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ABSTRACT: 
The Urban Data Space for Green Deal - USAGE - project is founded by the European Union (EU) to support the green transition of 
cities. Within USAGE, a series of geospatial, thematic and other datasets have been newly acquired or created to test and evaluate 
solutions (i) to better understand issues and trends on how our planet and its climate are changing and (ii) to address the role that 
humans play in these changes, e.g., with behaviour adaptation and mitigation actions. The paper aims to provide some relevant datasets 
collected in two urban areas, reporting processing methodologies and applications of analysis-ready and decision-ready geospatial data. 
The shared data are unique urban datasets due to their resolutions and sensors type and could boost progresses of geospatial procedures 
to create and use data useful for climate change adaptation, renewable energy monitoring and management, etc. 
 

a)  b)  c)  d)  
Figure 1. Possible analysis- and decision-ready geospatial products useful to support the green transition of cities: semantically-
enriched point clouds (a), building footprints extracted from orthoimage (b), aerial thermal image (c) and surface material 
classification map from aerial hyperspectral images (d). 

 
1. INTRODUCTION 

The European Union (EU) is pushing for the creation of a 
European single market for data which promotes, within a 
horizontal data sharing legislation, the cross-sector sharing of 
data, to facilitate innovative solutions and support the 
decarbonization of the energy system. To do so, Findability, 
Accessibility, Interoperability and Reuse (FAIR1) principles 
must be adopted and, in this contest, different projects aiming at 
the creation of Green Deal data space (Gutierrez David et al., 
2023) have been funded to support the green transition of cities 
(Amado and Poggi, 2022). 
The Urban Data Space for Green Deal - USAGE2 - EU project is 
one of them. Within USAGE, a series of geospatial, thematic and 
other datasets have been newly acquired or created in order to test 
and evaluate solutions for urban data spaces (i) to better 
understand issues and trends on how our planet and its climate 
are changing (Rüegg, 2019), and (ii) to address the role that 
humans play in these changes, e.g. with behavior adaptation and 
mitigation actions (Foshag et al., 2020). As cities are the largest 
consumer of energy resources (Gago et al., 2013) and are more 
vulnerable than other areas to climate changes (Wouters et al., 
2019), solutions in USAGE are found by meeting multiple and 
diverse requirements. These solutions are developed on the basis 
of inter- and transdisciplinary cooperation, analysing geospatial 
data and incorporating local knowledge (Adler et al., 2018). 
Public authorities, city planners and all urban actors willing to 

 
1 https://www.go-fair.org/fair-principles/ 
2 https://www.usage-project.eu/ 

participate to green transitions, need to be equipped with simple 
but operative ICT tools, geospatial solution, strategies and 
methodologies for proper energy monitoring and management, 
renewable energy usage and climate change adaptation 
(Nowacka and Remondino, 2018). 
 
1.1 Paper’s contribution 

The paper aims to provide to the scientific community some 
relevant geospatial datasets and products (Figure 1) that were 
collected within the USAGE project in two of its four pilot areas 
(Ferrara, Italy and Graz, Austria). The provision of these data in 
support of policy and decision makers has two main aims: 
• to develop, test and validate geospatial procedures to derive 

2D/3D geospatial data (semantically enriched point clouds, 
3D building models, etc.) later in the paper called analysis-
ready geospatial data; 

• to develop, test and validate solutions to derive thematic 
products (maps of Urban Heat Islands, distribution of 
photovoltaic potential of buildings, customized classification 
maps, etc.) later in the paper called decision-ready geospatial 
data. 

 
2. THE USAGE DATASET AND RELATED WORKS 

Due to the focus of the USAGE project, the datasets3 (Table 1) 
are strongly related to the urban environment. Data are mainly 

3 https://github.com/3DOM-FBK/USAGE_Geospatial 
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Datasets Ferrara, Italy Graz, Austria 
Resolution and sensor specs Year GSD resolution / specs [sensor] Year 

Aerial images (nadir) 10 cm, RGBI bands, [Vexel UltraCam 
Osprey 4.1] 

2022 10 cm, RGBI bands, [Vexcel UltraCam 
Osprey 4.1] 

2022 

Aerial images (oblique) n.a. - ca 9-13 cm, RGB bands, [Vexcel 
UltraCam Osprey 4.1] 

2022 

Orthophotos 10 cm, RGBI bands 2022 10 cm, RGBI bands 2022 
LIDAR point cloud 10 pt m2 [Riegl VQ780ii] 2022 4 pt m2 [Riegl VQ780ii] 2022 
DTM, DSM 1 m raster grid 2022 0.5m raster grid 2022 
Hyperspectral images 1 m, 364 bands, VNIR and SWIR (0,4 - 

2,5 µm) [AisaFENIX384 by Specim] 
2022 1.8 m, 364 bands, VNIR and SWIR (0,4 

- 2,5 µm) [AisaFENIX384 by Specim] 
2021 

Thermal images 1m, night, LWIR (7,5 - 14,0 µm) 
[DualDigiTHERM by IGI] 

2023 0.5 m, day and night, LWIR (7,5 - 14,0 
µm) [DualDigiTHERM by IGI] 

2021 

Sentinel 3- SLSTR 1.4 km MWIR & LWIR 2018 - as for Ferrara 
Landsat 8 & 9 30 m (VIS, NIR, SWIR) 2013 - as for Ferrara 
Land cover 1 m grid  2022 1.8 m grid 2021 
Building footprints Vector layer, based on cadastre 2022 Vector layer, based on cadastre 2021 
Weather Stations data T_2m, rainfall, RH, wind_dir & _mag  2000 as for Ferrara 2000 

Table 1: The geospatial and thematic USAGE datasets over the cities of Ferrara (Italy) and Graz (Austria). 
 
kept on the open data portal of each city in their national language 
and, for easy accessibility, stored in the project repository. Beside 
“pure” geospatial and thematic data, also environmental time 
series measurements from ground weather stations are reported. 
With respect to the available geospatial datasets (Rottensteiner et 
al., 2012; Xia et al., 2017; Özdemir et al., 2019; Garcia-Moreno 
et al., 2020; Hong et al., 2021; Kölle et al., 2021), USAGE 
features the following unique characteristics: 
• imagery with different spectral ranges (VNIR, SWIR, 

LWIR); 
• spectral and geometric high-resolution imagery (geometric 

resolution up to 10 cm / pixel, spectral resolution up to 5 nm 
/ channel); 

• multi-sensor data (optical sensors, LiDAR sensors, ground 
stations, etc.); 

• heterogeneous topography (flat and hilly urban areas); 
• 2D and 3D geospatial and thematic data. 
The aim of the collected datasets is to foster and motivate 
geospatial research activities related to data processing and 
added-value information extraction (analysis-ready and decision-
ready geospatial data). This includes: 
• aerial image triangulation with learning-based features 

(Remondino et al., 2022); 
• co-registration of multi-modal and multi-spectral images 

(Ruiz de Ona et al., 2023); 
• co-registration of LiDAR and optical data (Toschi et al., 

2021); 
• evaluate production pipeline solutions for large-scale 

mapping purposes (Moe et al., 2016; Toschi et al., 2017); 
• evaluation of conventional or learning-based MVS / dense 

image matching methods (Chebbi et al., 2023; Liu et al., 
2023; Stathopoulou and Remondino, 2023); 

• NeRF-based 3D reconstruction (Turki et al., 2022; 
Remondino et al., 2023;); 

• automatic radiometric correction of large-size orthophotos 
(Lelégard et al. 2022). 

Furthermore, the datasets could be valuable for the realization 
and validation of algorithms for the generation of other 
(geo)products to support Green Deal policies, such as: 
• image classification for large scale map generation (Shi et al., 

2019; Minaee et al., 2021); 
• data fusion (Hu et al., 2023); 
• semantic segmentation of point clouds (Koelle et al., 2021; 

Özdemir et al., 2021; Grilli et al., 2023); 
• analysis of thermal images (Gerhards et al., 2018); 

• building footprint extraction from point clouds (Wu et al., 
2018; Buyukdemircioglu et al., 2022); 

• 3D building/city model generation (Lafarge and Mallet., 
2012; Biljecki et al., 2015; Özdemir and Remondino, 2018); 

• photovoltaic potential estimation of building roof or other 
suitable areas (Nex et al., 2013; Giannelli et al., 2022); 

• urban heat island analysis and forecasting (Voelkel and 
Shandas, 2017; Bosch et al., 2021; Ellena et al., 2023); 

• urban tree mapping using hyperspectral and LiDAR data 
fusion (Dalponte et al., 2013; Ballanti et al., 2020); 

• derivation of urban ecological indexes (Darvishzadeh et al., 
2009; Heiden et al., 2012; Sun et al., 2021). 

 
 

3. ANALYSIS-READY GEOSPATIAL DATA 

In the Earth Observation (EO) community, raw data coming from 
sensors are subsequently processed up to levels that allow end-
users to directly apply certain workflows in a homogenized 
fashion. For this reason, the term analysis-ready is adopted to 
categorize this type of processed data. In the following sections 
the most common analysis-ready data are described. 
 
3.1 Dense point clouds from oblique aerial images 

Multiview stereo matching (MVS) can produce detailed and 
accurate 3D models of urban environments, including buildings, 
streets and infrastructure. The Graz oblique dataset, flown by 
AVT in September 2022 with UltraCam Osprey 4.1 camera, was 
used to prove the benefits of oblique imagery for detailed urban 
modeling. In the area of the University of Graz headquarters two 
sub-blocks of images were chosen: the first one containing just 
11 nadir images, the second containing 61 oblique plus the 11 
nadir images. After running the aerial triangulation, two dense 
point clouds were generated on the two datasets with grid equal 
to 2 x GSD, resulting in a point density higher than 25 pts/sqm. 
Figure 2 shows some zooms on the two point clouds that reveal 
the advantage of using nadir and oblique datasets, with respect to 
the nadir-only one. Indeed, the point clouds achieve richer 
content, unveiling objects such as building facades and footprints 
in narrow streets. Nevertheless, this comes at the cost of higher 
object occlusion, significant differences in object scales and 
illuminations and sudden depth variations, all still open issues to 
achieve accurate 3D reconstructions (Rupnik et al., 2014). The 
final analysis-ready Graz point cloud covers an area of 
approximately 11 sqkm and contains some 1.6 billion points.  
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Figure 2. Dense point cloud created with only aerial nadir images (top) and with aerial nadir & obliques (bottom). Holes on the 
facades are present when oblique images are not included in the MVS processing. 

 
Figure 3. Results of 3D building generation: LOD1 (green) and LOD2 (blue) models overlaid on orthophoto (left). Mesh model of 
the highlighted building block (centre). Fitting error as distance between the LOD2 buildings and the input DSM cloud (right). 

The quality of the dense point cloud is crucial when the point 
cloud itself acts as input for further (3D) processes, as any 
shortcomings in its quality will have an impact on subsequent 
results. For example, without oblique imagery the 3D 
reconstruction of building facades, thus the estimation of solar 
potential on them, would be incomplete. Poor quality and sparse 
point clouds on roofs would miss important details to accurately 
estimate the solar potential and would also reflect on the quality 
of derived standard photogrammetry products such as DTM, 
DSM and true-orthophotos. 
 
3.2 Building models 

3D representations of the urban environment are normally 
denoted with levels of detail (LOD - Biljecki et al., 2016). 
Starting from the produced DSM and DTM, the vector layer of 
building footprints can be extruded to generate LOD1 products. 

Using the python libraries shapely and mapbox_earcut and in-
house code, OBJ or CityGML results can be created. On the other 
hand, LOD2 buildings are generated fitting planes on the 
available DSM in the areas identified by the vector layer of the 
footprints. Using City3D (Huang et al., 2022), different DSM 
resolutions (10cm, 20cm, 50cm, 1m) are tested: finally, it was 
noted that too fine resolutions produce wrong fitting results with 
an exponential processing time and 50 cm is a suitable resolution 
for standard buildings. Results of LOD1 and LOD2 generation 
from aerial point clouds are shown in Figure 3.  
 

4. DECISION-READY GEOSPATIAL DATA 

Decision-ready geospatial data are here defined as those datasets 
that, with minor interpretation of associated attributes or 
statistics, allow end-users to take actions and decisions upon a 
certain area. 
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Figure 4. Front and top views of classification results of the University of Graz main building. RGB point cloud (left). RF results 
revealing inaccuracies in the classes (center); more accurate results with PT (right). 

4.1 Semantically enriched 3D point cloud 

Two supervised classification algorithms are applied on 3D point 
clouds: Random Forest (RF - Grilli and Remondino, 2020) and 
Point Transformer (PT - Zhao et al., 2021). Meaningful 
geometric features are computed to characterize the pre-defined 
classes ground, facades, roofs and vegetation. Training and 
evaluation subsets are then extracted and manually labelled. Both 
algorithms are run with a selection of significant features at 
different radii. Worth to mention that sphericity characterizes tree 
canopies while verticality differentiates between ground and 
facades. Distance from ground sets flat roofs and ground apart 
while planarity helps with sloping roofs.  
 

 
The two classification methods are compared in terms of per class 
precision, recall, F1 and their average scores (Table 1). For roof 
and façade classes, completeness is higher with PT than RF, 
showing a higher recall score. Although the results are metrically 
similar, PT performs better visually, returning more homogenous 
classes (Figure 4). The used classes are propaedeutic to generate 
other decision-ready data such photovoltaic (PV) potential 
estimation maps (Section 4.3). 
 

4.2 Urban Heat Island (UHI) 

Heat waves are more and more heavily affecting population and 
this is even more enhanced in urban areas rather than in the 
countryside. Municipalities need actionable data to support their 
decisions. UHI can be defined as the temperature difference 
between urban and rural areas, triggered by the excess of heat 
emitted and by the solar gain caught by man-made structures. 
UHI and heat risk maps can be used as forecasting tool but also 
to support policies, renovations or regulations at municipality 
level (Di Napoli et al., 2020). UHI maps can be created 
integrating EO imagery, IoT ground sensor data, surface 
properties, machine learning and geostatistics. In the developed 
pipeline a regression is computed amongst the available stations 
of the area of interest (AOI) and the Land Surface Temperature 
(LST) derived from Landsat 9 satellite images (Ermida et al., 
2020). The coefficients of the regression are then geographically 
weighted with NDVI, DTM and other auxiliary datasets. The 
corrected regression coefficients are then spatialized over the 
AOI through a Kriging method. This allows to correctly 
spatialize the weather station temperature thanks to the spatially 
resolute (30 m) information provided by the thermal band of the 
satellite. A predicted UHI map in Ferrara is shown in Figure 5b: 
the spatialize temperature (on August 4th 2022) clearly shows the 
hottest spot within the industrial (upper left) and urban (centre) 
areas, with also some hot spots in the bare soil that need to be 
further investigated. If other UHI maps are computed for other 
days, maps of temperature differences can be generated.  Figure 
5c (August 4th 2022 vs July 19th 2022) highlights a decrease in 
temperature in some vegetated fields due to crop growing and an 
increase in temperature due to accumulation of heat in the historic 
city centre and in the industrial district. The fields on the top right 
corner show higher temperature due to the exposure of bare soil 
after some crop harvesting.  
 

a)  b)  c)  
Figure 5. RGB Sentinel 2 image of Ferrara, Italy (a), predicted temperature on Aug 4th, 2022 (b) and temperature difference between 
Jul 19th and Aug 4th 2022 (c): the missing pixels are due to cloud masking in the pipeline for the 19/07 Landsat 9 acquisition. 

 
Ground Facades Roofs Veget. Avg. 

RF-Precision 87% 92% 95% 71% 86% 
PT-Precision 78% 95% 87% 96% 89% 
RF-Recall 82% 92% 86% 80% 85% 
PT-Recall 95% 93% 95% 77% 89% 
RF-F1 score 84% 92% 90% 75% 85% 
PT-F1 score 86% 94% 91% 85% 89% 

Table 1: Metrics of RF and PT classification on Graz. 
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4.3 Photovoltaic (PV) potential estimation 

PV potential estimation is crucial in the transition of our cities to 
a greener economy. The USAGE data over Graz are used to 
compare two methods: a conventional approach based on 2.5D 
raster data (PV2.5D - Hofierka and Sury, 2002) - limited to 
rooftops only, and an approach which employs 3D point clouds 
(VOSTOK4), to compute the PV potential of building facades 
too. Results are validated with respect to the total solar radiation 
(SR) measured by weather station in the year 2022. The focus is 
on SR without computing PV potential as the latter depends on 
physical parameters. Both approaches correct for the atmospheric 
absorption and scattering of solar radiation under clear sky using 
the Linke atmospheric turbidity coefficient. PV2.5D uses Linke 
raster maps while VOSTOK uses a Linke constant factor of 3 
which is near the annual average for rural-city areas in Europe. 
Additionally, PV2.5D considers a correction for ground albedo 
(set to 0.2). VOSTOK is also used to compute the SR only on 
roofs. Points belonging to the “roofs” and “façade” classes are 
extracted from the classified point cloud (Section 4.1). 
Figure 6 shows annual results for both approaches. In general, 
PV2.5D tends to estimate lower values of SR than VOSTOK. Of 
course, the increase in solar power when including facades is not 
constant throughout the year, registering a peak gain of 1.4 GWh 
for the month of July against 0.2 GWh for December. The two 
approaches were validated by comparing computed SR values 
with data logged from the University of Graz weather station. An 
area of about 70 sqm is used for the comparison. Daily SR 
averages are computed for each approach and the results are 
plotted together with 14-days moving averages for years 2017 to 
2022 as well as the six years period average (Figure 6). VOSTOK 
estimates higher values than PV2.5D, possibly due to an 
overestimation of surface area since it uses 3D point clouds. 
Other minor discrepancies may depend on the absence of the 
albedo constant in VOSTOK, the choice between constant and 
variable Linke factors, and the voxel size for shadows casting. 
The computation time is primarily influenced by raster resolution 
and AOI size, while VOSTOK computation time depends mainly 
on the point cloud density. 
Values of SR on facades computed with VOSTOK could be 
integrated with the results of other rooftop PV potential 
estimation tools such as Google Maps Platform Solar API5 to 
provide conclusive insights on solar energy output per building.  
 

 
4.4 Material classification map and urban indices 

Ortho-ready hyperspectral images can be used for a variety of 
analyses with AI-based approaches. The available images over 
Graz and Ferrara were used to extract information on the ground 
and roof material types (Figure 1d) using a multi-level machine 
learning approach, supported by training data provided by the 
municipalities. The final result of the material classification map 
of Graz reached an overall accuracy of 93,18% and kappa of 
0,9271. Urban, ecological and vegetation indices can also be 
produced (Figure 7). 
 
4.5 Characterization of vegetated areas 

Thematic (i.e., species, biophysical properties) and geometric 
information (i.e., height, trunk diameter, canopy surface area) on 
trees in forests or urban areas is essential to monitor health and 
growth of trees over time, to estimate biomass and to map species 
distribution. Urban green management currently relies on visual 
identification and mapping of trees, 2D maps and traditional 
databases, but it could benefit from 3D digital inventories based 
 

a)  b)  
Figure 7. Thematic maps from aerial hyperspectral images: roof and ground materials and ecological indices over Graz dataset (left), 
vegetation indices over Ferrara (right). 

 
4 https://github.com/GIScience/vostok 5 https://developers.google.com/maps/documentation/solar 

 
Figure 6: Daily increase of solar radiation when including 
building facades in the PV computation (top). Solar radiation 
validation with data from the Graz University weather station 
and computed averages for the station area for VOSTOK and 
PV2.5D (bottom). 
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on geospatial data, that are objective, high-resolution, large scale, 
and accurate. Existing methodologies for tree identification and 
metric analysis rely on LiDAR (Balsi et al., 2018; Hyyppä et al., 
2022) or photogrammetric point clouds (Nevalainen et al., 2017; 
Carr and Slyder, 2018) while hyperspectral data, either images 
(Ballanti et al., 2016; Liang et al., 2020) or point clouds (Tian et 
al., 2022), are necessary for species identification and health 
status monitoring. Figure 8 show results on point clouds for 
single tree identification (a) and crown radius (b). Derived 
queryable maps with single trees or tree species are shown in 
Figure 8c-d.   
 
4.6 Thermal analyses 

Understanding the land surface temperature (LST) and material 
temperatures in the urban environment is important in numerous 
application such as UHI, roof heat leakage detection, illicit 
sewage disposal, vegetation stress estimation, crop yield 
estimation., etc. Given the USAGE data, a comparison is made 
between a high-resolution airborne thermal acquisition at 0.5m 
and the by-weekly availability of Landsat 8&9 thermal data 
(30m) to understand how representative the second is of the first. 

Since non-contact measurement of surface temperature heavily 
rely on material emissivity, the comparison is performed on the 
material classes derived from hyperspectral acquisition (Section 
4.4). Moreover, a direct comparison is made between the two 
atmospheric corrected dataset with a time lag of 3 days by 
aggregating the resolute data to 30m using the mode as metric. 
In Figure 9a the airborne corrected thermal acquisition over Graz 
is shown: the urban environment pops out due to the material 
properties of the surfaces and their high emissivity, revealing 
sudden differences between the built and rural environment. 
Figure 9b shows the Landsat acquisition with the major trends of 
temperature distribution amongst the different land use. Figure 
9c reports the temperature difference between the two products. 
Red areas depict higher LST measured by the airborne sensor 
compared to the satellite sensor as, thanks to the 0.5 m resolution, 
buildings are better distinguishable. The blue areas show higher 
temperatures in the satellite derived LST, that is mostly present 
in the river. Apparently, the satellite is good in measuring LST in 
vegetated areas where the two sensors produce similar results. 
This imply that satellite derived LST is more accurate for urban 
landscapes rather than in the urban environment.

 

a)  b)  

c)  d)  
Figure 8. Individual tree segmentation from airborne LiDAR data (a) ad crown radii (b). GIS visualization of canopy maps (c) and 
tree species mapping from aerial hyperspectral images (d). 

a)  b)  c)  
Figure 9. Surface temperature (0.5 m) from aerial thermal images acquired on Sept 9th 2021 (a). Landsat 8 image acquired on Sept 
12th 2021 (b). Difference between upscaled (30 m) airborne LST and Landsat 8 LST (30m) (c). 
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5. CONCLUSIONS 

Europe has planned to become a leader in a data-driven society 
by launching Green Deal and European data spaces activities in 
different strategic societal sectors. Data spaces are envisaged as 
trustworthy FAIR sharing environments where data can be used 
by multiple interdisciplinary actors. The paper presented the 
USAGE activities and datasets offered to the R&D community to 
develop and evaluate geospatial solutions to foster Green Deal 
applications. Processing methodologies and achievable results 
are also presented on two pilot areas of the USAGE project. The 
paper showed how 2D and 3D analysis- and decision-ready 
products created from geospatial data could support 
municipalities, decision makers and citizens to plan intervention, 
heat mitigation approaches or renovations, identify hotspots and 
vulnerable regions, assess surface materials or canopy 
information, support sustainable management, etc.  
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