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ABSTRACT:  
 
Deep learning (DL) algorithms require high quality training samples as well as accurate and thorough annotations to work effectively.  
Up until now a limited number of datasets are available to train DL techniques for semantic segmentation of 3D building point clouds, 
except a few ones focusing on specific categories of constructions (e.g., cultural heritage buildings). This paper presents a new 3D 
Indoor/Outdoor building dataset (BIO dataset), which is aimed to provide a highly accurate, detailed, and comprehensive dataset to be 
used for applications related to sematic classification of buildings based on point clouds and meshes. This benchmark dataset contains 
100 building models generated from existing polygonal models and belonging to different categories. These include commercial 
buildings, residential houses, industrial and institutional buildings. Structural elements of buildings are annotated into 11 semantic 
categories, following standards from IFC and CityGML. To verify the applicability of the BIO dataset for the semantic segmentation 
task, it has been successfully tested by using one machine learning technique and four different DL algorithms. 
 
 

1. INTRODUCTION 

Applications for semantic segmentation of building point clouds 
play a very important role, due to the relevance of these objects, 
especially in urban areas (Czerniawski and Leite, 2020). 3D 
building models can be classified into different Level-of-Details 
(LoD) (Kutzner et al., 2020). In recent years, high LoD 3D 
building point cloud representations, such as LoD3, have enabled 
and promoted various applications. These applications of this 
technology include indoor navigation (Isikdag et al., 2013), 
energy efficiency (O'Donnell et al., 2019), disaster response 
(Nikoohemat et al., 2020), and sustainable urban planning 
(Schrotter et al., 2020).  
 
However, these applications are still at an early stage, with most 
of them focusing on the representation of the whole building 
(LoD0 and LoD1) or a few types of semantic subsurface (LoD2), 
and a few applications applying to the more detailed subsurface 
of the building (LoD3) (Czerniawski and Leite, 2020; Wen et al., 
2019). To enhance such applications, it is essential to acquire 
LoD3 representations that contain fine-grained semantic 
information. 
 
Recent developments in deep learning (DL) techniques for the 
semantic segmentation of 3D point clouds have resulted in 
impressive progress and opened new challenges in the building 
field (Cao and Scaioni, 2022). On the other hand, DL techniques 
need to be trained to work effectively. Despite the fact research 
has recently focused on methods to reduce the amount of training 
data, it is essential to have access to high-quality, rigorously 
annotated datasets (Géron, 2022). 
 
Obtaining real-world 3D scene datasets of buildings typically 
requires a quite time-consuming data acquisition stage. Static or 
mobile ranging and/or imaging sensors should be operated 
through the 3D environment to collect point clouds directly (e.g., 
using laser scanning) or indirectly (e.g., using photogrammetry). 
To be used for training DL networks, the data must be segmented 
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and classified before they can be applied to this purpose. This 
time-consuming process can limit the number of building scenes 
that can be surveyed and classified. For this reason, the coverage, 
diversity, and accuracy of existing 3D datasets of buildings is 
quite limited. In addition, the most of them only alternatively 
cover indoor or outdoor environments. As a result, it becomes 
difficult to develop novel artificial intelligence (AI) applications 
that require a thorough understanding of complex indoor and 
outdoor built environments. For instance, the ArCH dataset 
(Matrone et al., 2019) only focuses on the cultural heritage (CH) 
domain, and the S3DIS dataset (Armeni et al., 2016) contains 
more than 200 rooms but does not include the exterior elements 
of buildings. 
 
Online 3D models are much more prevalent today than they were 
a decade ago. Millions of polygonal 3D models covering a 
variety of objects and scene categories, including commercial, 
residential, industrial, and institutional buildings, are now 
available through services such as the 3D Warehouse (Trimble, 
2023). Models may come from 3D modelling process of existing 
building previously surveyed, or they may be artificially created 
from scratches (e.g., based on procedural modelling). This large 
amount of 3D data about buildings could be exploited to create 
dataset for training DL network. The main goal of this research 
is to develop a complete and accurate dataset of typical buildings 
in modern cities to support emerging building-related AI 
applications, which require a deep understanding of complex 
indoor and outdoor environments. 
  
In this study, we present the indoor-outdoor building dataset 
(BIO dataset), which at the current initial stage contains 100 
building models that have been carefully labelled in point cloud 
and mesh formats. Data have been derived from the online 
repository 3D Warehouse. 
 
Figure 1 reports some examples of building models in mesh and 
point cloud formats. Through the use of automated mesh repair, 
point cloud sampling, thorough manual labelling, and 
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verification, the dataset has an exceptional level of detail, 
accuracy, and consistency. 
 
Along with the creation of the labelled BIO dataset, we 
additionally propose a thorough pipeline that makes use of 
cutting-edge AI methods to assess its usefulness and practical 
applicability for training networks. These entail either Machine 
Learning (ML) method: Random Forest (RF) and DL methods: 
PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), 
DGCNN (Wang et al., 2019), and RandLA-Net (Hu et al., 2020). 
 
We divided the BIO dataset into distinct training, validation, and 
test subsets to ensure a robust evaluation. The DL models were 
then trained on the training split, and extensive testing was 
performed on the dedicated test split. This thorough evaluation 
allowed us to evaluate the pipeline’s efficiency and performance 
in handling the complex indoor-outdoor environments contained 
in the dataset. 
 

 
Figure 1. Examples of some buildings from the indoor-outdoor 
building dataset (BIO dataset): labelled meshes and point clouds 

of four different buildings.  
 
The results confirm the potential of using the dataset to improve 
DL algorithms, opening up opportunities for better performance 
in various real-world applications that demand a thorough 
comprehension of complex indoor-outdoor environments. Thus, 
the proposed pipeline offers a promising route for the 
development of DL in building-related applications. 
 
 

2. LITERATURE REVIEW 

Buildings in urban scenes, indoor scene datasets, and building 
exterior datasets are some different types of 3D building datasets 
that are frequently used for AI applications. The following list 
includes several types of commonly used datasets: 
 

• Indoor datasets: For instance, the Stanford Large-Scale 
3D Indoor Spaces (S3DIS) dataset (Armeni et al., 
2016) contains labelled point cloud data for 271 rooms 
in six indoor spaces. The ScanNet dataset consists of 
1,500 labelled 3D scans of indoor environments and 

textured meshes, as well as pointwise semantic labels 
and 3D object instance labels. 

• Street/City datasets: The Semantic3D (Hackel et al., 
2017) dataset has semantic labels for outdoor urban 
scenes in LoD1 for building objects with insufficient 
geometric and semantic detail. DublinCity is the first 
labelled dataset of high-density aerial laser scanning 
(ALS) point clouds at the city scale (SM Iman 
Zolanvari et al., 2019), but the generated building 
objects are only at LoD0 and LoD1. 

• LoD3 building dataset: The ArCH dataset (Matrone et 
al., 2019) at LoD3 has 10 semantic labels, but it focuses 
on the architectural cultural heritage dataset. 

 
For researchers working on building-related AI applications, 
these datasets collectively provide a useful resource. However, 
these datasets have a few coverage areas. To be more precise, 
many existing 3D building datasets include only a small number 
of buildings or only include interior or exterior scenes, which 
may not accurately represent the entire range of building types 
and environments. As shown in Table 1, the ScanNet is an indoor 
dataset. The Semantic3D is an urban-level dataset that contains 
only coarse buildings. The ArCH dataset is focusing on cultural 
heritage and only 17 labelled scenes. 
 

Dataset Training Testing Number 
ScanNet 1513 312 1825 

Semantic3D 15 15 30 
ArCH 15 2 17 
Ours 85 15 100 

Table 1. The scene numbers in different datasets 
 
Furthermore, we have also analysed the semantic categories 
contained in these datasets. We counted the number of 
occurrences of each category and presented them in a word cloud, 
the results of which are shown in Figure 2. We can see that the 
most frequent category is ‘building’, which means that the 
objects belonging to this category are at the LoD0 or LoD1 level. 
Other categories related to the structural elements of buildings 
are walls, floors, stairs, doors, and windows, which are often 
presented in interior scenes. However, elements such as beams, 
slabs, balconies, etc., which are important in the exterior and 
interior of a building, are rarely present in these datasets. 
 

 
Figure 2. Word cloud of semantic labels from building-related 

datasets. 
 
 

3. METHOD 

In this section, we outline the process used to create the 
annotation pipeline for defining, collecting, processing, labelling, 
and evaluating the dataset (see Figure 3). 
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Figure 3. Pipeline of the dataset creation. 

 
3.1 Dataset Specifications 

We started the process by defining the specifications of the 
dataset. The building types, building numbers, and annotation 
types are defined in this step.  
 
Specifically, four building types are selected in this study:  
 

• Residential building 
• Commercial building 
• Industrial building 
• Institutional building 

 
As seen in Figure 4, these four types of buildings exhibit different 
characteristics, such as different geometric shapes and scales. At 
last, for each type, we will collect 25 building models; a total of 
100 building models will be contained in our dataset. 
 
Although semantic annotation can be applied to all different 
kinds of architectural elements, at this point we specifically focus 
on the enrichment of structural elements. A common semantic 
information model for the representation of 3D urban objects is 
defined by the CityGML Conceptual Model Standard and can be 
used by various applications. Furthermore, IFC (ISO 16739-
1:2018) is a standardised, digital description of the built 
environment, including buildings and civil infrastructure. It is an 
open, global standard that is intended to be vendor-neutral, or 
agnostic, and usable across a wide range of hardware devices, 
software platforms, and interfaces for many different use cases, 
enabling faster and more effective utilisation. The semantic 
annotations in our dataset are identified in accordance with 
CityGML 3.0 (Kutzner et al., 2020) and IFC standards (ISO, 
2018) to emphasise the reusability of information within lifecycle 
thinking. In addition, the classes included in the ArCH dataset 
(Matrone et al., 2020) and the indoor S3DIS dataset (Armeni et 
al., 2016) were taken into account to identify the semantic 
annotations in our study. As a result, 11 classes — wall, roof, 
window, door, balcony, floor, stairs, column, ceiling, beam, and 
slab — have been selected. 
 
In addition, to enable those who require semantic building 
models at a coarser level for use in specific applications, a multi-
level definition is also provided. Figure 5 illustrates how LoD3 
can be hierarchically abstracted into LoD2 and LoD1.  
 
3.2 Models Collection 

We then collected 3D building models from online repositories 
such as 3D Warehouse to create our indoor-outdoor labelled 
building dataset. Specifically, we first searched for models 

according to the building types we defined in Section 3.1, 
restricting the models to geometry models and tagged them as 
architectures. In addition, in this study, we focus on the structural 
elements of buildings. Therefore, we excluded building models 
that contained too many furniture objects when collecting 
models. 
 

 

 

 

 
Figure 4. Four different building types. From top to bottom: 

commercial building, industrial building, institutional building, 
and residential building. 

 

 
Figure 5. The definition of a multi-level building dataset. From 

left to right: LoD3, Lod2, and LoD1. 
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3.3 Pre-processing 

Then, through an automated pipeline, these models were put 
through a series of pre-processing steps: 1) data format 
conversion to convert the SketchUp models into the ply format 
models to be readable in CloudCompare software; and 2) 
employing the pymeshlab library (Muntoni and Cignoni, 2021), 
mesh repair functions are automatic to remove the geometric 
errors (e.g., duplicated vertices) in these models.  
 
3.4 Dataset Annotating 

These models were then manually labelled after the pre-
processing phase, where their accuracy was carefully checked. 
We used a well-known annotation platform (Gao et al., 2022) 
specifically designed for annotating urban datasets to ensure 
accurate and consistent labelling across the dataset. We adapt it 
to our building scenes by inputting models without the over-
segmentation step. Instead, we directly use the original polygon 
mesh as input to the annotation platform to reduce the labelling 
time required. 
 
Then, we created point cloud samples from the labelled meshes 
using a uniform sampling technique to improve the usability of 
the dataset in AI applications. This allowed us to better represent 
the complex geometry of the buildings. We employed a method 
of sampling point clouds in accordance with the size of each 
mesh face in a mesh to produce a uniform point cloud on each 
building, yielding 3,500,000 points per building. The point 
densities between various buildings vary depending on the scale 
of the buildings. The semantic labels and colour information on 
each mesh face were converted into points within the 
corresponding face during the sampling process, in addition to 
maintaining the geometric information. 
 
3.5 Classification 

To use the dataset for deep learning training, we randomly 
divided the dataset into three parts: the training set, the validation 
set, and the test set, which contain 70, 15, and 15 building 
models, respectively (see Figure 6). 
 

 
Figure 6. The number of each type of building model in the 

training, validation, and testing splits of the dataset. 
 
Finally, to establish a benchmark for the dataset and ensure the 
accessibility of our dataset, these DL networks have been 
selected in our study for their potential in handling the dataset 
effectively: 
 

• PointNet (Qi et al., 2017a): PointNet is a ground-
breaking dataset that is designed to process point 

clouds directly. It uses a multi-layer perceptron to learn 
features effectively from points. 

• PointNet++ (Qi et al., 2017b): Building upon PointNet, 
PointNet++ enhances the performance by utilising 
hierarchical structures to capture intricate features in 
point clouds. 

• DGCNN (Wang et al., 2019): By dynamically 
constructing graphs within larger scales and employing 
graph convolutional networks, DGCNN enables the 
establishment of relationships between neighbouring 
points in point clouds. 

• RandLANet (Hu et al., 2020): RandLANet leverages a 
random sampling strategy to efficiently downsample 
large-scale point clouds to ensure the whole point cloud 
can be processed in the network. 

 
We used the training data (see Figure 6) and these four different 
DL models to train the classifiers. To be more precise, we first 
divided each building into 1𝑚×1𝑚 blocks and then randomly 
sampled 4,096 points from each block. We then trained three 
networks, PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 
2017b), and DGCNN (Wang et al., 2019), on the generated 
blocks. For RandLA-Net (Hu et al., 2020), each training scene 
was downsampled into 40,960 points before the whole building 
scene was fed into the network. The pretrained models were then 
tested on the test data using the pre-trained classifiers. 
 
As a comparison and to check the availability of our dataset, we 
also employ a machine learning method, Random Forest, as our 
classification methods. Following earlier research (Weinmann et 
al., 2017), we first chose a set of features that are relevant to the 
classification problem. These features (see Figure 7) place a 
strong emphasis on the point cloud’s structure within the 
predetermined radius of the points.  
 

 

 
Figure 7. Examples of geometric features. Top: 

surface_variation_0.2m, bottom: verticality_0.2m. 
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Method OA mIoU wall roof window door balcony floor stairs column ceiling beam slab 

PointNet 0.656 0.188 0.430 0.735 0.000 0.000 0.002 0.712 0.000 0.000 0.188 0.000 0.000 

PointNet++ 0.662 0.198 0.586 0.275 0.000 0.000 0.000 0.974 0.040 0.000 0.003 0.000 0.300 

DGCNN 0.835 0.294 0.578 0.787 0.025 0.000 0.003 0.915 0.012 0.000 0.407 0.000 0.509 

RandLA 0.518 0.336 0.584 0.229 0.167 0.216 0.505 0.622 0.053 0.355 0.097 0.572 0.584 

Table 2. The semantic segmentation results of deep learning methods. 

 
We then rank the significance of each feature in predicting the 
target variable using the random forest feature importance 
method. Finally, 16 features are used in our experiment, 
including x, y, z, r, g, b, normalised colour, verticality_0.1m, 
verticality_0.2m, anisotropy_0.2m, surface_variation_0.2m, 
omnivariance_0.2m, verticality_0.4m, linearity_0.4m, and 
planarity_0.4m. The search radii used when calculating 
geometric covariance features are indicated by the numbers that 
come after the name of the geometric features. We used randomly 
selected 1% and 10% portions of each building as training data 
and tested the outcomes with the remaining portions. 
 
We used the two commonly used metrics, Intersection-over-
Union (IoU) score, the mean IoU (mIoU) and the Overall 
Accuracy (OA), as performance metrics of deep learning 
methods to evaluate the quality of the semantic segmentation 
results. Besides, the Weighted_F1 and OA are used as metrics in 
the machine learning methods. 
 
 

4. RESULTS 

4.1 Dataset 

As can be seen in Figure 8, the point clouds are densely and 
uniformly sampled on the labelled meshes. We used a method of 
sampling point clouds according to the size of each mesh face in 
a mesh to produce a uniform point cloud on each building, 
resulting in 3,500,000 points per building. 
 
Figure 9 highlights the size and complexity of our dataset by 
showing the number of points for each class, giving an 
understanding of the dataset’s size and the difficulties it poses. 
 
4.2 Classification Result 

Table 2 summarises the performance of different DL models on 
our test dataset. In particular, using 70 buildings as training data, 
our semantic segmentation achieves an OA of 0.835. This 
indicates a high level of accuracy in the semantic segmentation 
of building elements. It is important to note that the choice of DL 
model has a significant impact on certain aspects of semantic 
segmentation performance. For example, DGCNN emerges as 
the top performer in terms of OA, demonstrating its effectiveness 
in achieving high overall accuracy. While PointNet and 
PointNet++ can make accurate predictions to some extent, they 
struggle with capturing fine-grained details, leading to a 
relatively lower mean IoU. Conversely, RandLA-Net achieves 
the highest performance in terms of mIoU, indicating its superior 
ability to handle class-imbalanced scenarios. Figure 10 shows the 
prediction result using the DGCNN network as the classifier. 
 
Overall, our results demonstrate the feasibility of using our 
dataset in DL models, as evidenced by the impressive OA of 
0.835. This indicates that DL techniques are highly effective in 
segmenting building elements. 

 

 

 

 

Figure 8. Example of a point cloud (bottom) sampled on a 
textured mesh model (top). Different colours represent different 

categories in the dataset. 
 

 
Figure 9. Number of points in each category in the dataset.  
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Nevertheless, our analysis of DL methods highlights several 
challenges specific to the domain of the built environment. In 
particular, we observe a class imbalance problem in building 
models, as shown in the accompanying figure. The distinction 
between window/door objects from wall objects is still a 
particular challenge. In addition, the accurate semantic 
segmentation of ceiling regions poses difficulties due to their 
geometric similarities with ceilings and floors. 
 
Table 3 summarises the performance of the RF model with 
different settings on our test dataset. In particular, using 1% 
randomly selected blocks in each building as training data, our 
semantic segmentation achieves an OA of 0.878. While using 
10% as training data for each building, the average OA reaches 
0.969 on the rest of the blocks of each building. Figure 11 shows 
the prediction errors using RF as the classifier. 
 

 Weighted_F1 OA 
1% 0.860 0.878 
10% 0.966 0.969 

Table 3. The semantic segmentation results of Random Forest 
(RF) method. 

 
As we can see, the RF method demonstrates notable strong 
performance compared to the DL-based methods, especially with 
a larger portion of each building (10%). DGCNN, being the best-
performing DL method, shows a competitive OA compared to 
the RF classifier with 10% of the data. However, the RF needs 
training data from each building, so the test data is coming from 
the same buildings, which leads to its stronger performance. The 
choice of method may ultimately depend on the specific task at 
hand. Further fine-tuning may be needed to optimise each 
method. 
 

 

 
Figure 10. Prediction result of a residential building using 

DGCNN, top: ground truth, bottom: prediction result. 
 

 

 
Figure 11. Example of prediction errors with two different 

settings using Random Forest (RF) classifier (1% - top / 10% 
bottom)  

 
 

5. CONCLUSION 

In conclusion, our newly created indoor-outdoor labelled 
building dataset and pipeline can support brand-new indoor-
outdoor AI applications that require accurate and deep 
understanding of complex environments. We can also support a 
broad class of recently resurrected deep neural networks (DNNs) 
and machine learning methods for applications dealing with 
geometric data by providing a large-scale, richly annotated 
dataset. Our semantic segmentation results validate the utility of 
our dataset for training and evaluating DL models for built 
environment analysis. However, challenges remain, particularly 
in dealing with class imbalances and accurately delineating 
objects with similar geometric features. These challenges present 
exciting opportunities for future DL models to improve and 
address, thereby advancing the state of the art in semantic 
segmentation for the built environment. Additionally, we 
introduced the Random Forest method and observed its robust 
performance, showcasing the effectiveness of traditional 
machine learning approaches.  
 
More powerful deep learning (DL) algorithms will be tested on 
the dataset in the future. In addition, the possibility of using this 
dataset to improve the performance of real-world datasets will be 
investigated. In order to define and develop the dataset as an 
important one with lasting impact, we would like to involve the 
wider research community. 
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