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ABSTRACT:

Benchmark datasets is an significant aspect in in many areas such as computer vision, deep learning, geospatial data as they serve
as standardized test sets for evaluating the performance of models. Among many techniques of image processing, there is super-
resolution (SR) which is aimed at reconstructing a low-resolution (LR) image into a high-resolution (HR) image. For training
and validation SR models as a dataset the pairs of HR and LR images are needed, which should be the same apart from resolution.
There is a lot of benchmark datasets for super-resolution methods, but they usually include conventional photographs of an common
objects, while remote sensing data have different characteristic in general. This paper focuses on the process of preparing datasets
for super-resolution in satellite images, where high-resolution and low-resolution image data come from different sources. The case
of the single-image super-resolution method was considered. The experiment was performed on Sentinel-2 and PlanetScope data,
but the assumptions can also be transferred to data obtained from other satellites. The procedure on how to make the pairs of HR
and LR images consistent in terms of time, location and spectral values was proposed. The impact of the processes carried out was
measured using image similarity measurement methods such as PSNR, SSIM and SCC.

1. INTRODUCTION

The recently developed super-resolution (SR) techniques based
on machine learning are aimed at reconstructing a low-
resolution (LR) image into a high-resolution (HR) image.
These methods are also used in satellite images, especially on
public, free of charge data to enhance their quality. In the ac-
quisition of satellite images, there is always a trade-off between
the spatial, spectral and temporal resolution (Yue et al., 2016).
The super-resolution techniques improve the quality of spatial
components. There are two main methods of super-resolution:
single image (SISR) and multi-image (MISR). SISR methods
assume that for training the model pairs of HR and LR are
needed, while in MISR the portion of data contains one HR
and many LR images. This paper focuses on the process of pre-
paring datasets for super-resolution of satellite images, where
HR and LR data were obtained from different satellites. The
case of SISR is considered.

To prepare the dataset for SISR, pairs of images are needed, and
one of them should be higher resolution. The best case is when
exactly the same LR and HR data are available (e.g. made with
the same sensor from a different distance or with a different
resolution). If this kind of data is not available, training is con-
ducted on approximate data that does not reflect exactly what
needs to be achieved. The resulting images should be similar
in all aspects to the input LR image except for the resolution.
In the case of training models on approximate data, the result
is not free from errors caused by differences between the input
data and the reference data. However, for satellite images, and
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real-world cases, very often there is no other option than train-
ing on approximated data. As a reference, data from another
sensor are used with frequently exhibit varying temporal, spa-
tial, and spectral characteristics. Therefore, it is important to
prepare such images taking into account the reduction of differ-
ences in the LR and HR pairs.

Benchmark datasets fulfil an important function in deep learn-
ing. They are carefully curated to cover a wide range of chal-
lenges and scenarios, allowing to compare new approaches
against existing state-of-the-art methods. There are a lot of
datasets for super-resolution methods which include conven-
tional photographs of common objects, landscapes or people.
An example of such a dataset is DIV2K (Agustsson and
Timofte, 2017) which consists of 1000 high-resolution with
corresponding low-resolution images. Low-resolution images
were degraded from high-resolution in two ways: bicubic inter-
polation and more realistically by using low-pass filters, Pois-
son noise, pixel shifting, and motion blur. Other examples of
frequently used data for image denoising and super-resolution
testing are: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al.,
2012), and Urban100 (Huang et al., 2015).

Using datasets prepared on standard images in the case of satel-
lite imagery does not result in a positive and stable effect. This
is primarily due to the characteristics of the satellite data. Very
often they have more spectral channels, different radiometric
resolutions, and show scenes that differ from standard images.
A lot of datasets dedicated to satellite images have been cre-
ated and the summary was presented by (Bakuła et al., 2019).
The main purposes for which they were created are instance
segmentation, semantic segmentation, scene classification, or
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object detection. The datasets are based mostly on open ac-
cess images such as Sentinel-1, Sentinel-2, Landsat, MODIS,
and Google Earth, but also on commercial satellite data like
PlanetScope, WorldView, DigitalGlobe and moreover on aer-
ial and drone images. Some of the datasets contain georefer-
ences and some do not. Access to the benchmark datasets with
descriptions and reference to articles can be found in official
repositories such as ISPRS Benchmarks (ISPRS Team, 2021),
IEEE Geoscience and Remote Sensing Society (IADF TC and
IEEE GRSS, n.d.), or TorchGeo databased (TorchGeo Team,
Microsoft AI for Good program and the PyTorch Team, 2021).
Many datasets are also collected in unofficial repositories, e.g.
on GitHub: (Cole, 2022) or (Ali Ahmadi, 2021). In the case of
the super-resolution, several datasets were also created. They
are concerned mostly with resolutions lower than 10m/pix and
the multi-image super-resolution approach. Datasets for super-
resolution and their use in various models are described in more
detail in the section 2.

Preparing benchmark datasets for a super-resolution of images
with higher resolution than 10m/pix is always limited because
higher-resolution data is not available free of charge and cannot
be published. Although it is not always possible to share such a
set of data, it is practicable to implement a stable procedure for
such cases. The goal of the data preparation procedure presen-
ted in this article is to obtain the most similar pairs of HR and
LR images from the images collected by different satellites. In
the presented example Sentinel-2 and PlanetScope multispec-
tral images are used respectively for low-resolution and high-
resolution datasets. Presented algorithms and image similarity
assessment metrics could be applied to images collected from
other satellites, with different resolutions, and different charac-
teristics.

The rest of the work is organised as follows: Section 2 is about
benchmark dataset and algorithm for super-resolution of satel-
lite images, Section 3 describes experiment design, data and
methods, Section 3.4 presents results of data preparation. A
short discussion is in Section 4, and conclusions in Section 5.

2. SUPER-RESOLUTION FOR SATELLITE IMAGES

2.1 Benchmark datasets for SR for satellite images

To the best of our knowledge, from the remote sensing multis-
pectral benchmark dataset, there are only a few for super-
resolution. One of the newest and very promising datasets
consists of 10m/pix and 20m/pix surface reflectance Sentinel-
2, with their reference spatially-registered 5m/pix images ac-
quired on the same day by the VENµS satellite (SEN2VENµS)
(Michel et al., 2022). Data can be used for training 8 bands of
Sentinel-2 images down to 5m/pix. This dataset covers 29 loca-
tions and consists of 132,955 patches of 256x256 pixels images
at 5m/pix resolution. The authors of the SEN2VENµS dataset
took spatial registration and radiometric adjustment into consid-
eration when preparing the data and additionally filtered invalid
patches. Other examples have been created for multi-image
super-resolution. The first example is an official dataset of
ESA’s Kelvins competition for ”PROBA-V Super-Resolution”
(Märtens et al., 2019). The data shows 74 regions around the
globe at different points in time and includes channels Red
and Nir in resolution 300m/pix and 100m/pix. Another ex-
ample which focuses on Sentinel-2 is The WorldStrat Data-
set. This dataset contains 10,000 km2 of high-resolution images
SPOT6/7 with the resolution of 1.5m/pix for panchromatic and

6m/pix for multispectral channels and 10m/pix Sentinel-2 im-
ages (Cornebise et al., 2022).

2.2 Models used for SISR

Although there is not much prepared data available for devel-
oping super-resolution methods on satellite images, a lot of art-
icles describing models have been published. SRCNN (super-
resolution convolutional neural network) was tested firstly on
Sentinel-2 (Liebel and Körner, 2016) and presented also on
Landsat images with reference training data from Sentinel-2
(Pouliot et al., 2018). Enhanced Deep Residual Network is
widely used for satellite images, also for example in enhancing
the resolution of Sentinel-2 based on PlanetScope (Galar et al.,
2020). While preparing the dataset for that experiment, consid-
eration was also given to the co-registration of images and spec-
tral matching. SARNet (Spectral Attention Residual Network)
in addition to the convolution layer contains Residual Channel
Attention Blocks (RCAB) to improve the results and visual as-
pect of super-resolved images (?). This example was also pre-
pared for Sentinel-2 based on PlanetScope. The approach for
data preparation contained in that article is the closest to the
one presented in Section 3. A lot of modifications to existing
and new network models are published, not only for Sentinel-2
images. They have been collected in review articles (Wang et
al., 2022a), or (Wang et al., 2022b).

3. EXPERIMENT

3.1 Experiment design

The process of data preparation presented in this work was per-
formed on the example of Sentinel-2 data (LR) and PlanetScope
data (HR). The Sentinel-2 dataset is one of the largest sources of
public and free of charge data provided by the European Space
Agency (ESA). Sentinel-2 images contain 13 spectral channels
(R, G, B, near and far infrared) with a spatial resolution of 10 m,
20 m and 60 m depending on the channel. Thanks to easy and
free access, they are widely used. PlanetScope images are also
multispectral, with a resolution of 3m/pix and the spectral char-
acteristics of channels are very similar to Sentinel-2. The data
are commercial but are available under the “Education and Re-
search Standard Plan” with limitations. In this paper channels
Red, Green, Blue and Nir Infrared are used, Sentinel-2 10m/pix
B2, B3, B4, B8 and equivalents for PlanetScope.

Based on the publications cited in section 2.2 and on the con-
ducted experiments, a data processing procedure for perform-
ing deep learning super-resolution of Sentinel-2 10m/pix to
2.5m/pix based on PlanetScope images was proposed. As Plan-
etScope images are distributed in a resolution 3m/pix the bicu-
bic interpolation was used for resampling them to 2.5m/pix.
Presented general rules could also be applied to any kind of
data whose characteristics are similar. The proposed procedure
includes three main aspects of data preparation:

1. Temporal compatibility. It is very rare that photos from
two sensors are taken on the same day. Even if this hap-
pens, the acquisition hours also matter for the exposure
of the images. It is very important to pay attention to the
smallest differences in the acquisition time of images dur-
ing the data collection process.

2. Spectral compatibility. Spectral characteristics differ in
each kind of source. Even images from both sources are
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similar, some kind of spectral adjustment is required. In
this experiment, the method of histogram matching has
been applied.

3. Geometric compatibility. Data from the same area, but
obtained from different satellites, differ slightly in geore-
ferencing. In order to keep the geometry as accurate as
possible, methods for sub-pixel co-registration are used.
One of them is available in the public package AROSICS
(Scheffler et al., 2017).

For robust data preparation, several other factors should be
taken into account. One of them is atmospheric corrections,
which should be the same for both sources. Another factor that
is important and can spoil the data is the presence of clouds and
cloud shadows. The solution may be to use a cloud mask and
eliminate the patches on which they are located. The next one is
gaps in the images, error pixels or places where the photo was
not recorded. Finally, random errors could be found, such as
planes, unidentified objects or local registration errors. These
kinds of errors are the most difficult to eliminate automatically.

This article was based on images that show surface reflectance
and both, Sentinel-2 and PlanetScope already have bottom-of-
atmosphere correction. Pairs of images could contain small
clouds, shadows and random errors. In this article we focuses
primarily on measuring the impact of co-registration and his-
togram matching on the similarity of the HR and LR pairs.
During the process, only PlanetScope images have been mod-
ified in order to match Sentinel-2 images. To evaluate the im-
pact of modification image similarity assessment metrics such
as PSNR (peak signal-to-noise ratio), SSIM (Structural Sim-
ilarity Index) (Wang et al., 2004), and SCC (Spatial Correl-
ation Coefficient) (Zhou et al., 1998) were used. To com-
pare two images, they should have the same spatial resolution,
so Sentinel-2 data were resampled by bicubic interpolation by
factor 4 to 2.5m/pix. Three components were checked. Firstly,
the temporal compatibility. Images of Sentinel-2 and Planet-
Scope covering the same area but obtained at different times
were compared. Secondly, the impact of method for sub-pixel
co-registration was tested. Finally, the spectral resolution was
adjusted by histogram matching. It was also checked whether
these methods are dependent on the image size: large and small
patches were used. Metrics are calculated after each step of
HR image processing to verify the impact of each one. It was
assumed that if the HR image after the process is more sim-
ilar to the LR image, the data is better prepared. The proposed
data quality improvement procedure may have a positive impact
on the model training process as well as on the final results of
super-resolution.

3.2 Dataset

For this experiment, we prepared a dataset consisting of
Sentinel-2 and compatible with PlanetScope images. Sentinel-2
was downloaded as Level-2A. Images from both sources were
atmospherically corrected as a Surface Reflectances product in
cartographic geometry. PlanetScope images were downloaded
as harmonized to Sentinel-2. The dataset contains images from
March to August for the years 2021 and 2022. Images were
taken from 30 areas of 1792x1280 pixels for Sentinel-2 images,
which translates to 229.38 sq km of data. The images show dif-
ferent types of land cover such as urban, sub-urban, forest, large
and geometrical crops, small and chaotic crops, and waterbod-
ies from different parts of the World.

Data preparation was as follows. Sentinel-2 was cropped to se-
lected areas and RGBNir composites were created from them.
To make a comparison possible Sentinel-2 images were res-
ampled by bicubic interpolation to 2.5m/pix. PlanetScope were
merged in cases when one downloaded order included several
pieces, cropped to the selected areas and resampled by bicu-
bic interpolation from 3m/pix to 2.5m/pix. We checked that
there are no error ”0” pixels in PlanetScope. Then we divided
scenes into small patches of 128x128 pixels for Sentinel-2 and
512x512 pixels for PlanetScope. Two versions of the same data-
sets were used in the experiment, the first consisted of 30 large
scenes and the second of 4200 small patches. Two types of
sizes were checked to check the importance of the image size
on the processes performed. An example patch for both sources
is presented in the figures 1.

Figure 1. Sentinel-2 10m/pix (left) and PlanetScope
2.5m/pix(right) examples of patches.

3.3 Methods

3.3.1 Co-registration method To co-register images within
each pair we used AROSICS (Automated and Robust Open-
Source Image Co-Registration Software) (Scheffler et al.,
2017). It is a Python-based software for automatic detection and
correction of sub-pixel inaccuracy between two remote sensing
images. The algorithm relies on the phase correlation technique
and the Fourier shift theorem, which allows for accurately cal-
culating the X/Y offsets at a specific geographic location. The
authors of this method presented two approaches: local and
global. The local co-registration approach correctly detected
local geometric misregistration while the global computed one
displacement vector within the image subset (matching win-
dow) and shifted the whole image based on it. In this article,
the global co-registration approach was used. As reference and
target images respectively Sentinel-2 10m/pix and PlanetScope
2.5m/pix were used. The matching window covered most of the
image area (at least 80%).

3.3.2 Spectral adjustment Images acquired by different
satellites will always differ in the range of values, which res-
ults from the specificity of the sensors: central wavelength
and bandwidth. Planet offers a method of harmonizing the R,
G, B and Nir channels for PlanetScope data to Sentinel-2 im-
ages, but this does not eliminate all differences between the
images. Moreover, PlanetScope provided products could dif-
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fer for each year in the range of minimum and maximum val-
ues of the images, which was observed in our data sample. In
this article, we tested the histogram matching method, which
is a frequently used approach for pre-processing steps in com-
puter vision tasks. We match histograms of the PlanetScope
2.5m/pix images to the Sentinel-2 original 10m/pix. The pro-
cess of histogram matching is divided into 4 steps. First of all, is
the calculation of histograms of both images. Second, the cal-
culation of Cumulative Distribution Function (CDF) for both
histograms. CDF represents the integral of the probability dis-
tribution of pixel values. The third step is the calculation of a
mapping function that transforms the pixel values in the target
image’s histogram to match the distribution of the reference im-
age’s histogram. This mapping is usually achieved by finding
the corresponding pixel value in the reference image for each
pixel value in the target image. Finally, pixel values of the tar-
get image are redistributed according to the reference image’s
histogram by the mapping function. Histogram matching was
done both on large and small patches.

3.3.3 Image similarity assessment metrics For images
similarity assessment methods we applied widely used metrics:
peak signal-to-noise ratio (PSNR) (Wang et al., 2004), Struc-
tural similarity (SSIM) (Wang et al., 2004) and Spatial correl-
ation coefficient (SCC) (Zhou et al., 1998). These objective
methods are based on a similarity comparison between a super-
resolved image and a ground true high-resolution image. Im-
proved results are indicated by higher scores in all three met-
rics. Moreover, we evaluated the results of processing by visual
interpretation. This method is not objective but allows to catch
large errors.

PSNR is the ratio between the maximum possible power and the
power of corrupting noise and is based on mean squared error.

PSNR = 10 · log10
(
MAX2

MSE

)
(1)

where MAX = the maximum possible pixel value of the image,
for this case is 216.
MSE = mean squared error

SSIM takes into account the influence of three components:
structural information, illumination and contrast.

SSIM =
(2µLRµHR + c1)(2σLRHR + c2)

(µ2
LR + µ2

HR + c1)(σ2
HR + σ2

HR + c2)
(2)

where µHR = the pixel sample mean of HR
µLR = the pixel sample mean of LR
σ2
HR = the variance of HR

σ2
LR = the variance of LR

σLRHR = the covariance of LR and HR
c1 = (k1L)

2

c2 = (k2L)
2

where L is the dynamic range of pixel value
(in this case it is 216 − 1)
k1 = 0.01 by default
k2 = 0.03 by default

SCC is a correlation coefficient between a high-pass filtered SR
image and a high-pass filtered HR original image. This metric
is especially important for images or part of the images con-
centrated in the high-frequency domain. It is primarily used to
evaluate the spatial component. The mask of the used high-pass
filter is equal: 

−1 −1 −1

−1 8 −1

−1 −1 −1

 (3)

3.4 Results

3.4.1 Temporal comparison As a first step, we checked
how the influence of the time discrepancy affects the similar-
ity of the pairs of HR-LR images. For comparison, fragments
of three areas (T18SUJ, T32UPV, T33UYR) and three dates
were selected. The chosen scenes contain mostly agricultural
land, sub-urban areas and vegetation. The first date was the
closest one to the Sentinel-2 images, the second was close to
that day of the month but a year earlier or later, and the third
was from a different time of year. In this case, images were not
pre-processed, only bicubic interpolation was done to maintain
a consistent resolution. Figure 2 presents the example of one
area with different dates. The image shows part of the crops
which is the area where the biggest changes can be observed
during the year. Sentinel-2 and PlanetScope images from the
same day look very similar, while others show different peri-
ods of plant growth. PSNR, SSIM and SCC were calculated on
three large scenes (7168x5120 pix) for each PlanetScope date to
Sentinel-2 reference scene. The results presented in the tables
1, 2 and 3 indicate the best metrics scores for the closest date.

Figure 2. Images present one patch from the T32UPV scene for
different days. The upper left is the Sentinel-2 image, then

PlanetScope. Changes in the fields could be observed.

Sentinel-2 T18SUJ: 13.08.2022
PlanetScope dates PSNR SSIM SCC

13.08.2022 35.8532 0.6388 0.2012
13.08.2021 34.6130 0.6012 0.1346
07.10.2022 33.6626 0.6374 0.1350

Table 1. PSNR, SSIM and SCC scores for the T18SUJ scene for
three different dates.

3.4.2 Impact of co-registration and histogram matching
To examine the impact of co-registration and histogram match-
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Sentinel-2 T32UPV: 14.08.2021
PlanetScope dates PSNR SSIM SCC

14.08.2021 49.2090 0.9923 0.1244
14.08.2022 41.3019 0.9327 0.0841
24.03.2022 40.9284 0.9436 0.0511

Table 2. PSNR, SSIM and SCC scores for the T32UPV scene
for three different dates.

Sentinel-2 T33UYR: 05.08.2022
PlanetScope dates PSNR SSIM SCC

04.08.2022 35.9045 0.8036 0.0936
14.08.2021 33.9733 0.7510 0.0421
05.09.2022 34.6701 0.7633 0.0570

Table 3. PSNR, SSIM and SCC scores for the T33UYR scene
for three different dates.

ing we prepared two versions of samples. For both versions, we
performed two processes directly on PlanetScope images, not
one after the other. The intention was to check the impact of
each process separately. PlanetScope were bicubicly resampled
to 2.5m/pix images and Sentinel-2 10m/pix was a reference.

Variant 1 - co-registration and histogram matching were
performed on 30 scenes, and then scenes were divided into
small patches.

Variant 2 - at first, scenes were divided into small patches
and then co-registration and histogram matching were per-
formed on each small patch.

The division after the processing into small patches in version 1
made it possible to compare results between both versions. The
example of the histogram matching for one patch is shown in
Figure 3.

Distributions of the metric scores of PSNR and SCC for vari-
ant 1 are shown in Figure 4. Both processing parts change the
shape of distributions. Co-registration and histogram match-
ing are processes that change images for two separate compon-
ents: spatial and spectral. Upon analyzing the distributions,
it becomes evident that both procedures enhanced the metrics
scores, but for the spectral component, PSNR is functional,
while for the spatial component SCC. Compared to distribu-
tion based on original samples PSNR is much better after HM
and SCC improved after co-registration. Although on the Planet
website, the products were downloaded in the same mode, two
peaks can be seen in the PSNR distribution. This is caused by
the different spectral ranges of the data for 2021 and 2022. His-
togram matching eliminates such differences in the data.

Figures 5 and 6 present a comparison between two variants
which differ in the order of data division and processes per-
formed. Figure 5 shows the changes in SCC scores for co-
registration for variant 1, variant 2 and for data without pro-
cessing. Figure 6 shows the changes in PSNR scores for histo-
gram matching with the same variants configuration. For both
cases, variant 2 (processing on small patches) gives slightly bet-
ter results. To test that, we compared the means of the respected
metrics for samples of two variants by calculating a depend-
ent t-test (Student, 1908), (David and Gunnink, 1997). In both
cases, the results are statistically significant with a confidence
level of 99%.

Figure 3. Example of histogram matching for one patch from
T32UPV scene. Upper part: Sentinel-2, PlanetScope and

PlanetScope after histogram matching. Bottom part: histograms
for each channel R, G, B and NIR before (left) and after (right)

histogram matching.

Finally, we performed processing sequentially for one option:
division to the patches, co-registration and histogram matching.
Figure 7 presents a pair plot of PSNR and SCC metric scores for
results of each process separately for small patches (variant2)
and a combination of both processes. The higher the metric
value, the greater the similarity of the images. The results show
that each method improves the image in a different aspect and
the combination gives the best result.

A summary of the metric scores results for each step and vari-
ants is provided in Table 4. The table shows the mean and stand-
ard deviation of PSNR, SCC and SSIM for pairs of images. The
order of results is as follows: original data (without processing);
variant 1 co-registration, histogram matching and combined
methods were done on big scenes; variant 2 co-registration, his-
togram matching and combined method were done on small
patches; finally mixed variants in which co-registration was
made on big scenes (variant 1), then are divided to small patches
and then histogram matching was done (variant 2).
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Figure 4. Distribution of metrics scores: PSNR (left) and SCC
(right) for all pairs of image patches for variant 1. From the top:

data without processing, after histogram matching and after
co-registration.

PSNR SCC SSIM
processess mean std mean std mean std
original 39.88 6.13 0.128 0.078 0.804 0.134

V1
coReg 40.05 6.34 0.181 0.068 0.805 0.134
HM 52.81 3.82 0.127 0.078 0.996 0.004
coReg+HM 53.82 4.06 0.180 0.068 0.997 0.004

V2
coReg 40.06 6.36 0.186 0.071 0.805 0.134
HM 53.57 3.97 0.126 0.078 0.996 0.005
coReg+HM 54.90 4.20 0.183 0.071 0.997 0.004

coReg V1 and HM V2
coReg+HM 54.78 4.20 0.178 0.068 1.00 0.004

Table 4. Mean metrics scores and standard deviation for each
process and variant combinations.

4. DISCUSSION

In preparing a large set of real data for super-resolution based
on satellite images collected from two or more different sources
many issues must be taken into consideration. Most of them are
atmospheric correction, presence of clouds and shadows, tem-
poral, geometric and spectral compatibility, and moreover in-
correct registrations, and random errors. This article focused on
the examination of the differences regarding acquisition time,
co-registration and spectral characteristics.

The analysis of differences due to the date was performed for
3 areas. The metrics scores present in tables: 1, 2, 3 vary by
scene which depends mostly on PlanetScope registration. For
each case, the result of the closest date to the Sentinel-2 image
is the highest. Data from the same day but from different years
may also show high similarity due to the similar phase of plant
growth. Vegetation areas and agricultural fields are the areas

Figure 5. Distributions of SCC scores for co-registration method
for original data, variant1 (processing on big patches), and

variant2 (processing on small patches).

Figure 6. Distributions of PSNR scores for histogram matching
for original data, variant1 (processing on big patches), and

variant2 (processing on small patches).

Figure 7. Pair plots for metric scores PSNR and SCC for
original data, results of co-registration, results of histogram

matching and both processing sequentially. Scores for variant 2
(processing on small patches).

where the greatest changes occur during the year, while built-
up areas can be described as more constant.
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PSNR and SCC metric scores calculated for PlanetScope im-
ages without processing, after co-registration and after histo-
gram matching show that both of the processes improve simil-
arities between within image pairs. Figure 4 indicate that the
SCC metric is more sensitive to changes in the spatial compon-
ent, while PSNR is for the spectral component. These two met-
rics can be used as complementary in the process of comparing
the similarity of images.

Comparison of the results of processes performed on different
sizes of images (Figure 5 and 6 leads to a conclusion that per-
forming both processing on small patches gives slightly better
results. This is also visible in Table 4 which presents means val-
ues for metrics for each combination. Despite the statistical sig-
nificance of this result the moment of dividing the scenes is not
a key aspect of obtaining better image similarity. In some cases
it is more convenient to perform co-registration on large photos
first and, histogram matching on smaller ones. A convincing
argument may be the processing time, unnecessary creation of
more data or co-registration on the original scenes (and not, as
in this case, on PS scenes after interpolation using the bicu-
bic method). The mixed method could be also useful, in that
co-registration is performed before dividing scenes into patches
and histogram matching afterwards. In Figure 7 we can observe
an overall trend of improving image similarity by performing
both processes as measured by SCC and PSNR metrics.

The result of the performed tests is the proposal of the follow-
ing procedure for preparing data for SR on satellite data from
various sources:

1. Downloading pairs of images corresponding to each other
in time

2. Atmospheric corrections if needed

3. Divide into smaller patches

4. Co-registration

5. Histogram Matching

6. Calculation of metric scores for possible rejection of weak
samples

There is still the issue of other inaccuracies in the data, such
as clouds and cloud shadows that are difficult to detect, miss-
ing data or appearing objects like aeroplanes. Moreover, in the
case when the missing data is a few pixels with the value ”0”, a
method to consider may be filling these pixels with the median
or average from the kernel, e.g. 5x5 adjacent pixels. Distorted
data may cause poorer model training results, but it is important
to discard as small pieces as possible so as not to lose good ones.
Verification of small patches metric scores may allow to the re-
jection of erroneous samples. Regarding the results presented
in Figure 7 for the combined method (coReg + HM), we can ob-
serve outliers, samples that achieved poor metrics scores. Prob-
ably these pairs are so inconsistent that it is difficult to correct
them, so they can be discarded to obtain a cleaner dataset.

Obtaining and preparing images from various sources is a de-
manding task, and in training neural network models both the
amount of data and their purity count. The example prepared in
this paper shows a positive impact of data consistency and im-
provement of the spatial and spectral aspects on the similarity
values of image pairs. This suggests that the conclusion should

be the same for data with similar characteristics. To check how
strongly the presented processes influence the SR model train-
ing results, it would be necessary to prepare data in each of
these variants and retrain. It is beyond the scope of this article
and could be assigned for future work.

5. CONCLUSION

The research presented in this paper contributes insights into
the development of benchmark datasets tailored for super-
resolution satellite imagery. We addressed the problem of ap-
proximate data for real-world cases. We focused on the pre-
paration of datasets for single-image super-resolution in satel-
lite images. Experiments were conducted using Sentinel-2 as
low-resolution and PlanetScope as high-resolution data, illus-
trating a methodology that could be adapted for data from vari-
ous satellites. The proposed procedures ensure consistency in
time, location, and spectral values between HR and LR image
pairs.

Performing co-registration by the AROSCIS algorithm and his-
togram matching improved significantly spatial and spectral
components respectively. Image similarity assessment was
done by calculating metrics such as PSNR, SSIM and SCC.
The analyses conducted proved that PSNR is more sensitive to
spectral changes, while SCC to spatial changes. Metrics are
complementary and using both gives full insight into the im-
pact of processes carried out to improve the quality of images
pairs. It was also checked what effect the size of the photos on
which co-registration and histogram matching were performed
had. Smaller patches received slightly higher scores.

The procedure for preparing satellite data for deep learning
super-resolution presented in this paper can also be used for
data from other sensors. On a data set with different character-
istics, the presented processes may have different ranges for im-
proving the similarity of pairs of images but maintaining tem-
poral, spatial and spectral coherence is essential for preparing
images for super-resolution.
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