads, 

and parking lots for impervious surfaces, and soil/gravel, stone, 

and disorganized regions for soil/gravel classes. Meanwhile, 

classes like roof and façade are identified for buildings, shrubs 

and trees for high vegetation, and urban furniture, people, pets, 

and vehicle classes for non-building categories, all within Level-

3. Level-4 continued with the identification of subclasses, 

including façade (Window, pipeline, other accessories, 

ventilation, and façade surface), roof (chimney, window, solar 

panel, ventilation, pipeline, other accessories, and roof surface), 

urban furniture (wall, fence, playground, traffic signage, garbage 

box, lamp, street separator, tent, and pole), and vehicle classes 

(truck, van, motorbike/bicycle, bus, car, work machine), 

respectively. Finally, for the original resolution, dome, tile, and 

industrial roof surface types are classified. 

 

 

3. YTU3D DATASET 

The proposed UAV-photogrammetry derived dataset covers an 

area of approximately 2 km2 over the Davutpasa Campus of 

Yildiz Technical University (YTU), Turkey (Figure 1a). A DJI 

Matrice 300 RTK was used for the flights, acquiring nadiral 

images with 75-75 along/across-track overlap. After the aerial 

triangulation, a dense point cloud of the area was produced in 

Pix4D software with an average point density of ca 1000 

points/m2 (Figure 1b). To represent the complex structures and 

increase 3D scene understanding, we annotated 45 classes 

(Figure 1c and Table 3) in CloudCompare (Girardeau-Montaut, 

2016) following a MLMR idea, as illustrated in Figure 2.  From 

the 43 regions of the dataset, 20 are used for training, 12 for 

validation and 8 for testing. More details and results are available 

at https://github.com/3DOM-FBK/YTU3D.
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a)  b)    c)  d)  

 

e)  

Figure 1: The proposed YTU3D dataset divided in 43 regions, each on of ca 210 x 210 sqm (a); orthoviews of the ground truth (GT) 

annotations on the entire are (b); sample region (c) and corresponding annotationed point cloud (d); 45 classes (e). 

 

Figure 2: The MLMR hierarchical structure applied to the YTU3D dataset, with the different resolution levels (5) and classes (45). 

Labelled classes are shown in italic bold and classes which will be further sub-classified are shown with a black box. Classes are 

coloured according to the deep learning method that gives the most accurate results (Section 3). 

4. EXPERIMENTS AND RESULTS 

Using the YTU3D dataset, we evaluated the performance of some 

state-of-the-art algorithms and provide a comprehensive analysis 

of the results. In particular, we utilized Point Transformer (Zhao 

et al., 2018), a Kernel point convolution (KPConv) (Thomas et 

al., 2019), and RandLA-Net (Hu et al., 2020), which are 

commonly used in 3D semantic segmentation benchmarks. All 

tests are run on a GPU Nvidia RTX 4090, 64 GB RAM, processor 

13th Gen Intel(R) Core(TM) CPU i9-13900K @ 5.20 GHz. Our 

findings indicate that the MLMR approach played a critical role 

in influencing the performance of these methods (Table 2 and 

Table 3). MLMR + KPConv demonstrated the highest mIoU 

score, showcasing the effectiveness of combining MLMR with 

KPConv to enhance segmentation accuracy. KPConv performed 

impressively in isolation, highlighting its intrinsic strength in 

spatial data analysis. We observed that when employing MLMR 

+ KPConv, the accuracy achieved for specific classes such as 

Stone, Chimney, Traffic Signature, Lamp, Pole, 

Motorbike/Bicycle, Pet, and Work Machine was slightly lower 

compared to using KPConv in isolation (Figure 4).  
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Method mIoU 

Point Transformer 0.43 

RandLA-Net 0.49 

KPConv 0.58 

MLMR + Point Transformer 0.49 

MLMR + RandLA-Net 0.36 

MLMR + KPConv 0.62 

Table 2. Quantitative results on test set of the YTU3D dataset. 

 

The comparative analysis suggests that the addition of MLMR 

may not always yield improvements for all classes, and its impact 

can vary depending on the specific class characteristics and 

dataset properties. While the MLMR + KPConv combination 

may excel in certain aspects of the segmentation task, it may 

encounter challenges in accurately identifying these particular 

classes. 

RandLA-Net, when combined with MLMR, displayed a slightly 

lower mIoU score, indicating a decrease in accuracy compared to 

its standalone performance. This result suggests that the 

incorporation of MLMR may not be as beneficial for RandLA-

Net in this context. Our analysis reveals that RandLA-Net has 

exhibited superior accuracy in predicting the class "Pool/Water" 

when compared to other methods. 

Point Transformer exhibited a similar mIoU score to its MLMR-

enhanced counterpart, MLMR + Point Transformer, implying 

that the Point Transformer method experienced only marginal 

improvements when combined with MLMR. Our observations 

indicate that Point Transformer has demonstrated superior 

predictive performance specifically for the "Person" class when 

compared to other methods. Interestingly, when integrated with 

MLMR (Multi-Level Multi-Resolution), Point Transformer did 

not exhibit significant improvements in predicting this particular 

class. These findings contribute significantly to our 

understanding of the effectiveness of various methods and their 

compatibility with the MLMR approach in the context of spatial 

data analysis. It is worth noting that these observations have 

important implications for researchers and practitioners seeking 

to optimize segmentation performance in urban environments. 

Sample results performed by MLMR + KPConv on the test set of 

YTU3D are shown in Figure 3 and 4. Figure 5 reports further 

qualitative results of the various tested methods on YTU3D. 

  

 
Figure 3: Qualitative results of MLMR + KPConv. Red boxes demonstrate inaccurate predictions with respect GT annotation. 

Classes colours as in Figure 1. 
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Figure 4: Qualitative results of MLMR + KPConv on vertical objects (top) and small under-represented objects on building roofs 

(bottom). Red boxes show inaccurate predictions with respect to GT annotation. Classes colours as in Figure 1. 

 
Figure 5: Qualitative results of the different methods: red boxes show inaccurate predictions with respect to GT. 
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5. CONCLUSIONS 

In this study, we introduced (i) a new benchmark dataset for 3D 

segmentation of urban areas and (ii) evaluate the performance of 

three popular deep learning methods coupled to a hierarchical 

MLMR approach (Table 3). The shared data and research 

findings are publicly available at https://github.com/3DOM-

FBK/YTU3D.  While the dataset's spatial coverage may not be 

as extensive as other current datasets, YTU3D features the richest 

variety of semantic classes found in the literature to date. The 

primary distinction from existing datasets lies in the expanded 

sub-classes within vehicle, building, and urban object categories. 

The detailed characterization of these objects, which define urban 

areas across various regions, enhances the practical utility of 3D 

classification models. 

The presented results indicate that the MLMR approach 

significantly improved the overall performance of classification 

models. However, we observed that this approach did not yield 

performance improvements for imbalanced classes, specifically 

2-dimensional objects such as poles, lamps, and chimneys, as 

well as moving object classes like pets and people. Furthermore, 

our findings suggest that the MLMR approach may not be 

suitable for all methods, as it resulted in performance degradation 

for RandLA-Net. Nevertheless, we believe that a hierarchical 

approach could bring many advantages to large-scale scenarios 

and could play a fundamental role toward standards in classes. 

Future studies may benefit from exploring a broader range of 

subsampling resolutions and examining the performance of 

different methods under varying conditions. 
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Table 3. Class distributions and per class results for the different methods 
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