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ABSTRACT: 
3D reconstruction from single and multi-view stereo images is still an open research topic, despite the high number of solutions 
proposed in the last decades. The surge of deep learning methods has then stimulated the development of new methods using monocular 
(MDE, Monocular Depth Estimation), stereoscopic and Multi-View Stereo (MVS) 3D reconstruction, showing promising results, often 
comparable to or even better than traditional methods. The more recent development of NeRF (Neural Radial Fields) has further 
triggered the interest for this kind of solution. Most of the proposed approaches, however, focus on terrestrial applications (e.g., 
autonomous driving or small artefacts 3D reconstructions), while airborne and UAV acquisitions are often overlooked. The recent 
introduction of new datasets, such as UseGeo has, therefore, given the opportunity to assess how state-of-the-art MDE, MVS and NeRF 
3D reconstruction algorithms perform using airborne UAV images, allowing their comparison with LiDAR ground truth. This paper 
aims to present the results achieved by two MDE, two MVS and two NeRF approaches levering deep learning approaches, trained and 
tested using the UseGeo dataset. This work allows the comparison with a ground truth showing the current state of the art of these 
solutions and providing useful indications for their future development and improvement.  
 

1. INTRODUCTION 

3D reconstruction from images is an enduring research task in the 
photogrammetric and computer vision communities. Despite the 
introduction of multiple open-source and commercial solutions 
for 3D reconstruction, several challenges and limitations still 
exist: textureless areas, transparencies, or reflective surfaces are 
just examples of regions where available methods often fail to 
deliver a correct 3D reconstruction.  
 In the recent years, deep learning algorithms have demonstrated 
great potential in several remote sensing tasks, including image-
based 3D reconstruction. Nowadays there are several monocular 
and stereo algorithms leveraging deep learning techniques and 
achieving comparable results with more conventional methods 
for depth estimation and 3D reconstruction. However, one of the 
limitations of such learning-based methods is that they highly 
rely on large training sets that are often tedious to obtain. 
Moreover, they are generally applied to close-range scenarios 
low-resolution images and quantitative evaluations while best 
practices for daily uses and large-scale scenarios are generally 
missing.  
 
UAV (Unmanned Aerial Vehicles) are valuable platforms for 
geospatial data acquisition and have demonstrated their potential 
in multiple applications and fields (Nex and Remondino, 2014; 
Candiago et al., 2015; Hassanalian and Abdelkefi, 2017; Nex et 
al., 2022). These platforms are adopted in a wide range of 
applications where often 3D reconstruction is one of the main 
outputs as useful in many cases: most of the inspection, surveying 
and mapping activities usually need a 3D reconstruction to 
determine the shape, the extension and the geo-localization of 
monitored scenes. Ultra-high-resolution UAV images are often 
an extra challenge to face for achieving accurate 3D 
reconstructions. Despite the incredible number of sophisticated 
algorithms developed in the last two decades for image 
triangulation and dense matching, conventional (hand-crafted) 
methods often deliver noisy or incomplete point clouds. In that 
regard, deep learning methods could represent a valid 
complementary approach to improve and (maybe) overcome 

traditional methods exploiting the information that can come 
from one or multiple images. Besides the conventional stereo or 
multi-view reconstruction (MVS) algorithms (Wang et al., 2021; 
Stathopoulou and Remondino, 2023), deep learning has also 
revamped the so-called Monocular Depth Estimation (MDE) 
algorithms that infer the depth of a scene from a single image 
(Ming et al., 2021; Masoumian et al., 2022): different approaches 
using supervised, unsupervised and self-supervised methods 
have been presented in the last years. At the same time, Neural 
Radiance Field (NeRF) methods (Mildenhall et al., 2020) have 
defined a novel way to reconstruct 3D objects by synthesizing 
novel views of a scene by optimizing a continuous 5D volumetric 
scene function. Despite the impressive results on relatively small 
3D scenes and objects (Remondino et al., 2023), it is unclear if 
this typology of algorithms will be a valid alternative for wider 
(i.e., remote sensing) applications.  
These methods are then constrained to the use of large training 
datasets and their performances are still conditioned by 
transferability limits: as an example, networks trained using 
terrestrial data deliver generally poor results when tested on other 
typologies of data such as airborne images.  
UAV datasets are not commonly used for training deep learning 
algorithms. In that regard, the recent ISPRS Scientific Initiative 
UseGeo (https://usegeo.fbk.eu) has released datasets which 
represents a good starting point to support the further 
development of deep learning algorithms considering ultra-high-
resolution UAV images.  
 
1.1 Paper aims 

This paper wants to investigate the use of deep learning methods 
for extracting geometric information from UAV images, 
evaluating some meaningful state-of-the-art methods and 
reporting quantitative analyses and lessons learnt for each of 
them. In particular, the work examines different learning-based 
approaches for three processes: 
• monocular depth estimation (MDE), using single images to 

predict depths;  
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• multi-view stereo (MVS), using two or multiple images to 
reconstruct a 3D scene; 

• 3D reconstruction with Neural Radiance Field (NeRF). 
 
 

2. THE USEGEO DATASET 

For the scope of the paper, data from UseGeo’s repository are 
employed (https://github.com/3DOM-FBK/usegeo). UseGeo - 
UAV-based multi-sensor datasets for geospatial research - was 
an ISPRS Scientific Initiative which aimed to deliver new and 
unique datasets for the rigorous assessment of 3D reconstruction 
algorithms from UAV images (https://usegeo.fbk.eu/). The 
datasets contains both image and LiDAR data (Figure 1) and aims 
to support relevant research, contributing with a useful training 
set for both stereo and monocular 3D reconstruction algorithms. 
Data have been collected with a RIEGL miniVUX-3UAV 
scanner and a SONY ILCE-7RM3 camera. The datasets consist 
of more than 800 images acquired in three different areas and 
corresponding LiDAR point clouds as ground truth (GT). Each 
acquisition was performed on average with 80% and 60% 
forward and side image overlap, respectively. This overlap 
guarantees a minimum of 8 images on each object point, with a 
GSD smaller than 2 cm. The available LiDAR data are ground 
truth for MVS and NeRF algorithms or depth maps (MDE) 
methods. Different tests have been performed to validate the 
UseGeo benchmark and guarantee their suitability for the 
assessment of deep learning algorithms. For more information on 
UseGeo, please refer to Nex et al. (2023).  
 

a) b)  
Figure 1: Camera network (left) and LiDAR ground truth 
point cloud (right, more than 100 pts/sqm) of an UseGeo 
dataset used in the experiments of the paper. 

 
3. EXTRACTION OF GEOMETRIC INFORMATION  

3.1 Monocular depth estimation with deep learning 

Monocular depth estimation (MDE) is an ill-posed process to 
recover distances between the camera and objects in the 3D 
scene. Early methods relied on handcrafted features and used 
complementary cues (Saxena et al., 2008) while recent deep 
learning approaches employ deep convolutional neural networks 
(Eigen et al., 2014; Watson et al., 2019; Ranftl et al., 2020; 
Welponer et al., 2022; Bhat et al., 2023; Zhang et al., 2023). MDE 
is normally tackled as supervised (Fu et al., 2018; Hu et al., 2019) 
or self-supervised (Godard et al., 2017; Tosi et al., 2019) 
problem, incorporating 3D awareness and constraints in order to 
avoid distortions and artefacts (Yin et al., 2019; Yin et al., 2021). 
An architecture often adopted for MDE is the encoder-decoder 
(Fu et al., 2018) with RGB images as input and direct regression 
of pixel-wise depth maps as output. Depending on the available 
training data, the scene depth can be estimated as ordinal, i.e., 
relative (Fu et al., 2018) or Euclidean (Eigen et al., 2014; Yin et 
al., 2019). Few models were trained and evaluated on UAV and 
aerial datasets (Hermann et al., 2020; Madhuanand et al., 2021; 
Chang et al., 2023). MDE could help to complement 
conventional 3D methods in textureless areas or it could be useful 
for navigation/visual odometry purposes, obstacle avoidance, etc. 
 

3.2 Learning-based multi-view stereo 

Dense image matching and multi-view stereo (MVS) algorithms 
aim to generate a rich, dense 3D reconstruction of the scene in 
the form of a dense point cloud or a triangulated mesh 
(Remondino et al., 2014; Furukawa and Hernandez, 2015; Zhou 
et al., 2020; Stathopoulou and Remondino, 2023). Starting from 
camera poses and sparse points, the depth of generally every 
pixel of the scene has to be calculated. Several methods, either 
conventional (Bleyer et al., 2011; Rothermel et al., 2012; 
Schönberger et al., 2018) or, more recently, learning-based 
(Huang et al., 2018; Yao et al., 2018; Xu and Tao, 2020c; Wang 
et al., 2021; Liu et al., 2023) have been developed for solving the 
dense correspondence search problem. Considering the depth 
estimation with supervised learning methods, the loss function in 
the training process tries to minimize the discrepancy between 
the ground truth and the estimated depth along with a 
regularization smoothness term (Yang et al., 2020; Xu et al., 
2021; Wang et al., 2022). In unsupervised and self-supervised 
learning methods, authors tried to by-pass the requirement of GT 
depth maps for training: the loss typically aims to minimize the 
photometric consistency error across the views in an 
unsupervised way while considering occlusions, photometric and 
geometric consistency or enforcing cross-view consistency 
(Zhong et al., 2017; Dai et al., 2019; Huang et al., 2021). 
Learning-based MVS methods applied to UAV and aerial 
datasets are still a research frontier in photogrammetry (Liu et al., 
2018; Yu et al., 2021; Li et al., 2023a).  
 
3.3 Neural Radiance Field algorithms 

A recent and innovative approach for image-based 3D 
reconstruction is based on Neural Radiance Fields (NeRF) 
methods (Mildenhall et al., 2020; Barron et al., 2021; Gao et al., 
2022; Li et al. 2023b). A NeRF uses implicit representations and 
combines deep learning methods with physical knowledge from 
computer graphics to achieve controllable and photo-realistic 3D 
models of a scene pictured by multi-view images. NeRF is 
capable of producing novel views of complex scenes by 
optimizing a continuous scene function from a set of oriented 
images. NeRF works by training a fully connected network, 
referred to as a neural radiance field, to replicate the input views 
of a scene through the use of a rendering loss. From the initial 
work of Mildenhall et al. (2020), researchers have proposed 
several modifications and extensions to the original NeRF 
method in order to improve performance and 3D results (Zhang 
et al., 2021; Kolodiazhna et al., 2023; Reiser et al., 2023). Beside 
Instant-NGP (Mueller et al., 2022), several NeRF methods have 
been included into open frameworks, such as SDFStudio (Yu et 
al., 2022) and NerfStudio (Tancik et al., 2023). NeRFs provide 
an alternative solution for 3D reconstruction compared to 
traditional photogrammetry methods and can produce promising 
results in situations where photogrammetry may fail to deliver 
accurate results (Mazzacca et al., 2023; Remondino et al., 2023).  
The use of NeRF with UAV datasets and large scale scenarios is 
quite recent and few best practices and models for 3D modeling 
or navigation purposes are available (Adamkiewicz et al., 2022; 
Turki et al., 2022; Patel et al., 2023; Turki et al., 2023). 
 
 

4. DATA PROCESSING AND TESTED METHODS 

The extraction of geometric information following Section 2 
methods have been tested to show their performances with UAV 
images from the UseGeo dataset. In the following some relevant 
results are briefly summarized.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W3-2023 
2nd GEOBENCH Workshop on Evaluation and BENCHmarking of Sensors, Systems and GEOspatial Data 

in Photogrammetry and Remote Sensing, 23–24 October 2023, Krakow, Poland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-123-2023 | © Author(s) 2023. CC BY 4.0 License.

 
124

https://github.com/3DOM-FBK/usegeo
https://usegeo.fbk.eu/


 

   

 

4.1 Monocular depth estimation methods 

For the assessment of MDE on UAV images, two self-supervised 
algorithms have been used:  
• Madhuanand et al. (2021): it adopts a self-supervised 

architecture for video sequences with two 2D CNN encoders 
and a 3D CNN decoder for extracting information from 
consecutive temporal frames. A contrastive loss term is 
introduced for improving the quality of image generation. 

• Zhang et al., 2023: it refers to Lite-Mono, a self-supervised 
MDE approach initially developed using the KITTI 
benchmark. The architecture is lightweight and it takes 
advantage of hybrid CNN and Transformer to extract multi-
scale image features. Specifically, Lite-Mono uses 
consecutive dilation convolutions (CDC) to expand receptive 
fields and learn enhanced local features, and it uses the Local-
Global Feature Interaction (LGFI) module to model long-
range global contexts. The network has four variants with 
different parameters, originally designed for real-time depth 
estimation on edge devices. 

The method of Madhuanand et al. (2021) was trained using two 
subsets of images from the Hessigheim3D (Kölle, et al., 2021) 
dataset and Zeche Zollern (Nex et al., 2015) datasets together 
with a subsample of UseGeo data (Nex et al., 2023). The original 
image size of these two other datasets was modified to have a 
similar format as the UseGeo depth maps (i.e., 1898×1320 px). 
A total of 1036 images were used for training, 136 images for 

validation and 88 for testing. The testing was performed using 
only images from the UseGeo dataset.  
The method presented in Zhang et al. (2023) was trained using 
the only UseGeo dataseet 1. To train and evaluate the largest 
model Lite-Mono-8m (see Zhang et al., 2023) was used. The 
UseGeo dataset was split into a training set of 728 images and a 
test set of 100 images. The model was trained with a batch size 
of 14. All the input images were resized to 768×448 pixels, and 
data augmentations such as horizontal flips, brightness 
adjustment (±0.2), saturation adjustment (±0.2), contrast 
adjustment (±0.2), and hue jitter (±0.1) were applied with a 50% 
chance. The initial learning rates to train the depth network and 
the pose network were set to 5e-5 and 1e-4, respectively.  
 
Method Abs Rel Sq Rel RMSE δ1.25  δ1.15  δ1.05  

#1 0.049 0.377 5.967 0.999 0.968 0.579 
#2 0.076 0.834 9.215 0.989 0.878 0.355 

Table 1. Quantitative results with the two MDE methods. 
 
Both methods were scaled (with an average scale factor) to 
determine their residuals with respect to the available ground 
truth. Table 1 reports quantitative results on the testing images 
whereas some predicted depths are shown in Figure 2. Method 
#1 was trained for 500 epochs while method #2 for 1500 epochs 
(method X2), taking approximately 12 hours on an NVIDIA A40 
GPU.

 
Original image Reference depth Predicted depth 

   

   

   

   
Figure 2: Reference and predicted depth maps achieved with MDE (Zhang et al., 2023) on same UAV images. 
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a)  b)  c)  
Figure 3. Overlap of different contiguous point clouds derived from the inferred depth maps (a,b) and a cross-section (c) showing 
misalignments and errors nearby man-made objects. 

 
From the visual results, it can be observed that the predicted 
depth distribution is close to the ground-truth, although the 
sharpness of inferred depth maps can still be improved. The 
residuals are generally low and the reported metrics show some 
promising results for future adoption of MDE in UAV projects.  
UseGeo provides also camera poses, hence depth maps were 
converted into point clouds and overlapped to evaluate their 
consistency (Figure 3). Although the results are generally good 
in the flat rural areas, some misalignments are visible in 
correspondence of man-made objects, mainly due to noisy 3D 
reconstructions and erroneous shapes in correspondence of man-
made objects’ borders due to the different perspectives of the 
images used for each depth estimation.  
 

4.2 Multi-view stereo reconstruction  

For the assessment of learning-based MVS methods on UAV 
images, the following methods have been tested: 
• MVSFormer (Cao et al., 2023): it is a MVS learning 

architecture based on Vision Transformers which can be 
generalized to various input resolutions with efficient multi-
scale training strengthened by gradient accumulation. 

• UniMVS (Peng et al., 2022): it is a unified approach to 
exploit the advantages of regression and classification in 
depth estimation for MVS tasks. It constrains the cost volume 
like classification methods but also realizes the sub-pixel 
depth prediction like regression methods. 
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Figure 4: Results of learning-based MVS methods (pre-trained, i.e., original, and re-trained) evaluated on the UseGeo UAV data. 
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a)  b)  
Figure 5: Graphical summary of MAE (a) and completeness (b) for the UseGeo dataset and the different MVS methods. 

a)  b)  c)  
Figure 6: Cloud-to-cloud colour-coded difference between LiDAR GT and Re-trained MVSFormer (a), Re-trained Unimvs (b) and 
MSP (c). See Table 3 for metrics. 

 
Both methods were first applied “as is” to dataset 1 of UseGeo 
(224 images) to check their replicability to an UAV context 
(“pre-trained” rows in Figure 4). Then both methods were re-
trained using dataset 2 of UseGeo (327 images, 10 epochs) and, 
again, evaluated on dataset 1 (“re-trained” rows in Figure 4). A 
conventional SGM-based encoded in the MSP method1 was also 
tested on dataset 1. A summary of accuracy (Mean Absolute 
Error – MAE) and completeness on all 224 images of UseGeo 
dataset 1 with respect to the available GT is presented in Table 2 
and Figure 5. It is clear how conventional MVS are still 
outperforming in terms of accuracy, as also reported in other 
analyses (Mazzacca et al., 2023; Remondino et al., 2023). On the 
other hand, learning-based approaches are able to reach much 
higher completeness in the 3D scene. 
 

 MAE [m] Completeness [%] 
MSP 0.35 94 
Pre-trained MVSFormer 0.617 88 
Re-trained MVSFormer 0.48 98 
Pre-trained Unimvs 0.638 91 
Re-trained Unimvs 0.485 97 

Table 2: MAE and completeness for conventional and learning-
based MVS methods on UseGeo Dataset 1. See Figure 5 for 
visuals. 
 

From each MVS methods, point clouds were also derived and 
compared to the LiDAR data: Cloud-to-Cloud results are shown 
in Figure 6 whereas metrics in Table 3. It can be noticed how a 
conventional MVS method is still outperforming learning-based 
approaches. 
 

 Mean [m] Stand. Dev. [m] 
MSP 0.0845 0.0805 
Re-trained MVSFormer 0.1316 0.1099 
Re-trained Unimvs 0.1682 0.1305 

Table 3: Cloud-to-cloud statistics for learning-based and 
conventional MVS methods on UseGeo Dataset 1. See Figure 
6 for visuals. 

 
 

1 https://u.osu.edu/qin.324/msp/  

4.3 Neural Radiance Field (NeRF) 

For the evaluation of NeRF methods on UAV images, a method 
called MCT-Nerf (Xu et al., 2023) built upon Mip-NeRF (Barron 
et al., 2021) was used and trained with the 224 images from 
UseGeo’s dataset 1. To enable the use of the large-format images 
from UseGeo (7953 by 5279 pixels), MCT-Nerf uses a tile-based 
approach which divides the scene into small areas (e.g., 50 x 50 
m2) based on the ground plane and tiles the images into small 
patches (e.g., 800 by 800 pixels) with re-adjusted principal 
points. After the training, depth maps for each view are derived 
using standard approaches (Kangle et al., 2022) that take a 
weighted average of depths based on the accumulated radiance 
intensity (Figure 7a-b-c). These depth maps are finally combined 
and point clouds are derived. In addition, meshes are generated 
(Figure 7d) by extracting the triangulated surface from the fused 
depth map (Izadi et al., 2011) using marching cube algorithms 
(Newman and Hong, 2006). The derived depth maps are 
compared to the available GT data to derive metrics: Mean 
Absolute Error is 1.72 m whereas completeness reached 88%. A 
cloud-to-Cloud (C2C) comparison with the available GT data 
revealed a mean of 0.175 m and a standard deviation of 0.253 m. 
 
 

5. CONCLUSIONS  

This paper has shown the performances of different 3D 
reconstruction algorithms, based on deep learning methods, on 
UAV images. Most of the existing contributions focus on the use 
of these algorithms in terrestrial or close-range applications. In 
contrast, this paper has tested MDE, MVS and NeRF on the 
UseGeo UAV dataset with the aim of assessing their 
performances on high-resolution drone/UAV data.  
MDE approaches deliver results that have still a lower quality 
and smoothed edges compared to ground truth data: the point 
clouds are usually noisier than the conventional photogrammetric 
ones and show deformations that prevent their correct alignment 
when combined using external orientation parameters of 
individual images.   
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(a) (b) (c) (d) 

    

    
Figure 7: Results of the NeRF-based depth maps on the UseGeo UAV dataset 1 (a,b,c), point cloud and C2C results (d). 

 
when combined using external orientation parameters of 
individual images. The training used on the images also deeply 
influences the results: larger training datasets might allow better 
results, although generalization and domain adaptation could be 
compromise.  In addition, self-supervised approaches suffer from 
the lack of a ground-truth scale factor, increasing the 
discrepancies in the merge of different point clouds.  
Learning-based MVS methods needed some re-training to be 
tailored to UAV scenarios. More complete results were produced 
although accuracy is below conventional methods, hence 
complementarity is the actual key word. Cloud-to-Cloud 
analyses also highlighted larger errors with respect to a 
traditional photogrammetric method. 
NeRF methods are promising although geometric results are still 
not competing with conventional photogrammetric 3D 
reconstruction approaches where much higher and detailed 
surface models can be achieved. An approach to handle high 
resolution images is proposed but the need of many overlapping 
images with very short baselines is somehow limiting NeRF 
applications in aerial cases. 
Evaluations of more methods are necessary. Nevertheless, 
performed tests have certainly shown that 3D reconstruction from 
UAV images can benefit from deep learning methods, ideally as 
complementary to conventional method and promising results are 
on the horizon.  
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