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ABSTRACT:

Generating geometric 3D reconstructions from Neural Radiance Fields (NeRFs) is of great interest. However, accurate and complete

reconstructions based on the density values are challenging. The network output depends on input data, NeRF network configuration

and hyperparameter. As a result, the direct usage of density values, e.g. via filtering with global density thresholds, usually requires

empirical investigations. Under the assumption that the density increases from non-object to object area, the utilization of density

gradients from relative values is evident. As the density represents a position-dependent parameter it can be handled anisotropically,

therefore processing of the voxelized 3D density field is justified. In this regard, we address geometric 3D reconstructions based

on density gradients, whereas the gradients result from 3D edge detection filters of the first and second derivatives, namely Sobel,

Canny and Laplacian of Gaussian. The gradients rely on relative neighboring density values in all directions, thus are independent

from absolute magnitudes. Consequently, gradient filters are able to extract edges along a wide density range, almost independent

from assumptions and empirical investigations. Our approach demonstrates the capability to achieve geometric 3D reconstructions

with high geometric accuracy on object surfaces and remarkable object completeness. Notably, Canny filter effectively eliminates

gaps, delivers a uniform point density, and strikes a favorable balance between correctness and completeness across the scenes.

1. INTRODUCTION

Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) pion-

eered computer graphics and computer vision by enabling the

rendering of novel views through view synthesis from neural

networks. These networks estimate density and color values for

each position in 3D space based on input image data and cam-

era poses. Generating accurate and complete 3D reconstruc-

tions from Neural Radiance Fields (NeRFs) is of interest in the

field of photogrammetry. Through the utilization of estimated

density values, NeRF based 3D reconstructions are possible.

More precisely, by considering the density as a kind of pseudo-

probability for the occurrence of an object in 3D space (Jäger et

al., 2023).

Nevertheless, the filtering with global density thresholds is em-

pirical and requires sufficient analysis of its geometric correct-

ness. Accordingly, the 3D reconstruction depends on the chosen

density threshold and often yields noisy and incomplete sur-

faces (Li et al., 2023; Wang et al., 2021). The assumption that

the density increases from non-object to object area, motivates

the processing of the 3D scene in terms of its density gradi-

ents. As the density represents a position-dependent parameter,

it can be addressed anisotropically, justifying a ray-independent

sampling. For this reason, we propose to perform geometric 3D

reconstruction with respect to density gradients, while the key

aspect is the utilization of 3D gradient filter for 3D edge detec-

tion. This allows the extraction of edges along a wide density

range based on gradients of relative neighboring values.

We introduce a straightforward workflow for enabling geomet-

ric 3D reconstruction from NeRFs with the 3D density gradients

based on the first and second derivative, while using gradient

filter for edge detection in the voxelized 3D density field. In
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order to evaluate the geometric accuracy and robustness of our

framework, we address the DTU benchmark dataset (Jensen et

al., 2014) with different types of real objects, which feature dif-

ferent sizes, structures, materials, textures and colors.
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Figure 1. Density Gradient e.g. for 1D on a ray. The illustra-

tions display the characteristics of the density values exemplarily

as they would occur during ray tracing into the direction of an

object. From top to bottom: An ideal edge in a binary non-object

to object space, the raw density values, the first derivative of the

density values (edge at the maximum), the second derivative of

the density values (edge at the zero crossing).
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2. RELATED WORK

In this section, we briefly summarize related work to our re-

search. Firstly, we give an overview on basic, recent research

and developments on NeRFs. Following this, we address recent

research on neural surface reconstructions.

Neural Radiance Fields The foundation for Neural Radiance

Fields (NeRFs) was established by Scene Representation Net-

works (SRNs) (Sitzmann et al., 2019). Their underlying prin-

ciple is modeling the scene as a function of 3D coordinates

within it. It was followed by the groundbreaking research work

of Neural Radiance Fields (Mildenhall et al., 2020). The net-

work enables the estimation of color and density values for each

3D position through 6D camera poses and associated 2D im-

ages by training a neural network with multi-layer perceptrons

(MLPs).

The vanilla NeRF was followed by thousands of publications

driving research and development in various domains. Scalab-

ility enhancements are demonstrated by Mega-NeRF (Turki et

al., 2022) and Block-NeRF (Tancik et al., 2022), which employ

data partitioning and the training of several NeRFs. Bundle Ad-

justing Radiance Fields (BaRF) (Lin et al., 2021) and Gaussian

Activated Radiance Fields (GaRF) (Chng et al., 2022) address

the task of a camera pose estimation. Dynamic contributions

use time as an additional input dimension for time-dependent

rendering (Pumarola et al., 2021) or for preventing the occur-

rence of artifacts due to dynamic pixels (Gao et al., 2021). Sev-

eral Methods such as AdaNeRF (Kurz et al., 2022), FastNeRF

(Garbin et al., 2021) and Instant NGP (Müller et al., 2022) fo-

cus on faster training or rendering. While Instant NGP uses a

combination of small MLPs and spatial hash table encoding.

Neuralangelo (Li et al., 2023) adapts Instant NGP and com-

bines hash grids with neural surface rendering for high-fidelity

surface reconstruction. Besides the neural methods, non-neural

research like Plenoxels (Fridovich-Keil et al., 2022) have been

introduced.

Neural Surface Reconstructions Regarding neural surface

reconstructions Unisurf (Oechsle et al., 2021) learns implicit

surfaces, by addressing the occupancy along rays. Several works

such as NeuS (Wang et al., 2021) and VolSDF (Yariv et al.,

2021) represent the scene by neural Signed Distance Functions

(SDFs) (Park et al., 2019). Neuralwarp (Darmon et al., 2022)

builds on VolSDF, whereas using Structure from Motion in-

formation to guide surface optimizations.

3. METHODOLOGY

Firstly, in Section 3.1 describes the principal motivation for

density gradients underlying our framework. Secondly, in Sec-

tion 3.2 and Section 3.3 the first and second derivative calcu-

lation for density gradients is explained. Finally, Section 3.4

outlines the evaluation process, which focuses on completeness

and correctness.

3.1 Density Gradient

Reconstructions based on filtering the NeRFs density output by

global density thresholds requires adaptive adjustments, since

the density values behavior differ for various NeRFs, datasets,

hyperparameters and network configurations. Accordingly, the

3D reconstruction depends on the chosen threshold and does not

provide optimal, noisy or incomplete reconstructions (Wang et

al., 2021; Oechsle et al., 2021; Li et al., 2023).

Several previous works consider ray-based 3D reconstruction

with NeRFs or SDFs (Oechsle et al., 2021; Wang et al., 2021;

Darmon et al., 2022). Nevertheless, the density values in prin-

ciple are anisotropic and position-dependent. For this reason,

we propose to process the geometric 3D reconstruction in the

dense voxelized 3D density field. With the aim of perform-

ing position-dependent 3D reconstructions, regardless of global

density thresholds, we introduce 3D gradient filters. To identify

edges characterized by variations in magnitudes, hence density

values, we extend from two to the three-dimensional edge fil-

ter among the 3D density field. In doing so, the density gradi-

ents instead of the raw density values from NeRFs are regarded,

since the density value increases towards the object. The ex-

traction of the edges can rely on the first as well as the second

derivative of the density, see Figure 1. Thereby, we guarantee

anisotropy as well as the consideration of neighborhoods in the

reconstruction process.

3.2 First Derivative

Edges in images as well as in 3D voxel space can be detected

based on the first derivatives, i.e. the corresponding density

gradients in this case.

Sobel filter We address the well-established Sobel filter (So-

bel and Feldman, 1973) for edge detection, which performs a

smoothing orthogonal to the first derivative. As the processing

is done in the 3D density field, the 3D Sobel filter is built up

of the following components for each direction x, y and z, e.g.,

for the x-direction for the central element (Sobel and Feldman,

1973):
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and delivers the density gradients Gδ,x, Gδ,y and Gδ,z in dir-

ection x, y and z in the density field. The total Sobel gradient

∆δ,Sobel for each sample in the density field is further given by

∆δ,Sobel =

√

G2

δ,x + G2

δ,y + G2

δ,z. (2)

Canny filter Furthermore, we address Canny filter (Canny,

1986) for 3D edge detection, while it offers an improved edge

detection in contrast to the Sobel filter. The gradient calcula-

tion based on the density value, such as described for Sobel

filter, is first preceded by a Gaussian smoothing in the 3D dens-

ity field to suppress noise. This is followed by gradient mag-

nitude thresholding with a lower and upper relative threshold

on the density gradients for edge detection. Finally, a hysteresis

method is used to track strong edges and suppress weak ones

at the same time. The final density gradient values based on

Canny filter are referred as ∆δ,Canny in the following. From this

method, we expect to extract a wide variation of edges in the

density field and, in particularly, detect the object edges through

the final step of hysteresis.

3.3 Second Derivative

Edge detection in images and 3D voxel space can not only be

performed based on the first derivative, as it is the case with the
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Sobel filter and the extension of the Canny filter. The second

derivative provides a basic approach to edge detection based on

differences of neighboring values, while edges result from the

zero crossings. Since the second derivative is usually sensitive

to noises, a previous smoothing of the values is essential.

Laplacian of Gaussian From this point Laplacian of Gaus-

sian filter (Marr and Hildreth, 1980) (LOG), also referred as

Marr-Hildreth operator, is suitable. It combines the second de-

rivative with a Gaussian filter in order to smooth the values.

For fast implementation the Difference of Gaussians (DoG) can

be applied, which approximates the LOG. Similar to the filter

of the first derivative, we apply the filter on the voxelized 3D

density field and refer it as ∆2

δ,LOG in the following.

3.4 Evaluation

Completeness In general, we report qualitative completeness

on the basis of the resulting 3D reconstructions. Furthermore,

the completeness is measured quantitatively. The reconstruc-

tions from voxelized 3D density field include predicted points

inside the object and the reference point cloud contains large

gaps. We report the number of points and percentages covered

by the NeRF reconstructions within a distance threshold of a

maximum distance from reference. A higher score indicates

higher object completeness.

Correctness To evaluate the geometric accuracy of the 3D re-

constructions quantitative as well as qualitative, Chamfer cloud-

to-cloud distance is applied from the DTU dataset evaluation

script (Jensen et al., 2014). We report both the distance from

data to reference (data-to-reference) and vice versa (reference-

to-data). While the reference point cloud has gaps, the data to

reference distance as well as the reference to data distance are

interpreted as accuracy or correctness.

4. EXPERIMENTS

In this section, we conduct experiments on a challenging bench-

mark dataset with different types of real objects, which feature

different sizes, structures, materials, textures and colors.

4.1 Dataset

For the evaluation of our framework, we use the DTU bench-

mark dataset (Jensen et al., 2014). The dataset consists of scenes

featuring real objects, including images, corresponding camera

poses, and reference point clouds obtained from a structured-

light scanner (SLS). We specifically focus on six scenes within

the dataset, the same as (Wang et al., 2021; Oechsle et al., 2021;

Darmon et al., 2022; Li et al., 2023), each containing either 49

or 64 RGB images.

4.2 Implementation

For all investigations, Instant NGP (Müller et al., 2022) was

taken into account as NeRF, since it enables real time training

and rendering. Regarding the network architecture, the basic

NeRF architecture with ReLu activations and hash encoding is

selected, while the training incorporates 50 000 training steps

on an NVIDIA RTX3090 GPU.

4.3 Experiments

We evaluate our framework with first derivative Sobel filter and

Canny filter as well as second derivative Laplacian of Gaussian

filter against different global density thresholds. Thereby qual-

itative as well as quantitative results based on completeness and

correctness as described in the evaluation Section 3.4 are con-

sidered. The global density thresholds δt are set to 25, 50, and

100 (Wang et al., 2021). The Sobel filter is used as described

in Section 3.2 and the Canny filter is applied with a standard

derivation of 0.1 and relative thresholds of 0.0005 and 4 times

0.0005. For the Laplacian of Gaussian, a filter mask of 7×7×7

and standard derivation of 7 is utilized.

5. RESULTS

In the following sections, we show qualitative (Section 5.1) and

quantitative (Section 5.2) results of the geometric reconstruc-

tions on the used benchmark dataset by addressing complete-

ness and correctness.

5.1 Qualitative results

As the following Figures 2 and 4 show, the density gradient-

based approach with 3D edge detection filters yields promising

results. Thus, the optimal global density threshold varies from

scene to scene and requires adaptive adjustment. By addressing

the density gradient, consistently accurate and complete results

are generated across all scenes.

Completeness The visual comparison of the colored geomet-

ric reconstructions in Figure 2 highlights the reconstruction qual-

ity and object completeness based on density gradients. The

reconstructions exemplified for a global density threshold δt=50

exhibit different levels of gaps in the point clouds. In almost all

scenes, gaps appear in the reconstructions along with areas of

extremely high point density. Also the reconstructions result-

ing from the first derivative, the Sobel filter ∆δ,Sobel, performs

slightly different depending on the scene. For certain scenes

like scan40 and scan55 the detected edges seem to be located

too far above the reference surface. For the other scenes, how-

ever, substantial gaps exist. The Canny filter ∆δ,Canny provides

the strongest visual results. Besides the colorful and smooth ob-

jects like scene scan63, also complex collections like in scene

scan37 can be reconstructed almost completely. In general, the

Canny filter effectively eliminates gaps and delivers a uniform

point density. In addition, the subsurface of the scenes con-

taining a colored ground are well captured. The second de-

rivation with the Laplacian of Gaussian ∆
2

δ,LOG also reaches a

complete reconstruction at first sight. However, especially at

scene scan55 and partly scene scan40 the point cloud tends to

be rather fuzzy and noisy.

Correctness Besides the visually strong results, the density

gradient applications also provide geometrically promising res-

ults (Figure 4). Both the global density threshold as well as

the gradient filters enable results with accuracies up to 2.5 mm

for most parts of the object surfaces. Nevertheless, especially

in reconstructions from global density thresholds and Sobel fil-

ter ∆δ,Sobel, some artifacts up to 10 mm appear. In contrast,

the Canny filter ∆δ,Canny provides mainly consistent high ac-

curacies to about 1.5 mm. The geometric accuracy of the Lapla-

cian of Gaussian ∆
2

δ,LOG depends highly on the scene and ap-

pears quite noisy. Note that edged areas with a large deviation
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Figure 2. Qualitative comparison on the real DTU benchmark dataset. Comparison between the reference point clouds and the geomet-

ric reconstructions from 3D density field using a global density threshold δt=50, density gradients from Sobel filter ∆δ,Sobel, Canny filter

∆δ,Canny and Laplacian of Gaussian ∆
2

δ,LOG.
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Table 1. Completeness. Geometric completeness with the number of points ↑ in million of the reference with the geometric recon-

structions from voxelized 3D density field with global density thresholds δt, Sobel filter ∆δ,Sobel, Canny filter ∆δ,Canny and Laplacian

of Gaussian ∆
2

δ,LOG within distance thresholds of a maximum distance of about 0.5 mm, 1.0 mm and 1.5 mm from reference. The

percentage ↑ is shown in brackets. Best results bold in green, second best results bold in blue.

scan24 scan37 scan40 scan55 scan63 scan114 mean in %

1.5 mm
δt=25 3.08 (96.99%) 2.27 (97.58%) 2.95 (98.36%) 2.96 (90.80%) 1.10 (97.51%) 3.02 (97.66%) 96.48
δt=50 2.98 (93.79%) 2.10 (90.48%) 2.86 (95.31%) 2.35 (72.22%) 0.87 (77.42%) 2.79 (90.27%) 86.58
δt=100 2.79 (87.90%) 1.66 (71.54%) 2.66 (88.51%) 1.94 (59.53%) 0.47 (41.71%) 2.39 (77.17%) 71.07
∆δ,Sobel 3.03 (95.24%) 2.03 (87.30%) 2.88 (96.01%) 2.09 (63.98%) 1.02 (90.83%) 2.40 (77.48%) 85.14
∆δ,Canny 3.00 (94.43%) 2.26 (97.28%) 2.97 (98.93%) 2.90 (88.91%) 1.12 (99.49%) 3.02 (97.54%) 96.10

∆
2

δ,LOG 2.73 (85.76%) 2.21 (95.08%) 2.79 (93.11%) 2.52 (77.15%) 1.11 (98.30%) 2.95 (95.33%) 90.79

1.0 mm
δt=25 2.98 (93.60%) 2.21 (94.89%) 2.87 (95.80%) 2.82 (86.43%) 1.06 (93.80%) 2.95 (95.55%) 93.35
δt=50 2.82 (88.73%) 1.92 (82.80%) 2.71 (90.50%) 2.17 (66.65%) 0.75 (66.83%) 2.64 (85.25%) 80.13
δt=100 2.52 (79.38%) 1.41 (60.58%) 2.43 (80.96%) 1.86 (57.08%) 0.36 (32.32%) 2.11 (68.22%) 63.09
∆δ,Sobel 2.94 (92.43%) 1.86 (80.17%) 2.82 (93.92%) 2.02 (61.87%) 0.96 (84.94%) 2.23 (72.00%) 80.88
∆δ,Canny 2.46 (77.22%) 2.08 (89.46%) 2.73 (91.05%) 2.27 (69.57%) 1.10 (98.06%) 2.87 (92.73%) 86.35

∆
2

δ,LOG 2.13 (66.94%) 1.93 (83.15%) 2.17 (72.36%) 1.98 (60.66%) 1.03 (91.48%) 2.57 (83.18%) 76.30

0.5 mm
δt=25 2.63 (82.86%) 1.81 (77.70%) 2.28 (75.86%) 2.20 (67.46%) 0.92 (81.48%) 2.73 (88.21%) 78.93
δt=50 2.31 (72.66%) 1.39 (59.63%) 2.00 (66.74%) 1.60 (49.03%) 0.55 (48.97%) 2.22 (71.66%) 61.45
δt=100 1.70 (53.37%) 0.88 (37.83%) 1.59 (53.03%) 1.21 (37.15%) 0.22 (19.48%) 1.49 (48.03%) 41.48
∆δ,Sobel 2.69 (84.67%) 1.40 (60.12%) 2.43 (80.86%) 1.77 (54.22%) 0.81 (72.39%) 1.89 (61.00%) 68.88
∆δ,Canny 1.14 (35.85%) 1.00 (42.86%) 1.25 (41.69%) 0.80 (24.67%) 0.87 (77.51%) 1.96 (63.55%) 47.69
∆

2

δ,LOG 1.20 (37.66%) 1.13 (48.73%) 0.81 (26.85%) 1.16 (35.59%) 0.75 (66.99%) 1.58 (51.19%) 44.50

are mainly due to the missing parts of the points in the SLS ref-

erence, which are depicted in the images and therefore in the

reconstruction from 3D density field.

5.2 Quantitative results

Completeness The reported completeness reached by the dif-

ferent NeRF reconstructions is shown in Table 1 and specified

by absolute number of points as well as percentage. Altogether,

the completeness values for the distance thresholds up to 1 and

1.5 mm exceed 60% for all methods. As expected, an increase

of the density threshold δt causes a decrease of the complete-

ness, due to the fact that a higher number of points are re-

moved. Accordingly, using a density threshold of 25 results

in the highest completeness for this dataset, with a mean across

scenes of approximately 96% for points below 1.5 mm and 93%

up to 1 mm accuracy. The results from density gradients through

the Canny filter also stands out strongly. On average, 96% com-

pleteness is achieved for 1.5 mm and 86% for 1 mm. Taking

a more detailed look, the methods perform variably for each

scene. Canny performs particularly well on complex, specu-

lar and smooth objects as in scene scan37, scan63 or scan114.

However, at fine detail levels and rough objects like in scene

scan24 and scan55, the completeness quickly weakens for highly

accurate reconstructions up to 0.5 mm. Nonetheless, the com-

pleteness decreases significantly using global density thresholds

starting from δt=50 and can not compete with the Canny filter.

Correctness Since NeRFs estimate values in the entire 3D

space and consequently inside the objects, there may be arti-

factual points within the objects, which affect the quantitative

accuracy results in terms of correctness. Respectively, the res-

ults (Table 2) are mostly in the same, rather coarse, range of ac-

curacies up to 6 mm, from the NeRF reconstructions to the ref-

erence (data-to-reference). While using a global threshold per-

forms differently depending on the scene, using density gradi-

ents remains consistently stable across all scenes. Neverthe-

less, the points within the object undermine the interpretab-

ility of the results. To emphasize the accuracy potential of

density gradients, considering the reconstruction surface points,

Figure 3 shows the surface points below 0.5, 1.0 and 1.5 mm

for a result based on the Canny filter. It illustrates that the

Canny filter approach generates a densely sampled scene whose

surface points exhibit high geometric accuracies. When view-

ing the accuracy from the reference to the 3D reconstructions

(reference-to-data), the density gradients stand out positively

with an achieved correctness compared to the global density

thresholds as well.

(a) (b)

(c) (d)

Figure 3. Extraction of surface points (colored) of a reconstruc-

tion using Canny filter below a accuracy of (a) 10.0 mm, (b)

1.5 mm, (c) 1.0 mm, and (d) 0.5 mm. Points beyond are grey.

The surface points show a high spatial density combined with a

high geometric accuracy.
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Figure 4. Qualitative comparison on the real DTU benchmark dataset with Chamfer cloud-to-cloud distances. Comparison between the

reference point clouds and the geometric reconstructions from 3D density field using a global density threshold δt=50, density gradients

from Sobel filter ∆δ,Sobel, Canny filter ∆δ,Canny and Laplacian of Gaussian ∆
2

δ,LOG.
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Table 2. Correctness. Geometric accuracy with Chamfer cloud-to-cloud distance ↓ in mm of the geometric reconstructions from

voxelized 3D density field with global density thresholds δt, Sobel filter ∆δ,Sobel, Canny filter ∆δ,Canny and Laplacian of Gaussian

∆
2

δ,LOG. From data-to-reference as well as reference-to-data. For comparable results, we use the same random permuted 2 500 000

points, since the resulting reconstructions include different numbers of points and consequently spatial point density. Best results bold

in green, second best results bold in blue.

scan24 scan37 scan40 scan55 scan63 scan114 mean

data-to-reference (mm)
δt=25 3.26 5.31 3.53 3.02 5.93 3.21 4.04
δt=50 2.86 5.63 3.44 3.34 6.08 2.84 4.03
δt=100 3.08 6.05 3.35 3.48 6.25 3.28 4.25
∆δ,Sobel 2.79 5.65 3.31 3.12 6.20 2.72 3.97
∆δ,Canny 3.03 5.26 3.62 2.76 5.87 2.85 3.89

∆
2

δ,LOG 3.40 3.98 3.44 2.06 5.65 2.57 3.52

reference-to-data (mm)
δt=25 0.82 0.64 0.76 0.64 0.82 1.95 0.94
δt=50 0.79 0.82 0.81 0.60 1.50 0.63 0.86
δt=100 1.05 1.38 0.99 0.63 3.97 2.43 1.74
∆δ,Sobel 0.76 0.96 0.77 0.57 1.02 0.77 0.81
∆δ,Canny 0.91 0.67 0.79 1.02 0.70 0.70 0.80

∆
2

δ,LOG 1.09 0.68 0.95 1.27 0.74 0.88 0.93

6. DISCUSSION

In this paper, we investigate the density gradients for achiev-

ing high geometric completeness and correctness in 3D recon-

structions based on density gradients from NeRFs density out-

put. The application of gradient filters on the density field for

3D edge detection shows remarkable results, compared to the

usage of global density thresholds. The latter often leads to

gaps or artifacts in the reconstructions, depending on the chosen

threshold. However, by extracting surfaces based on density

gradients, we can overcome this issue.

The qualitative results of the density gradients, especially by the

Canny filter, consistently stand out as positive over all scenes in

terms of completeness, this aligns with both quantitative and

qualitative results. While global density thresholds yield good

results, scene-dependent accuracy variations exist. For some

scenes the Sobel filter as well as Laplacian of Gaussian also

serve as suitable results and are alternatives to global density

thresholds. Nevertheless, the improvements with the Canny fil-

ter for object edge detection outperform the other techniques,

ensuring nearly gapless reconstructions for objects and subsur-

face in all scenes. The trade-off between correctness and com-

pleteness with global density thresholds is evident: Lower dens-

ity thresholds lead to higher completeness but not necessarily

superior correctness. The density gradients, especially based

on the Canny filter, strike a favorable balance between correct-

ness and completeness across the scenes.

Although our framework achieves high accuracy on the object

surfaces, it should be noted that points exist within the ob-

jects due to the addressing of the whole voxelized density field.

These artifactual points distort the quantitative correctness and

do not contribute to the visual appearance and surface accuracy.

Limitations are given by processing within the entire density

grid thus causing artifacts within the object. This issue may be

addressed by extracting only the surface, e.g., using convex hull

algorithms. In addition, we aim to apply neural methods for 3D

edge detection.

The range and values of the density among different NeRFs,

hyperparameters, network configurations, and scenes is vari-

able. Dealing with absolute density values presents a challenge.

The density gradients are almost independent of absolute dens-

ity magnitudes and relying on relative neighboring values in

all directions by applying 3D edge detection filter. A notable

advantage of our approach is its applicability to different ap-

plications. Density gradients allow us to extract surfaces along

lower density values using 3D edge detection filters such as So-

bel, Canny and Laplacian of Gaussian.

7. CONCLUSION

In summary, we have demonstrated that density gradients based

geometric reconstructions lead to high completeness and ad-

equate accuracy. In considering specific relative density vari-

ations or gradients based on first and second derivatives, our

approach shows potential for application to various NeRFs, that

allow the extraction of a regular voxelized density field. This

makes our approach rather independent from absolute NeRFs

density output. Furthermore, by filtering with global density

thresholds, the points are emphasized individually and inde-

pendently. In contrast, the utilization of 3D gradient filters

leverages the inclusion of gradient-based neighborhood inform-

ation in an anisotropic manner. Therefore, our approach provides

a promising anisotropic solution for complete 3D reconstruc-

tion from NeRF with high geometric accuracy. Consequently,

our method introduces a promising, from absolute density mag-

nitude independent solution, which opens new possibilities of

reconstructions using NeRFs.
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