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ABSTRACT: 

 

Simultaneous localization and mapping (SLAM) is essential for the robot to operate in an unknown, vast environment. LiDAR-based 

SLAM can be utilizable in environments where other sensors cannot deliver reliable measurements. Providing accurate map results 

requires particular attention due to deviations originating from the device. This study is aimed to assess LiDAR-based mapping 

quality in a vast environment. The measurements are conducted on a mobile platform. Accuracy of the map collected with the 

LeGO-LOAM method was performed by making a comparison to a map gathered with geodetic scanning using ICP. The results 

provided 60% of fitted points in a distance lower than 5 cm and 80% in a distance lower than 10 cm. The findings prove the mileage 

of the map created with this method for other tasks, including autonomous driving and semantic segmentation. 

 

 

1. INTRODUCTION 

Mobile robots can navigate in hazardous environments where 

some types of tasks require high precision of movement 

(Buratowski et al. 2022). Simultaneous localization and 

mapping (SLAM) is one of the crucial tasks for robots 

deployment  in these surroundings (Zuo et al. 2019). The 

approach provides not only information on the position and 

orientation of the robot during motion but also allows for map 

collection that can be useful for higher-level tasks involving 

semantic segmentation (Chen et al. 2019). 

 

The performance of SLAM methods depends on the sensors 

equipped on the robot. The quality of measurement devices and 

the number of sensors can impact the localization error 

estimation and the accuracy of acquired map. Although 

numerous sensors can be fused to improve SLAM performance 

and reduce the influence of uncertainties and incorrect readings, 

not all sensors can be deployed in any environment. While 

instruments such as GPS can only be used outdoors (Deng et al. 

2018),  RGB cameras are limited by lighting conditions. In 

some applications SLAM can be performed using only one type 

of sensor (Wang et al. 2018). Such applications have to be 

based on a sensor providing visual output to obtain a map. A 

common approach to this problem is LiDAR-based SLAM. 

Depending on a single-sensor system might require evaluation 

of mapping accuracy for deploying methods in an industrial 

environment. 

 

Collecting a map in the form of a point cloud can provide 

crucial information about the localization, which in LiDAR-

based SLAM system is estimated on the basis of comparing 

subsequent maps. Accurate maps not only help maintain the 

correct position during the movement but also can assist in the 

detection of  manual robot relocation  or enable map merging 

from robots working in swarms (Chen et al. 2021). Another 

asset emerging from accurate mapping is that additional 

information on the objects in the surroundings can be obtained. 

In recent years, semantic segmentation on point clouds has been 

developed, enabling extraction and identification of the class of 

object (Wang et al. 2019). It allowed the concept of SLAM to 

be extended to include semantic maps on which it is possible to 

recognize objects (Qi et al. 2018). The quality of the given map 

has significant impact on the object recognition in the scene. 

Providing a proper map with high accuracy and density can 

enhance the performance of these methods.  

 

Moreover, with determined mapping accuracy that directly 

affects localization, it can influence positioning repeatability. 

Establishing accuracy is crucial for obtaining precise poses and 

resolving higher-level problems. 

 

2. RELATED WORKS 

With constant development of SLAM methods and emerging 

possibilities of point cloud application, the assessment of 

various strategies has become indispensable. Below, selected 

papers in which a comparison of different SLAM techniques 

has been analyzed are discussed.  

 

In (Nanayakkara et al. 2020), the authors made a comparison of 

2D SLAM  techniques. The authors considered four methods: 

HectorSLAM, Frontier exploration, KartoSLAM and 

Gmapping. Their performances were analysed by calculating 

the error between the obtained maps and a model of the 

environment. The study was carried out in a real-world scenario 

and gathered maps were compared to a prepared model. To 

quantify the discrepancies, RMSE and standard deviation (SD) 

were calculated. The research was performed with deployment 

of Kinect sensor on a robot. The outcome of the study provided 

the most accurate results for the Gmapping method. 

 

In literature (Olalekan et al. 2021), the researchers made a 

comparative study of two SLAM methods available in ROS 

environment, i.e. GMapping and HectorSLAM. The research 

was conducted in a primarily unknown and dynamic 

environment. The comparison included the average time of 

travel and accuracy of the map. The space in which the robot 

navigated was created in Gazebo simulator.  The acquired 2D 

maps were stored in PGM format. The authors indicated that the 
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robot provided with a map gathered with grid-based particle 

filter approach requires slightly more time to find path to the 

goal with use of AMCL algorithm than HectorSLAM. 

Additionally, Gmapping requires using a pose estimator in 

contrary to the other analysed algorithm. The first technique 

outperformed HectorSLAM in terms of map quality.  

 

The authors of (Tuna et al. 2012) provided a comparison of 

three SLAM methods - Extended Kalman Filter (EKF), 

Compressed Extended Kalman Filter (CEKF) and Unscented 

Kalman Filter (UKF) in terms of computing resources usage. 

The study shows that CEKF method provided the best 

computing time among the investigated algorithms.  

 

In (Ren et al. 2022), the authors tested five 3D SLAM 

algorithms: Lidar Odometry and Mapping (LOAM), 

Lightweight and Ground-Optimized Lidar Odometry and 

Mapping (LeGO-LOAM), Fast LiDAR Odometry and Mapping 

(F-LOAM), Bundle adjustment for lidar mapping (BALM), and 

Versatile LiDAR SLAM via Multi-metric Linear Least Square 

(MULLS). The measure of comparison was absolute pose error 

(APE). The authors concluded that MULLS method provided 

the most accurate results of the robot pose among the tested 

methods. While the BALM algorithm provides the worst 

outcome, positions resulting from the remaining methods are 

comparable. Nevertheless, MULLS is computationally heavy 

and requires much time to acquire a map. LeGO-LOAM is the 

most computationally efficient SLAM technique of all methods 

considered in the article.  

 

A research study (Trybała et al. 2023) assessed three LiDAR-

based systems suitable for building a map for underground 

tunnels. The accuracy and completeness of the maps were 

evaluated in the paper. The authors divided the obtained point 

cloud into voxel grids for the assessment. The acquired point 

clouds were registered with the Iterative Closest Point (ICP) 

method to a reference map. The authors measured global 

accuracy with the M3C2 method, and local accuracy by 

calculating standard deviation and completeness with them.  

 

The literature review proves that there is a necessity for 

assessing various SLAM approaches due to the diversification 

in computational complexity, accuracy, point cloud density and 

map consistency. Therefore in this paper we discuss the 

performance of the LiDAR-based SLAM method called 

Lightweight and Ground-Optimized Lidar Odometry and 

Mapping (LeGO-LOAM) (Shan and Englot, 2018). The 

position estimation in the implemented technique is performed 

subsequently by segmenting the acquired point cloud and 

extracting features. The later step takes into account both edge 

and planar features. Planar features influence the estimation of 

z, roll and pitch, while the edge features affect x, y and yaw. In 

the next step the consecutive point clouds are compared with 

point-to-edge and point-to-plane methods. Iterative closest point 

(ICP) approach is utilized to provide loop closure detection that 

eliminates the drift. 

 

 

 

 

 

3. METHODS 

3.1 Theory 

LeGO-LOAM algorithm permits mapping the environment in 

addition to obtaining pose with regard to the coordinate origin. 

In the original paper in which the method was proposed, the 

pose estimation error was discussed, but the mapping quality 

was not addressed. The accuracy of the obtained map, however, 

may be the significant factor when it comes to the point cloud 

use. The mapping quality can be heavily influenced by the 

accuracy of the measurement device, its resolution and number 

of beams and the processing algorithm. Here, the map collected 

by the robot was matched with a reference map gathered by an 

accurate geodetic scanning devices to evaluate the LeGO-

LOAM performance. 

 

Evaluation of accuracy is performed with the Iterative Closest 

Point (ICP) algorithm. ICP enables aligning two consequent 

point clouds. It delivers transformation between given 

measurements. In the process, each point is assigned the closest 

point from the preceding point cloud and the Euclidean distance 

between them is calculated. The distances between closest 

points are minimized by applying transformation of the point 

cloud. The ICP method can be computationally exhausting for 

point clouds with a large number of points (Tiar et al. 2015). 

 

3.2 Setup 

The SLAM maps were generated using the mobile platform 

shown in Figure 1. The robot was equipped with Velodyne 

VLP-16 LiDAR sensor providing up to 3 cm accuracy. LiDAR 

sensor had a 30° vertical field of view and full angular 

horizontal range. The rover has two wheels on each side with 

separate motors and one passive wheel at the back to support 

construction and avoid necessity of balancing the mechanism. 

The robot's rotation is achieved by driving the wheels at 

different speeds or setting opposite directions to yaw. Such 

construction provides high manoeuvrability. The robot was 

travelling with a linear speed up to 0.4 m/s, with a reduced 

velocity when making turns. 

 

 

Figure 1. Mobile robot with mounted Velodyne VLP-16. 
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Figure 2. Experimental environment in C5 AGH building. Measurements were conducted with diverse space occupation by cars. 

  
 

LeGO-LOAM package was compiled in an open-source 

Robotic Operating System (ROS) programming environment. 

ROS kinetic version was installed on the Ubuntu 16.04 Xenial 

Xerus operating system. Data from LiDAR was collected with 

the velodyne ROS package. 

 

The reference map was collected using the Z+F IMAGER 

5010C laser scanner, which features super high resolution 

(20,000 pixels/360°) and high quality (each subsequent higher 

quality setting reduces range noise by a factor of 1.4). With 

these settings, the scanning time at one station was 

approximately 13 minutes. A tachymetric control network was 

established within the local coordinate system, and the scanning 

targets were measured. The scans from 3 stations were then 

aligned to a common coordinate system based on the 

coordinates determined through precise adjustment. 

 

All the point clouds were collected in an underground parking 

lot shown in Figure 2. The space is utilized daily, so the 

environment changed between the acquisition of the reference 

map and the LeGO-LOAM point cloud. Some cars were moved, 

left, or arrived to the space.  

 

3.3 Data Acquisition 

The robot was driving in the same space where precise geodetic 

measurements were taken. The results of the LeGO-LOAM 

algorithm executed during robot operation in the test 

environment was shown in Figure 3. RviZ tool available in ROS 

was used to observe map creation during robot movement. The 

robot’s trajectory and the map gathered with LeGO-LOAM was 

shown in Figure 4. 

 

The trajectory is calculated on the basis of mapping so the 

quality and accuracy of mapping are prominently significant to 

obtain precise pose estimation. 

 

 
Figure 3. Results of LeGO-LOAM algorithm during operation. Consequent scans from lidar are assembled into a complete map. 
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(a)                         (b) 

Figure 4. Maps collected by the mobile robot with plotted trajectory from two scannings: (a) short route, (b) long route.

 

ROS environment provided packages that enabled control and 

verification over functioning of the implemented solution. Rqt 

graph, presented in Figure 5, was used as a visualization tool to 

illustrate nodes and topic functioning across ROS environment 

and their connectivity. Rqt graph shows crucial components of 

the system and which information is sent and received by each 

node.  

 

3.4 Results 

The ICP algorithm was applied to align the map from the robot 

to the reference map. The result was shown in Figure 6. Well-

fitted points were marked with blue color. The discrepancy of 

the remaining points was color-coded using a color scale 

reaching from green to red. Most of the differences arise from 

the change to the car's presence and/or location during the 

reference and SLAM scanning. Additionally, operator station 

was visible when mapping with the robot. In general, robots 

often operate in dynamic environments where similar 

differences would also occur. There were also residues on the 

edges of walls resulting from the manner of the SLAM 

algorithm execution that were not taken into account in further 

scan matching in LeGO-LOAM. 

  

The results of point cloud matching provided 60 percent of 

fitted points in distances lower than 5 cm and 80 percent of 

points for less than 10 cm. The findings are influenced by the 

aforementioned differences between the matched maps. From 

the LeGO-LOAM result, a sparse optimized map with lower 

point density and the trajectory in the form of a point were 

extracted and presented in Figure 4.   

 

 

 

Figure 5. ROS rqt graph showing connectivity between nodes and topics. 
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Figure 6. Point cloud matching results. Blue color denotes points that coincide with the reference map. Points marked with different 

colors, from green to red, show the differences between the two maps. Points with green color stem from smaller discrepancies 

deriving from the presence of cars and operator station; red color indicates lack of points in the reference map. 

 

4. CONCLUSIONS 

Making a comparison and matching the point clouds prove the 

utility of the one gathered with the LeGO-LOAM algorithm. 

Even though the sensor mounted on the robot provides lower 

accuracy than geodetic scanners due to the size reduction of the 

measuring device and shrinking the acquisition time, it offers 

satisfying outcomes that represent the environment. 

 

Using a LiDAR with the accuracy of 3 cm yielded 5 cm 

accuracy of mapping, which shows that the impact of the 

mapping algorithm worsens accuracy, but not substantially. The 

map obtained from LeGO-LOAM can be further processed for 

other tasks and the robot's localization estimated from the map 

is reliable. Analysed LiDAR-based SLAM method can be 

applied in a space with poor lightning conditions and 

implemented in vast, interior areas.  

 

The availability limitations of the empty parking lot influenced 

the findings. Changing occurrences of the cars between two 

measurements had an impact on fitted point percentage results 

in chosen range.  

 

Accurate maps can be further applied for autonomous driving, 

path planning or semantic segmentation. Future works 

involving gathering point clouds in an unknown environment 

can be based on LeGO-LOAM method.   
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