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ABSTRACT:

Neural Radiance Fields (NeRFs) use a set of camera poses with associated images to represent a scene through a position-dependent
density and radiance at given spatial location. Generating a geometric representation in form of a point cloud is gained by ray tracing
and sampling 3D points with density and color along the rays. In this contribution we evaluate object reconstruction by NeRFs in 3D
metric space against Terrestrial Laser Scanning (TLS) using ground truth data in form of a Structured Light Imaging (SLI) mesh and
investigate the influence of the density to the reconstruction’s accuracy. We extend the accuracy assessment from 2D to 3D space
and perform high resolution investigations on NeRFs by using camera images with 36MP resolution as well as comparison among
point clouds of more than 20 million points against a 0.1mm ground truth mesh. TLS achieves the highest geometric accuracy
results with a standard deviation of 1.68mm, while NeRFδt=300 diverges 18.61mm from the ground truth. All NeRF reconstructions
contain 3D points inside the object which have the highest displacements from the ground truth, thus contribute the most to the
accuracy results. NeRFs accuracy improves with increasing the density threshold as a consequence of completeness, since beside
noise and outliers the object points are also being removed.

1. INTRODUCTION

3D geometric and radiometric scene reconstruction is one of the
most essential challenges in computer graphics because high
geometric accuracy and photo-realism must be satisfied. Re-
cently, due to the rapid development of acquisition instruments
and processing methods, point clouds have become a funda-
mental data type for realistic representation of 3D objects and
scenes in applications that require highly accurate geometric in-
formation. A point cloud is represented through a collection of
non-uniform distributed points where each point has its geo-
metric coordinates (x,y,z), but may also contain other attributes
such as density, color, reflectance and surface normal (Liu et
al., 2023).

Generating a dense point cloud of a scene based on camera
parameters and poses in 3D space is initially addressed by
Multi-View Stereo (MVS) algorithms. MVS allows high re-
construction accuracy when the surfaces are textured, thus the
main challenge lies in computing precise corresponding points
between images of the scene (Stathopoulou et al., 2021).

Another method for fast and highly accurate capturing the
geometry of objects is laser scanning. Using reflected light,
Terrestrial Laser Scanning (TLS) systems capture dense point
clouds of objects and scenes through acquiring the coordinate
and intensity value for each 3D point (Kermarrec et al., 2022).

Beside classical photogrammetric approaches, over the past
years, deep learning algorithms have become an alternative tool
for image processing and spatial analysis (Zhu et al., 2021)
leading to a number of improvements in terms of processing
time and accuracy. Resolving the challenges of novel view syn-
thesis and representing detailed scene geometry with complex
occlusions is introduced by Neural Radiance Fields (NeRFs)
(Mildenhall et al., 2021). Using a set of camera poses with
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associated images as input, the scene is represented through
the weights of a fully-connected neural network to a position-
dependent density and radiance which additionally depends on
the viewing direction at that spatial location. Generating a scene
representation in form of a point cloud with densities and colors
is gained by sampling rays from the camera poses, resulting in
rendering of depth maps.

NeRFs and its variants (Barron et al., 2021, Oechsle et al., 2021,
Tao et al., 2023, Chen et al., 2023a, Chen et al., 2023b) have
demonstrated impressive performance (Müller et al., 2022b) of
learning 3D representations from images. Nonetheless, quan-
tifying the confidence of any spatial representation implies an
accuracy assessment analysis where the geometrical similarity
is the key factor.

To our knowledge, this is the first attempt to evaluate NeRFs re-
constructive geometry in 3D space against TLS using a ground
truth data in form of Structured Light Imaging (SLI) mesh. We
explore the influence of the density to the reconstruction’s ac-
curacy and investigate if NeRFs can compete against classical
photogrammetric methods for representing ground truth loca-
tions.

Our main contributions can be summarized as follows:

• we extend the accuracy assessment from 2D to 3D space,
unlike current pipelines (Martin et al., 2023) that only cal-
culate the quantitative metrics that refer to the image qual-
ity (Azzarelli et al., 2023).

• we perform high resolution investigations on NeRFs by us-
ing camera images with 36MP resolution as well as com-
parison among point clouds of more than 20 million points
against a ground truth mesh with 0.1mm accuracy.

• we demonstrate the benefits of an accuracy evaluation per-
formed using a ground truth data, which besides providing
quantitative results it makes them spatially significant.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W3-2023 
2nd GEOBENCH Workshop on Evaluation and BENCHmarking of Sensors, Systems and GEOspatial Data 

in Photogrammetry and Remote Sensing, 23–24 October 2023, Krakow, Poland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-153-2023 | © Author(s) 2023. CC BY 4.0 License.

 
153



After briefly summarizing the related work in Section 2, in the
following, in Section 3 we describe the processing steps for the
reconstruction and extraction of the point clouds from NeRFs
and the accuracy assessment method. In Section 4 the data ac-
quisition is described, followed by our experiments and results
in Section 5. The discussion is presented in Section 6 and fi-
nally Section 7 concludes this contribution.

2. RELATED WORK

In this contribution we evaluate NeRFs reconstructive geometry
by analysing point clouds, thus we hereafter review the respect-
ive literature.

NeRFs Differing from the traditional 3D reconstruction with
MVS, NeRFs represent scenes as a continuous volumetric field
consisting of position-dependent density and radiance which
additionally depends on viewing direction. Still, the time-
consuming processing and rendering time is a significant draw-
back which sets limitations to its applicability.

AligNeRF (Jiang et al., 2023) explores the possibilities for
learning high resolution 3D geometric representations, while
EventNeRF (Rudnev et al., 2023) and Ev-NeRF (Hwang et al.,
2023) introduce a method for dense photo realistic RGB view
synthesis of a static scene using event cameras.

Triggered by NeRFs necessity for accurate camera parameters,
F2-NeRF (Wang et al., 2023) enables arbitrary camera trajector-
ies as input, but still can not recover camera poses from scratch.
NeRF– (Wang et al., 2021) optimises camera poses and scene
representation, eliminating the need of pre-extracting the cam-
era parameters.

Modelling a volumetric radiance field with a neural point
cloud is the core concept in Point-NeRF (Xu et al., 2022) and
Points2NeRF (Zimny et al., 2022) which take a 3D point cloud
with the associated color values to obtain colored mesh repres-
entation, on account of the computational cost required to store
NeRFs architecture.

Significantly reducing the processing time without sacrificing
rendering quality is established in Instant Neural Graphic Prim-
itives (Instant-NGP) (Müller et al., 2022b), using a small neural
network augmented by a multi-resolution hash encoding. The
network learns to disambiguate hash collisions and it’s im-
plemented on fully-fused CUDA kernels, hence reconstructing
scenes in a few seconds. Although Instant-NGP can be a base
framework for a few other methods, specific implementation
developments for NeRFs have been applied with pose refine-
ment (Lin et al., 2021), which is the used pipeline for our re-
search purposes.

Point Cloud Accuracy Metrics Unlike 2D content, point
clouds are distributed in 3D space which makes the accuracy as-
sessment more challenging. Thus, a 3D-to-2D projection-based
mechanism (Yang et al., 2020) enables a simplified objective
comparison between point cloud quality evaluation and con-
ventional image-based measurements. Consequently, with aim
to build an open standard for compactly representing 3D point
clouds, the Moving Picture Experts Group (MPEG) proposes
establishing quality metrics, such as point-to-point (p2point),
point-to-plane (p2plane) and point-to-mesh (p2mesh) (Marvie
et al., 2023). The p2point metric quantifies the distances
between corresponding points to measure the degree of distor-
tion, p2plane projects the obtained p2point distances along the

surface normal direction, while p2mesh reconstructs the surface
and then measures the distance from a point to the surface, but
the efficiency is strongly dependent on the accuracy of the sur-
face reconstruction algorithm (Liu et al., 2023).

For detecting object variations, a comparison among Cloud-
to-Cloud (C2C), Cloud-to-Mesh (C2M) and Multiscale Model
to Model Cloud Comparison (M3C2) point cloud evaluation
methods is presented (Kharroubi et al., 2022). Furthermore,
the same methods and TLS as ground truth data are used to
analyze the similarity between point clouds for the purposes of
cultural heritage (Di Stefano et al., 2021). Both C2C and C2M
methods usually consider either the closest point or the neigh-
boring points within a fixed searching radius as ground truth,
which may not reflect the actual accuracy. Therefore, an Ad-
aptive Cloud-to-Cloud (AC2C) comparison method (Huang et
al., 2022) searches the potential ground truth in theoretical error
space of each point, which is estimated according to the posi-
tion of the corresponding visible cameras and their distances to
a target point.

We can conclude that NeRFs are a driving force for vast con-
tributions in the field of view synthesis, exploring new possibil-
ities and expanding the views of spatial reconstruction and 3D
modelling. However, the linking point of all this research is
that the quantitative accuracy metrics refer to the image quality
and not to the volume density itself, from which the geometry
can further be evaluated. In that regard, in this contribution we
bring the evaluation from image to 3D metric space, by compar-
ing NeRFs and TLS method against a ground truth mesh with
aim to assess NeRFs degree of confidence in obtaining reliable
information about physical objects.

3. METHODOLOGY

As depicted in Figure 1, in Section 3.1 the principles of refined
camera pose estimation are introduced. Subsequently, in Sec-
tion 3.2 the methodology for the reconstruction and extraction
of the dense point cloud from NeRFs is described. At last, in
Section 3.3 background of the accuracy assessment method is
laid out.

3.1 Pose estimation

Misaligned camera poses result in cloudy artifacts and a reduc-
tion of sharpness and details of the reconstructed scene. Con-
sidering NeRFs ability to reliably reconstruct a scene only with
a-priori known accurate intrinsic and extrinsic camera paramet-
ers, the refined pose estimation is implemented as it leads to
better reconstruction (Jäger et al., 2023). The method allows
to back propagate loss gradients to the input pose calculations
that are used to optimize and refine the poses (Müller et al.,
2022a). The pose estimation process is executed independ-
ently and only once for creating a set of input poses through
Structure from Motion (SfM) (Schonberger and Frahm, 2016).
Namely, the algorithm expects as input a set of overlapping im-
ages of the scene captured from different camera positions. The
camera poses get determined during the reconstruction process
along with the 3D geometry that starts with detecting visually
distinctive key points in all images. Then the key points are
matched over all images based on similarity depicting the same
3D point. These corresponding key points are input to a bundle
adjustment that determines the camera poses and intrinsic para-
meters, as well as the 3D coordinates for all key points depicted
in multiple images, resulting in a sparse point cloud.
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Figure 1. Illustration of the processing steps. The images with es-
timated camera poses are input for training NeRFs (Section 3.1).
We filter NeRFs volume density using a global density threshold
(Section 3.2). TLS scans are aligned and cleaned of noise and
outliers to complete the whole object. All point clouds are re-
gistered in the same metric space as the ground truth mesh for
evaluation (Section 3.3).

3.2 3D Reconstruction by NeRFs

In order to obtain a scene representation in form of a dense
point cloud with density and color, NeRFs sample rays from
the camera poses and capture the 3D coordinates resulting in
rendering of depth maps (Müller et al., 2022b). Although ren-
dering new views of a scene is the primary task of NeRFs, for
computer vision and photogrammetric purposes reliably rep-
resenting the geometry in 3D space is a more valuable factor.
Since the position-dependent density is a differential opacity of
accumulated radiance by a ray passing through, positions with
higher density values indicate a higher probability to be an ob-
ject point (Jäger et al., 2023). To determine the influence of the
density to the point cloud accuracy, we filter the volume density
using a global density threshold δt.

3.3 Accuracy assessment

To estimate the geometric accuracy of NeRFs in 3D space, we
use point cloud accuracy metrics based on the calculation of
the distance between two points which establish displacements
based on proximity in Euclidean space. All point clouds are
given spatial significance and aligned in the same metric space
as the ground truth mesh for evaluation using Iterative Closest
Point (ICP) (Besl and McKay, 1992) which finds an optimal
rigid transformation to align two point sets.

C2M computes the displacements between each point in the
compared point cloud and the nearest facet of the reference
mesh by using the nearest Euclidean distance. For each point of
the compared cloud the nearest triangle in the reference mesh is
searched (Kharroubi et al., 2022). As meshes generally provide
a side information by looking at the normal of the triangle,
Cloud-to-Mesh distances can be signed.

If the scalar field corresponds to the calculated displacements
and the distribution of the measurement noise is known, then
the points for which the local scalar values seem to fit the noise
distribution can be filtered. Measuring how dispersed the data is
in relation to the ground truth mesh is provided through: Mean
Error (Mean E), Standard Deviation (SD), Mean Absolute Er-
ror (MAE) and Root Mean Square Error (RMSE) (Remondino
et al., 2023) accordingly:

Mean E =

∑n

i=1
(xi)

n
(1)

SD =

√∑n

i=1
(xi − x)2

n− 1
(2)

MAE =

∑n

i=1
|xi − x̂|
n

(3)

RMSE =

√∑n

i=1
(xi − x̂)2

n
(4)

where n is the number of points of the compared point cloud, xi

stands for the closest distance between each point in the com-
pared point cloud and the nearest facet of the reference mesh,
while x denotes the mean value of the distances.

4. DATA

NeRFs are trained by using images with estimated camera poses
as input to predict the density and radiance for each posi-
tion. Moreover, evaluating NeRFs reconstructive geometry by
analysing the volume density requires a reference comparable
standard. Consequently, our investigations are based on real
data of an indoor scene of 0.7m tall Buddha statue (further on
named as object) placed on a 0.48m x 0.38m x 0.02m rectangu-
lar plate.

(a) (b)

Figure 2. Data acquisition setup: (a) Recording 3D point cloud
with TLS (Leica HDS6000). Twelve scans from different posi-
tions are recorded for full object coverage. (b) Capturing images
with a professional digital camera (Nikon D810). The camera is
mounted on a tripod to prevent vibrations during acquisition.
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SLI For generating the ground truth data, Structured Light
Imaging is used because it can capture more accurate point
clouds than typical laser scanning methods especially in close
range. Strictly speaking, it captures the geometry of the ob-
ject by illuminating the surface using structured light projec-
tion. The light source projects a coded pattern of parallel light
stripes onto the object, the cameras capture these patterns from
a known position resulting in a specific sequence of gray val-
ues for each pixel of an image, from which the range can be
calculated. For this purpose we utilize the stereoSCAN3D-HE
scanning device 1 with two digital cameras and a projector in
between. The object is placed on a turntable and the rotations
are controlled automatically by a workstation. Any remaining
holes are closed (Püschel, 2011) resulting in a smoothed mesh
with 0.1mm accuracy (Figure 3).

(a) (b)

Figure 3. Ground truth data captured by Structured Light Imaging
(SLI). Visualization with 3D mesh representation, (a) front and
(b) back view. The colored rectangles are enlarged in Figure 5.

TLS Laser scanning systems provide fast and highly accurate
generation of millions of 3D points and can capture the depth
of complex scenes. For the purpose of high resolution compar-
ison we use Leica HDS6000 (Figure 2) with scan rate of up to
500.000 points/sec. and 0.7mm RMS (Voegtle and Wakaluk,
2009). Recognizing that regions of the scanned scene occluded
from one scan position are almost always visible from another,
twelve scans from 1m distance from the object and 0.3m, 1.4m
and 1.6m height respectively have been recorded. All scans are
aligned to complete the whole object. Usually more than one
surface entity is observed in a single measurement because the
physical behaviour of the sensor creates spatial noise in the data
which prevent the objects to be accurately modeled. The noise
and outliers are removed leading to the final point cloud of 21
million points.

Image capturing The image dataset to train NeRFs is cap-
tured using 24 bit depth Nikon D810 with a camera sensor of
36MP and image resolution of 7360x4912 pixels. Due to its
high resolution the camera is mounted on a tripod (Figure 2) to
prevent shivering and vibrations during acquisition. The images
are captured in a hemispheric trajectory around the object from
three different camera heights of 0.7m, 1.1m and 1.5m accord-
ingly, to achieve full coverage of the object. Since eliminating
mislabelled camera data and blurry frames is a prerequisite for

1 https://used.exactmetrology.com/used-equipment/

breuckmann-stereoscan-5-0mp-3d-scanner/ (last access
12/09/2023)

a reliable reconstruction, all inconsistent quality images are re-
moved and NeRFs are trained on the remaining 125 images.

Hence reducing the reconstruction time within a few seconds
without sacrificing the rendering quality, we use the Instant-
NGP NeRF implementation. Moreover, we have integrated a
PLY-writer in order to extract the point clouds. All results are
computed on Intel i9 10850K CPU, 32GB RAM as well as a
Nvidia Geforce RTX 3090 GPU, which are needed for training
NeRFs efficiently.

5. EXPERIMENTS AND RESULTS

The results are categorized into qualitative (Section 5.1), where
the geometric reconstructions as point clouds are visualized and
quantitative (Section 5.2).

(a) (b)

(c) (d)

Figure 4. Comparison of the various point cloud reconstructions.
(a) TLS contains noise on the shoulders and top of the head and
gaps below the knees, (b) NeRFδt=30 shows strong noise, but the
object is completely reconstructed, (c) NeRFδt=150 eliminates the
noise but also the object points and (d) NeRFδt=300 achieves the
sharpest result on account of completeness.

5.1 Qualitative results

TLS The TLS point cloud, although filtered from significantly
different points, still contains noise on the shoulders and the
top of the head. In addition, it has gaps below the knees (Figure
4 and 5). When it comes to accuracy, TLS achieves the best
results which correspond to the displacement values in Table
1. The biggest errors occur due to noise, otherwise the object
shows high correspondence with the ground truth mesh (Figure
6).
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Figure 5. Here we visualize different types of surfaces against
the ground truth (Figure 3). TLS has noise on the top of the head
and shoulders and gaps under the knee. NeRFs show good re-
construction of complex geometry (top of head). Increasing the
density threshold, besides noise, removes also object points lead-
ing to incomplete reconstruction (shoulder and knee).

NeRFs For NeRFs gaps and noise can be observed in the re-
constructions. Increasing the density threshold removes noise
points, on account of object’s completeness (Figure 4). With
δt=30, a large amount of noise points can be identified on the
object, however the geometry is well reconstructed. Increas-
ing the density threshold to δt=150 eliminates the noise but also
the object points. δt=300 achieves the sharpest result, neverthe-
less resulting in a least complete reconstruction (Figure 5). All
NeRF reconstructions have points inside the object and under
the plate (Figure 6) since points are sampled along camera rays
to render the volume density field, unlike TLS and SLI which
only capture the object’s surface. Those points have the biggest
error values and contribute the most to the accuracy analysis.

5.2 Quantitative results

TLS The 21 million TLS point cloud shows the highest geo-
metric accuracy (Table 1). The MAE, which is an indicator
of the variance, is just -0.22mm, while the deviation from the
ground truth is in range of 1.68mm, mostly due to noise and
outliers.

Table 1. Numerical representation of the C2M comparison results
(in mm). TLS achieves the most reliable accuracy results. NeRFs
accuracy improves with increasing the density threshold due to
noise and outlier points removal.

3D points

(million)

Mean E

(mm)

SD

(mm)

MAE

(mm)

RMSE

(mm)

TLS 21.0 -0.22 1.68 1.29 1.69

NeRFδt=30 19.0 -25.26 27.92 28.41 37.66

NeRFδt=150 9.1 -20.58 22.24 22.48 30.31

NeRFδt=300 5.4 -18.25 18.61 19.58 26.06

(a) (b)

(c) (d)

Figure 6. C2M comparison by visualization of the reconstructed
point clouds against the ground truth accordingly: (a) TLS, (b)
NeRFδt=30 , (c) NeRFδt=150 and (d) NeRFδt=300 . The ground
truth mesh is presented as a black thin line and the colors corres-
pond to the error displacements (in mm) in a longitudinal section
of the object.

NeRFs All NeRF point clouds demonstrate lower accuracy
compared to TLS. The number of points obviously decreases
with increasing the density threshold. NeRFδt=30 has 19 mil-
lion points, thus the lowest accuracy because it contains large
amount of noise points, as it diverges from the ground truth
28.41mm. Subsequently, with increasing the density threshold
to NeRFδt=150 the number of points drops significantly to 9.1
million, however the accuracy increases as it deviates 22.24mm
from the ground truth. With MAE lower than 20mm and SD of
18.61mm, NeRFδt=300 achieves the highest accuracy, but it has
just 5.4 million points, insufficient to completely reconstruct the
object.

6. DISCUSSION

Since we evaluate NeRFs geometric accuracy against TLS us-
ing a ground truth mesh by analysing the density in a 3D metric
space, in this section we discuss the generated results.

TLS Despite recording multiple scans from different position
and height to achieve full object coverage, the TLS point cloud
still contains gaps below the knees (Figure 4). Moreover, the
details of the facial features (nose and mouth) are not reliably
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represented and the neck is failed to be reconstructed (Figure
6).

With a view to eliminate noise, a statistical analysis on point’s
neighborhood is performed and those points which do not meet
a certain criteria are removed. For each point the mean dis-
tance to all its neighbors is computed. Considering the mean
and standard deviation, all points whose mean distances are out-
side an interval are considered as outliers and trimmed from the
point cloud. Nevertheless, the point cloud still contains outliers
on the shoulders and on the top of the head (Figure 5) which
have the highest error values. In spite of that, TLS achieves
the highest accuracy results compared to SLI with divergence
of just a few millimeters from the ground truth (Table 1).

NeRFs As demonstrated, increasing the density threshold res-
ults in increasing the accuracy as a consequence of complete-
ness, since beside noise and outliers the object points are also
being removed. It should also be noted that higher density
threshold leads to significantly dropping the number of points,
which explains the gaps and incomplete object reconstruction
(Figure 4). In addition, when using different density thresholds,
color differences within the NeRF reconstructions can be ob-
served. With δt=30 the object is brighter (Figure 5) because it
contains a large amount of noise, which can indicate that the ray
does not terminate within the object leading to inaccurate geo-
metric representation (Haitz et al., 2023). However, the color
differences don’t affect the geometric reconstruction.

Opposite of TLS and SLI which only capture the object’s outer
surface, NeRFs use deep learning to infer a continuous volu-
metric representation of a scene from a set of 2D images by
sampling points through the rays. For that reason, all NeRF
reconstructions contain points inside the object (Figure 6) with
highest divergence from ground truth, thus they have the highest
influence on the accuracy results.

Considering that density represents a position-dependent para-
meter, positions with higher density values indicate a higher
probability to be an object point. Increasing the density
threshold doesn’t result in a proportional removal of the points,
since the points on the head are not being removed almost at all.
It is likely that those points have higher density values, since
NeRFs are optimized to capture complex geometry with high
accuracy and detail. We can also notice that NeRFs mean and
standard deviation values keep the same trend, the values de-
crease with increasing the global density threshold, due to the
flexibility of the volume density which is unable to sufficiently
constrain the 3D geometry (Oechsle et al., 2021).

7. CONCLUSION

In this contribution, we present the geometric accuracy of
NeRFs against TLS regarding a ground truth SLI mesh. We
evaluate the reconstructive geometry of NeRFs by analysing
the volume density in a 3D metric space and explore the influ-
ence of the density to the reconstruction’s accuracy. For that we
use C2M method based on displacements between each point in
the compared point cloud and the nearest facet in the reference
mesh using Euclidean distance.

NeRFs accuracy improves with increasing the density
threshold, on account of completeness since beside noise and
outliers object points are also being removed. Due to that,
NeRFs show lower accuracy results than TLS. Therefore, on

top of their usefulness in applications where novel views and
realism must be satisfied, in future work the focus should be on
increasing NeRFs geometric accuracy for 3D reconstruction, by
localizing the density just on object’s outer surface and filtering
the noise without removing the object points.
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