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ABSTRACT:

3D reconstruction from single and multi-view stereo images is still an open research topic, despite the high number of solutions
proposed in the last decades. The surge of deep learning methods has then stimulated the development of new methods using monocular
(MDE, Monocular Depth Estimation), stereoscopic and Multi-View Stereo (MVS) 3D reconstruction, showing promising results, often
comparable to or even better than traditional methods. The more recent development of NeRF (Neural Radial Fields) has further
triggered the interest for this kind of solution. Most of the proposed approaches, however, focus on terrestrial applications (e.g.,
autonomous driving or small artefacts 3D reconstructions), while airborne and UAV acquisitions are often overlooked. The recent
introduction of new datasets, such as UseGeo has, therefore, given the opportunity to assess how state-of-the-art MDE, MVS and NeRF
3D reconstruction algorithms perform using airborne UAV images, allowing their comparison with LiDAR ground truth. This paper
aims to present the results achieved by two MDE, two MVS and two NeRF approaches levering deep learning approaches, trained and
tested using the UseGeo dataset. This work allows the comparison with a ground truth showing the current state of the art of these

solutions and providing useful indications for their future development and improvement.

1. INTRODUCTION

3D reconstruction from images is an enduring research task in the
photogrammetric and computer vision communities. Despite the
introduction of multiple open-source and commercial solutions
for 3D reconstruction, several challenges and limitations still
exist: textureless areas, transparencies, or reflective surfaces are
just examples of regions where available methods often fail to
deliver a correct 3D reconstruction.

In the recent years, deep learning algorithms have demonstrated
great potential in several remote sensing tasks, including image-
based 3D reconstruction. Nowadays there are several monocular
and stereo algorithms leveraging deep learning techniques and
achieving comparable results with more conventional methods
for depth estimation and 3D reconstruction. However, one of the
limitations of such learning-based methods is that they highly
rely on large training sets that are often tedious to obtain.
Moreover, they are generally applied to close-range scenarios
low-resolution images and quantitative evaluations while best
practices for daily uses and large-scale scenarios are generally
missing.

UAV (Unmanned Aerial Vehicles) are valuable platforms for
geospatial data acquisition and have demonstrated their potential
in multiple applications and fields (Nex and Remondino, 2014;
Candiago et al., 2015; Hassanalian and Abdelkefi, 2017; Nex et
al., 2022). These platforms are adopted in a wide range of
applications where often 3D reconstruction is one of the main
outputs as useful in many cases: most of the inspection, surveying
and mapping activities usually need a 3D reconstruction to
determine the shape, the extension and the geo-localization of
monitored scenes. Ultra-high-resolution UAV images are often
an extra challenge to face for achieving accurate 3D
reconstructions. Despite the incredible number of sophisticated
algorithms developed in the last two decades for image
triangulation and dense matching, conventional (hand-crafted)
methods often deliver noisy or incomplete point clouds. In that
regard, deep learning methods could represent a valid
complementary approach to improve and (maybe) overcome

traditional methods exploiting the information that can come
from one or multiple images. Besides the conventional stereo or
multi-view reconstruction (MVS) algorithms (Wang et al., 2021;
Stathopoulou and Remondino, 2023), deep learning has also
revamped the so-called Monocular Depth Estimation (MDE)
algorithms that infer the depth of a scene from a single image
(Ming et al., 2021; Masoumian et al., 2022): different approaches
using supervised, unsupervised and self-supervised methods
have been presented in the last years. At the same time, Neural
Radiance Field (NeRF) methods (Mildenhall et al., 2020) have
defined a novel way to reconstruct 3D objects by synthesizing
novel views of a scene by optimizing a continuous 5D volumetric
scene function. Despite the impressive results on relatively small
3D scenes and objects (Remondino et al., 2023), it is unclear if
this typology of algorithms will be a valid alternative for wider
(i.e., remote sensing) applications.

These methods are then constrained to the use of large training
datasets and their performances are still conditioned by
transferability limits: as an example, networks trained using
terrestrial data deliver generally poor results when tested on other
typologies of data such as airborne images.

UAYV datasets are not commonly used for training deep learning
algorithms. In that regard, the recent ISPRS Scientific Initiative
UseGeo (https://usegeo.fbk.eu) has released datasets which
represents a good starting point to support the further
development of deep learning algorithms considering ultra-high-
resolution UAV images.

1.1 Paper aims

This paper wants to investigate the use of deep learning methods
for extracting geometric information from UAV images,
evaluating some meaningful state-of-the-art methods and
reporting quantitative analyses and lessons learnt for each of
them. In particular, the work examines different learning-based
approaches for three processes:

e monocular depth estimation (MDE), using single images to

predict depths;
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e multi-view stereo (MVS), using two or multiple images to
reconstruct a 3D scene;
e 3D reconstruction with Neural Radiance Field (NeRF).

2. THE USEGEO DATASET

For the scope of the paper, data from UseGeo’s repository are
employed (https://github.com/3DOM-FBK/usegeo). UseGeo -
UAV-based multi-sensor datasets for geospatial research - was
an ISPRS Scientific Initiative which aimed to deliver new and
unique datasets for the rigorous assessment of 3D reconstruction
algorithms from UAV images (https://usegeo.tbk.eu/). The
datasets contains both image and LiDAR data (Figure 1) and aims
to support relevant research, contributing with a useful training
set for both stereo and monocular 3D reconstruction algorithms.
Data have been collected with a RIEGL miniVUX-3UAV
scanner and a SONY ILCE-7RM3 camera. The datasets consist
of more than 800 images acquired in three different areas and
corresponding LiDAR point clouds as ground truth (GT). Each
acquisition was performed on average with 80% and 60%
forward and side image overlap, respectively. This overlap
guarantees a minimum of § images on each object point, with a
GSD smaller than 2 cm. The available LiDAR data are ground
truth for MVS and NeRF algorithms or depth maps (MDE)
methods. Different tests have been performed to validate the
UseGeo benchmark and guarantee their suitability for the
assessment of deep learning algorithms. For more information on
UseGeo, please refer to Nex et al. (2023).

a) ) b)

Figure 1: Camera network (left) and LiDAR ground truth
point cloud (right, more than 100 pts/sqm) of an UseGeo
dataset used in the experiments of the paper.

3. EXTRACTION OF GEOMETRIC INFORMATION
3.1 Monocular depth estimation with deep learning

Monocular depth estimation (MDE) is an ill-posed process to
recover distances between the camera and objects in the 3D
scene. Early methods relied on handcrafted features and used
complementary cues (Saxena et al., 2008) while recent deep
learning approaches employ deep convolutional neural networks
(Eigen et al., 2014; Watson et al., 2019; Ranftl et al., 2020;
Welponer et al., 2022; Bhat et al., 2023; Zhang et al., 2023). MDE
is normally tackled as supervised (Fu et al., 2018; Hu et al., 2019)
or self-supervised (Godard et al., 2017; Tosi et al., 2019)
problem, incorporating 3D awareness and constraints in order to
avoid distortions and artefacts (Yin et al., 2019; Yin et al., 2021).
An architecture often adopted for MDE is the encoder-decoder
(Fu et al., 2018) with RGB images as input and direct regression
of pixel-wise depth maps as output. Depending on the available
training data, the scene depth can be estimated as ordinal, i.e.,
relative (Fu et al., 2018) or Euclidean (Eigen et al., 2014; Yin et
al., 2019). Few models were trained and evaluated on UAV and
aerial datasets (Hermann et al., 2020; Madhuanand et al., 2021;
Chang et al, 2023). MDE could help to complement
conventional 3D methods in textureless areas or it could be useful
for navigation/visual odometry purposes, obstacle avoidance, etc.

3.2 Learning-based multi-view stereo

Dense image matching and multi-view stereo (MVS) algorithms
aim to generate a rich, dense 3D reconstruction of the scene in
the form of a dense point cloud or a triangulated mesh
(Remondino et al., 2014; Furukawa and Hernandez, 2015; Zhou
et al., 2020; Stathopoulou and Remondino, 2023). Starting from
camera poses and sparse points, the depth of generally every
pixel of the scene has to be calculated. Several methods, either
conventional (Bleyer et al., 2011; Rothermel et al., 2012;
Schonberger et al.,, 2018) or, more recently, learning-based
(Huang et al., 2018; Yao et al., 2018; Xu and Tao, 2020c; Wang
etal., 2021; Liu et al., 2023) have been developed for solving the
dense correspondence search problem. Considering the depth
estimation with supervised learning methods, the loss function in
the training process tries to minimize the discrepancy between
the ground truth and the estimated depth along with a
regularization smoothness term (Yang et al., 2020; Xu et al.,
2021; Wang et al., 2022). In unsupervised and self-supervised
learning methods, authors tried to by-pass the requirement of GT
depth maps for training: the loss typically aims to minimize the
photometric consistency error across the views in an
unsupervised way while considering occlusions, photometric and
geometric consistency or enforcing cross-view consistency
(Zhong et al., 2017; Dai et al., 2019; Huang et al., 2021).
Learning-based MVS methods applied to UAV and aerial
datasets are still a research frontier in photogrammetry (Liu et al.,
2018; Yu et al., 2021; Li et al., 2023a).

3.3 Neural Radiance Field algorithms

A recent and innovative approach for image-based 3D
reconstruction is based on Neural Radiance Fields (NeRF)
methods (Mildenhall et al., 2020; Barron et al., 2021; Gao et al.,
2022; Li et al. 2023b). A NeRF uses implicit representations and
combines deep learning methods with physical knowledge from
computer graphics to achieve controllable and photo-realistic 3D
models of a scene pictured by multi-view images. NeRF is
capable of producing novel views of complex scenes by
optimizing a continuous scene function from a set of oriented
images. NeRF works by training a fully connected network,
referred to as a neural radiance field, to replicate the input views
of a scene through the use of a rendering loss. From the initial
work of Mildenhall et al. (2020), researchers have proposed
several modifications and extensions to the original NeRF
method in order to improve performance and 3D results (Zhang
etal., 2021; Kolodiazhna et al., 2023; Reiser et al., 2023). Beside
Instant-NGP (Mueller et al., 2022), several NeRF methods have
been included into open frameworks, such as SDFStudio (Yu et
al., 2022) and NerfStudio (Tancik et al., 2023). NeRFs provide
an alternative solution for 3D reconstruction compared to
traditional photogrammetry methods and can produce promising
results in situations where photogrammetry may fail to deliver
accurate results (Mazzacca et al., 2023; Remondino et al., 2023).
The use of NeRF with UAV datasets and large scale scenarios is
quite recent and few best practices and models for 3D modeling
or navigation purposes are available (Adamkiewicz et al., 2022;
Turki et al., 2022; Patel et al., 2023; Turki et al., 2023).

4. DATA PROCESSING AND TESTED METHODS

The extraction of geometric information following Section 2
methods have been tested to show their performances with UAV
images from the UseGeo dataset. In the following some relevant
results are briefly summarized.
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4.1 Monocular depth estimation methods

For the assessment of MDE on UAV images, two self-supervised

algorithms have been used:

e Madhuanand et al. (2021): it adopts a self-supervised
architecture for video sequences with two 2D CNN encoders
and a 3D CNN decoder for extracting information from
consecutive temporal frames. A contrastive loss term is
introduced for improving the quality of image generation.

e Zhang et al., 2023: it refers to Lite-Mono, a self-supervised
MDE approach initially developed using the KITTI
benchmark. The architecture is lightweight and it takes
advantage of hybrid CNN and Transformer to extract multi-
scale image features. Specifically, Lite-Mono uses
consecutive dilation convolutions (CDC) to expand receptive
fields and learn enhanced local features, and it uses the Local-
Global Feature Interaction (LGFI) module to model long-
range global contexts. The network has four variants with
different parameters, originally designed for real-time depth
estimation on edge devices.

The method of Madhuanand et al. (2021) was trained using two

subsets of images from the Hessigheim3D (Kolle, et al., 2021)

dataset and Zeche Zollern (Nex et al., 2015) datasets together

with a subsample of UseGeo data (Nex et al., 2023). The original

image size of these two other datasets was modified to have a

similar format as the UseGeo depth maps (i.e., 1898x1320 px).

A total of 1036 images were used for training, 136 images for

Original image

: k

Reference depth

Figure 2: Reference andpredicted depth maps achieved with MDE (Zhang et al., 2023) on same UAV images.

validation and 88 for testing. The testing was performed using
only images from the UseGeo dataset.

The method presented in Zhang et al. (2023) was trained using
the only UseGeo dataseet 1. To train and evaluate the largest
model Lite-Mono-8m (see Zhang et al., 2023) was used. The
UseGeo dataset was split into a training set of 728 images and a
test set of 100 images. The model was trained with a batch size
of 14. All the input images were resized to 768x448 pixels, and
data augmentations such as horizontal flips, brightness
adjustment (#0.2), saturation adjustment (#0.2), contrast
adjustment (+0.2), and hue jitter (+0.1) were applied with a 50%
chance. The initial learning rates to train the depth network and
the pose network were set to 5e” and 1e*, respectively.

Method | Abs Rel | Sq Rel | RMSE | 8125 | 8115 | 81.05
#1 0.049 | 0.377 | 5.967 |0.999 | 0.968 | 0.579
#2 0.076 | 0.834 | 9.215 |0.989 | 0.878 | 0.355

Table 1. Quantitative results with the two MDE methods.

Both methods were scaled (with an average scale factor) to
determine their residuals with respect to the available ground
truth. Table 1 reports quantitative results on the testing images
whereas some predicted depths are shown in Figure 2. Method
#1 was trained for 500 epochs while method #2 for 1500 epochs
(method X2), taking approximately 12 hours on an NVIDIA A40
GPU.

Predicted depth
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Figure 3. Overlap of different contiguous point clouds derived from the inferred depth maps (a,b) and a cross-section (c) showing

misalignments and errors nearby man-made objects.

From the visual results, it can be observed that the predicted
depth distribution is close to the ground-truth, although the
sharpness of inferred depth maps can still be improved. The
residuals are generally low and the reported metrics show some
promising results for future adoption of MDE in UAV projects.
UseGeo provides also camera poses, hence depth maps were
converted into point clouds and overlapped to evaluate their
consistency (Figure 3). Although the results are generally good
in the flat rural areas, some misalignments are visible in
correspondence of man-made objects, mainly due to noisy 3D
reconstructions and erroneous shapes in correspondence of man-
made objects’ borders due to the different perspectives of the
images used for each depth estimation.

of the area

Pre-trained

MVSFormer

4.2 Multi-view stereo reconstruction

For the assessment of learning-based MVS methods on UAV

images, the following methods have been tested:

e MVSFormer (Cao et al., 2023): it is a MVS learning
architecture based on Vision Transformers which can be
generalized to various input resolutions with efficient multi-
scale training strengthened by gradient accumulation.

e UniMVS (Peng et al., 2022): it is a unified approach to
exploit the advantages of regression and classification in
depth estimation for MVS tasks. It constrains the cost volume
like classification methods but also realizes the sub-pixel
depth prediction like regression methods.

Re-trained
MVSFormer

Pre-trained

Re-trained

Figure 4: Results of learning

-based MVS methods (pre-trainéd, ie., original, an re-trained)~ evaluated on the UseGeo UA\; data.
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MSP (c). See Table 3 for metrics.

Both methods were first applied “as is” to dataset 1 of UseGeo
(224 images) to check their replicability to an UAV context
(“pre-trained” rows in Figure 4). Then both methods were re-
trained using dataset 2 of UseGeo (327 images, 10 epochs) and,
again, evaluated on dataset 1 (“re-trained” rows in Figure 4). A
conventional SGM-based encoded in the MSP method! was also
tested on dataset 1. A summary of accuracy (Mean Absolute
Error — MAE) and completeness on all 224 images of UseGeo
dataset 1 with respect to the available GT is presented in Table 2
and Figure 5. It is clear how conventional MVS are still
outperforming in terms of accuracy, as also reported in other
analyses (Mazzacca et al., 2023; Remondino et al., 2023). On the
other hand, learning-based approaches are able to reach much
higher completeness in the 3D scene.

MAE [m] | Completeness [%]
MSP 0.35 94
Pre-trained MVSFormer 0.617 88
Re-trained MVSFormer 0.48 98
Pre-trained Unimvs 0.638 91
Re-trained Unimvs 0.485 97

Table 2: MAE and completeness for conventional and learning-
based MVS methods on UseGeo Dataset 1. See Figure 5 for
visuals.

From each MVS methods, point clouds were also derived and
compared to the LiDAR data: Cloud-to-Cloud results are shown
in Figure 6 whereas metrics in Table 3. It can be noticed how a
conventional MVS method is still outperforming learning-based
approaches.

Mean [m] | Stand. Dev. [m]
MSP 0.0845 0.0805
Re-trained MV SFormer 0.1316 0.1099
Re-trained Unimvs 0.1682 0.1305

Table 3: Cloud-to-cloud statistics for learning-based and
conventional MVS methods on UseGeo Dataset 1. See Figure
6 for visuals.

! https://u.osu.edu/qin.324/msp/

00 02 04 06 08

Figure 5: Graphical summary of MAE (a) and completeness (b) for the UseGeo dataset and the different MVS methods.

v 5 \§

Figure 6: Cloud-to-cloud colour-coded difference between LiDAR GT and Re-trained MVSFormer (a), Re-trained Unimvs (b) and

4.3 Neural Radiance Field (NeRF)

For the evaluation of NeRF methods on UAV images, a method
called MCT-Nerf (Xu et al., 2023) built upon Mip-NeRF (Barron
et al., 2021) was used and trained with the 224 images from
UseGeo’s dataset 1. To enable the use of the large-format images
from UseGeo (7953 by 5279 pixels), MCT-Nerf uses a tile-based
approach which divides the scene into small areas (e.g., 50 x 50
m?) based on the ground plane and tiles the images into small
patches (e.g., 800 by 800 pixels) with re-adjusted principal
points. After the training, depth maps for each view are derived
using standard approaches (Kangle et al., 2022) that take a
weighted average of depths based on the accumulated radiance
intensity (Figure 7a-b-c). These depth maps are finally combined
and point clouds are derived. In addition, meshes are generated
(Figure 7d) by extracting the triangulated surface from the fused
depth map (Izadi et al., 2011) using marching cube algorithms
(Newman and Hong, 2006). The derived depth maps are
compared to the available GT data to derive metrics: Mean
Absolute Error is 1.72 m whereas completeness reached 88%. A
cloud-to-Cloud (C2C) comparison with the available GT data
revealed a mean of 0.175 m and a standard deviation of 0.253 m.

5. CONCLUSIONS

This paper has shown the performances of different 3D
reconstruction algorithms, based on deep learning methods, on
UAV images. Most of the existing contributions focus on the use
of these algorithms in terrestrial or close-range applications. In
contrast, this paper has tested MDE, MVS and NeRF on the
UseGeo UAV dataset with the aim of assessing their
performances on high-resolution drone/UAV data.

MDE approaches deliver results that have still a lower quality
and smoothed edges compared to ground truth data: the point
clouds are usually noisier than the conventional photogrammetric
ones and show deformations that prevent their correct alignment
when combined using external orientation parameters of
individual images.
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when combined using external orientation parameters of
individual images. The training used on the images also deeply
influences the results: larger training datasets might allow better
results, although generalization and domain adaptation could be
compromise. In addition, self-supervised approaches suffer from
the lack of a ground-truth scale factor, increasing the
discrepancies in the merge of different point clouds.
Learning-based MVS methods needed some re-training to be
tailored to UAV scenarios. More complete results were produced
although accuracy is below conventional methods, hence
complementarity is the actual key word. Cloud-to-Cloud
analyses also highlighted larger errors with respect to a
traditional photogrammetric method.

NeRF methods are promising although geometric results are still
not competing with conventional photogrammetric 3D
reconstruction approaches where much higher and detailed
surface models can be achieved. An approach to handle high
resolution images is proposed but the need of many overlapping
images with very short baselines is somehow limiting NeRF
applications in aerial cases.

Evaluations of more methods are necessary. Nevertheless,
performed tests have certainly shown that 3D reconstruction from
UAYV images can benefit from deep learning methods, ideally as
complementary to conventional method and promising results are
on the horizon.
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