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Abstract 

The accuracy of spatial raw data is contingent on a number of factors, including the accuracy of the sensors, their calibration, and 

direct and indirect referencing. The efficacy of the captured data can be enhanced through the implementation of effective data 

processing methodologies. The present research is dedicated to the enhancement of combined photogrammetric and LiDAR data.  

In the contemporary context, the trajectory of the vehicle can be affected by GPS signal jamming, a phenomenon that is attributable 

to international circumstances. This necessitates a combined adjustment of RGB/CIR and LiDAR data. The proposed method 

necessitates the utilisation of both sets of data: The study area was imaged using both RGB and CIR technologies, with intensity 

LiDAR strips also employed to cover the same area. The present approach is founded upon the notion of lidargrammetry (Jayendra-

Lakshman and Devarajan, 2013), which uses photogrammetric algorithms for lidar data processing (Rzonca and Twardowski, 2022).  

The research tool, PyLiGram, generates synthetic images of the LiDAR data, known as lidargrams or renders, applying the same 

interior orientation parameters (IOPs) as the real camera used to capture the real RGB/CIR images. The synthetic images are 

centrally projected according to IOPs and predefined external orientation parameters (EOPs). The projection process is reversible by 

use of unique lidar point identifiers. Points can be projected onto synthetic images, and after processing the same images, points can 

be intersected to create a new point cloud. 

The paper sets out the potential of applying photogrammetric methods to the co-adjustment of RGB/CIR and LiDAR data. The 

process entails the collaborative processing of RGB/CIR and LiDAR images through the utilisation of deep learning matching 

techniques and common least squares adjustment. The refined EOPs are then utilised to intersect the refined point cloud and enhance 

the images' positions. 

A key benefit of this approach is that it has the potential to eliminate the necessity for LiDAR control patches/points or ground 

control points for RGB/CIR images, depending on the specific case.  

The process was subjected to a series of trials on multiple datasets, each comprising a point cloud density of approximately 100 

points per square metre and images with a ground sample distance (GSD) ranging from 5 to 10 centimetres. 

1. Introduction

Lidar data accuracy depends on precision of the scanner and 

trajectory measurement errors. Further processing allows to 

enhance the quality of the data. Our research is dedicated to 

lidar data of low accuracy of the trajectory or without trajectory, 

for instance even archival data in strips or blocks. Nowadays it 

occurs that trajectory is affected by GPS signal disruptions 

caused by international situation. The only demand of the 

method is to be able to use RGB or CIR images covering the 

same area. Our approach uses idea of lidar and image data 

integration for lidar accuracy enhancement. It is based on idea 

of lidargrammetry which uses photogrammetric algorithms for 

lidar data processing. Our research tool PyLiGram generates 

synthetic images of the point cloud, so-named lidargrams. It 

uses central projection and interior orientation parameters 

(IOPs)  of the real camera used for capturing visual images. 

The paper presents the results of our research of application 

photogrammetric methods for enhancement of lidar data using 

lidargrammetric approach. Visual images and synthetic images 

are processed together in one common least-square adjustment. 

The adjusted external orientation parameters (EOPs) are used to 

intersect transformed point cloud and, optionally, to enhance the 

image positions. 

The novelty of our approach is elimination of need of any 

LiDAR control and non-rigid, 3D transformation of the point 

cloud. Lidargrammetry with specific LiDAR and image point 

identification is applied as well. 

In the first chapter the state of the art is presented: lidar data 

adjustment methods, data integration for lidar enhancement and 

contemporary matching pipelines. In the second chapter the 

method is described, procedure of testing is presented and 

results of processing of two datasets. In the third chapter the 

results are discussed and the method will be assessed. Final 

chapter presents the   conclusions and potential of the results in 

scope of the future research. 

2. State of the art

2.1 LiDAR data accuracy 

LiDAR data processing has specific steps: registration or 

adjustment, classification, mapping product generation or 

automatic objects recognition. The complete review of the 

method of processing methods of laser scanning is published by 

Lohani and Ghosh (Lohani and Ghosh, 2017). 

In our research the most important part is LiDAR data 

adjustment named also registration. It is implemented in several 

software solutions and it is used in mass mapping production 

for more than two decades (Baltsavias, 1999). The most popular 

applications adjust the trajectory as a source data using 

altimetric correction: TerraMatch (Terrasolid Ltd., 2022) and 

RiProcess (RIEGL Laser Measurement Systems GmbH, 2022). 
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The horizontal position of the LiDAR strip in defined by GPS 

and IMU data. The adjustment of the strips relies on altimetric 

rigid translation and rotations or non-rigid height correction. 

The horizontal position is unchanged. It is known that 

practically XYZ control is not applied There are other tools for 

LiDAR data processing like a research tool OPALS (Pfeifer et 

al., 2014). In context of our research the most interesting 

solutions process the LiDAR date without trajectory. The 

problem was discussed before (Ressl et al., 2009). Usually, 

these methods are created for research like LiDAR strip 

adjustment using piecewise tricubic polynomial transformation 

for railways (Glira et al., 2023).  

The development of the technology is parallel with accuracy 

investigations of the method. Firstly, strips were compared in 

several ways. One of them was a calculation of the distance 

between two interpolated DEMs from overlapping strips (Ressl 

et al., 2008). Next step of such a quality assessment was a 5-

parameter transformation of each strip to minimize 

discrepancies between neighbour strips (Ressl et al., 2009). 

More advanced method was described in (Habib et al., 2010). 

Several conjugate elements are applied to relative adjustment of 

the LiDAR strips like: conjugate points and pseudo conjugate 

points, areal and linear features, and point-patch pairs. These 

features can be extracted and matched automatically, and 

applied for quality assessment of the data. 

Application of Unmanned Aerial Vehicles (UAVs) for scanning 

is possible thanks to light scanners. The problem of their 

accuracy is widely discussed. One of evaluation and 

enhancement method is dynamic calibration of the system 

(Tulldahl et al., 2015). The method allows to get accuracy 

below 5cm thanks specific correction of the data of low-cost 

equipment. Mayr et al. present study of UAV LiDAR accuracy 

for surface deformation in mountain areas basing on 

multitemporal measurements (Mayr et al., 2020). Dreier et al. 

evaluate the direct referencing on the UAV LiDAR data using 

ground control and study of all the accuracy factors that should 

be taken into account for such a data acquisition (Dreier et al., 

2021). 

Contemporary studies still focus on the LiDAR accuracy and its 

potential enhancement. Brun et al. present the method which is 

based on dynamic network for trajectory adjustment with point-

to-point correspondences and raw inertial and GNSS 

observations (Brun et al., 2022). The effectiveness of the 

method was proved by adjustment of LiDAR strips with 

sections without GNSS data. Elaksher et al. describe 

quantitative analysis of LiDAR data accuracy in height and in 

plan (Elaksher et al., 2023). Two basic components of different 

frequency are discussed and their changes are fitted by splines. 

The precision and accuracy assessment can be presented using 

automatic detection of chessboards, circular panels and, sets of 

circular panels (Flood et al., 2024). The presence of the problem 

of LiDAR accuracy in the research works indicates that LiDAR 

data accuracy is not able to be completely assessed and its 

dependence of GNSS signal makes it more unstable than 

photogrammetric data. 

 

2.2 Data integration for lidar enhancement 

In paper of Pirotti et al. accuracy of high density 

photogrammetric and LiDAR point cloud is compared (Pirotti et 

al., 2022). The comparison and possibilities to integrate make 

these two technologies parallel and able to enhance their quality 

each other. One of the well-known and widely discussed 

problem of photos and LiDAR data is their co-registration 

(Kumar Mishra, 2012; Rzonca, 2018). Nowadays most of 

producers offer the integrated platform for image and LiDAR 

data acquisition. Leica Geosystems introduces CityMapper 3 

(Leica, 2024), Riegl Laser Measurement Systems offers several 

solutions, the last one platform VQ-1560III-S (Riegl, 2024), and 

Vexcel Imaging presented Dragon 4.1 (Vexcel, 2024). Each of 

them is equipped in one or two scanners and RGB and IR one or 

more cameras. The integrated data can be used for calibration 

(Pentek et al., 2020) or further processing like DTM generation 

(Mandlburger et al., 2017) and its evaluation (Zahs et al., 2022). 

But the most popular application of the integration of both 

methods is to orientate externally or registrate one of both kinds 

of data of normal airborne sensors (Toschi et al., 2021; Zhu et 

al., 2021) or UAV (Bobkowska et al., 2017; Li et al., 2019; 

Yang and Chen, 2015). 

Most of research approaches is based on comparison of the 

point cloud of dense image matching and LiDAR. We applied 

an opposite way. We generate photogrammetry-kind data from 

LiDAR and we match them with RGB or CIR images. 

 

2.3 Matching methods 

Development of image matching methods defined completely 

new possibilities of photogrammetry (Morelli et al., 2022; 

Zhang et al., 2024). It eliminated stereoscopic measurements 

with some exceptions and extended image matching 

possibilities on different images, not only RGB. It has two 

stages: feature detection and feature matching. There are two 

main groups of methods of image matching: traditional methods 

named as hand-crafted methods (like SIFT or SURF) and deep 

learning methods. 

The first important stage of hand-crafted methods development 

was Harris operator for corner and line features detection using 

second difference of image (Harris and Stephens, 1988). Scale-

invariant feature transform (SIFT) is a standard matching 

method using Difference of Gaussians to detect the keypoints 

(Lowe, 2004). Relatively, the process is not fast, so it cannot be 

applied for real-time matching. The faster but less accurate 

method is SURF (Speeded Up Robust Features). It is also like 

SIFT invariant of scale, rotation and photometry and not able to 

be used for real-time computation. There is also another group 

of methods applicable to real-time processes: ORB and 

AKAZE. ORB (Oriented FAST and Rotated BRIEF) is less 

accurate as SIFT and SURF, but it detect much more features 

and matches (Rublee et al., 2011). AKAZE is another matching 

method, less robust, less stable than ORB and also efficient. The 

above composition is based on review paper of Zhang X. et al. 

(Zhang et al., 2024). Another method, RIFT (Radiation-

Variation Insensitive Feature Transform) does not use the 

colour, intensity or gradient values for feature detection. It uses 

phase congruency and it has higher stability in feature detection 

(Li et al., 2020). 

Deep learning methods are second group of methods opening 

new possibilities to process also images of different kind of 

sensors. Such a matching is difficult or impossible by hand-

crafted methods. The deep learning methods can be divided in 

two groups: (1) separated feature description and detection 

process and (2) integrated these processes within one pipeline 

[31]. Within separated processes several detectors based on 

CNN were presented: MatchNet (Han et al., 2015), TFeat 

(Balntas et al., 2016b), L2Net (Tian et al., 2017), HardNet 

(Mishchuk et al., 2017), PN-Net (Balntas et al., 2016a), 

SuperPoint (Detone et al., 2018), Key.Net (Barroso Laguna et 

al., 2019), ALIKE (Zhao et al., 2023b), ALIKED (Zhao et al., 

2023a). The matching process has to be done after detection of 

features like SuperGlue (Sarlin et al., 2020). The nowadays 

tendence is to join detection and matching in one pipeline 

(Yoon and Park, 2024). In our research we used Deep Image 

Learning (DIM) developed by Bruno Kessler Foundation in 

Trento, Italy (Morelli et al., 2024). DIM is a framework of 
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several pipelines (SuperPoint + SuperGlue; Superpoint + 

LightGlue etc.) and integrated processes as end-to-end learning 

methods like LoFTR (Sun et al., 2021) and RoMa (Edstedt et 

al., 2023). Another integrated method should be mentioned to 

present the all state-of-the-art of deep learning matching: 

DeDoDe (Han et al., 2024). 

 

2.4 Lidargrammetry 

Lidargrammetry is a method analogical to photogrammetry. In 

lidargrammetry one measures so-called lidargrams (or renders): 

synthetic images of centrally projected point cloud. These 

images can be processed using photogrammetric methods in 

four general areas: platform calibration, orientation/registration, 

stereo observation (Rodríguez-Cielos et al., 2017; Rzonca and 

Majek, 2016) and measurement and features extraction. 

Lidargrammetry applications include its use for extraction of 

spatial data (Fragkos and Ioannidis, 2016), measuring infrared 

point data in three dimensions (Teo et al., 2010), and data 

orientation (Jayendra-Lakshman and Devarajan, 2013). Current 

research uses synthetic images to achieve deep learning goals, 

particularly with regard to detection and segmentation (Xianjia 

et al., 2022). 

 

3. Materials and methods 

The core of the method is the use of lidargrammetry and the 

deep learning matching of RGB images and lidargrams to 

improve the accuracy of the absolute orientation of one or both 

of the two integrated data sets: photographs or LiDAR point 

cloud. There are three basic use cases for this method, which are 

described in the following subsections. 

This approach is pivotal in ensuring the geometrical 

homogeneity of all the set of data. The ensuing discourse 

pertains to the precision of the process and the elements that 

contribute to its efficacy. 

 

3.1 General overview of tested methods 

3.1.1 Case 1: LiDAR data refinement 

 

The initial case under consideration pertains to the absence or 

substandard quality of LiDAR data trajectory (see Figure 1). 

The block of photogrammetric images (PHOTOS) is adjusted 

using ground control points (GCPs) and a priori direct 

referencing data. The block of photos (PHOTOS) has been 

correctly and finally adjusted. As an input data set for the core 

of the method – co-matching and co-adjustment, as well as the 

images and their adjusted external orientation (EO'(PH)) – is 

matched with lidargrams with external orientation, generated by 

the PyLiGram tool – research lidargrammetric tool being 

developed by the authors. L_GRAMs, EO(LG). In conclusion, 

it is evident that the novel point cloud LiDAR is calculated by 

means of the PyLiGram tool. 

 

 

Figure 1. Block scheme of Case 1: LiDAR data refinement 

 

 

 

Figure 2. Block scheme of Case 2: Photos and LiDAR data 

refinement 

 

3.1.2 Case 2: Photos and LiDAR data refinement 

 

The second case is illustrated in Figure 2. Photos, in 

conjunction with their unadjusted EO(PH) and GCPs, are 

employed directly in the matching and adjustment process with 

L_GRAMS and their a priori EO(LG). The LiDAR calculations 

are performed in the same manner as previously outlined. 

Furthermore, the external orientation (EO'(PH)) of the adjusted 

block of RGB images (PHOTOS) is modified. 

 

 
 

 

Figure 3. Block scheme of Case 3: Photogrammetric data 

refinement 
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3.1.3 Case 3: Photogrammetric data refinement 

 

The third case represents a simplified version of the second 

case, as illustrated in Figure 3. The LiDAR data is subject to a 

priori refinement. The outcome of the process of matching and 

adjusting L_GRAMS and PHOTOS is the adjustment of the 

RGB block: calculation of EO'(PH). 

 

3.2 Test data 

Two sets of data were utilised to evaluate the efficacy of the 

methodologies, exhibiting variation in terms of land use type, 

recording platform type, camera resolution, scanner type, 

ground sample distance (GSD), and point cloud density. In one 

instance, the block was found to be intact, while in the other, a 

single row was observed. 

 

3.2.1 Graz test field 

 

The initial test field encompasses the city centre of Graz 

(Austria). The data has been sourced from the Vexcel Dragon 

4.1 system (Vexcel, 2024), comprising nadir photos captured 

using a fixed 81 mm camera with a resolution of 10560 x 14144 

px, in conjunction with a point cloud derived from a 5-line 

scanner. The test block incorporates a combined point cloud 

derived from three strips: three merged scan strips and 30 

photos that collectively span the same area. 

The point cloud contains 112 million points, with an average 

density of approximately 60 points per square metre, thus 

yielding an average distance between points of approximately 

13 centimetres. 

The mean GSD of the photographs is approximately 5 cm. 

Consequently, the ratio of GSD to average point distance is 

1:2.5. 

The utilisation of the PyLiGram research tool resulted in the 

generation of 30 lidargrams, characterised by identical IOPs to 

the RGB photos, and analogous EOPs. The RGB photos were 

converted to black and white images. 

The analysis of the three alignment cases was undertaken using 

ground control points and check points, which were derived 

from direct GPS measurements and photogrammetric 

measurements on a reference block. This densification of the 

control system enabled the establishment of an adequate number 

and appropriate distribution of control and check points (ChPs), 

a prerequisite for ensuring the reliability of the results obtained 

from the verification of the calculations. In conclusion, a total of 

20 points were utilised, of which 7 were GCPs and 13 were 

ChPs. 

 

3.2.2 Loosdorf test field 

 

The second test field is situated in the rural area adjacent to the 

village of Loosdorf in Austria. The data set under consideration 

consists of a single strip of images and a point cloud, the 

capture of which was undertaken using the Riegl VQ-1560 III-S 

system (Riegl, 2024). It is important to note that for the 

purposes of the tests, it was only the point cloud obtained from 

the second red channel that was used, with a density of 

approximately 16 points/m2, i.e. an average point distance of 

approximately 25 cm. The same area was covered by 18 

photographs with a GSD of approximately 8 cm, obtained with 

a camera having a focal length of 35.962 mm and a frame size 

of 8750 x 11664 px. 

The ratio of GSD to the mean distance between points is 1:3. 

During the preparatory stage, 19 lidargrams were generated 

with IOPs analogous to those found in an RGB camera image, 

and EOPs enabling this area to be covered with lidargrams. 

For the purposes of this study, the control group was comprised 

exclusively of points measured on a perfectly aligned strip of 

photos. The total number of subjects included in the study was 

23, of which 4 were used as GCPs and 19 as ChPs.  

 

3.3 Method’s testing 

Prior to the testing of each of the three variants for both test 

fields, a number of preparatory steps were taken. 

 

 

 
 

Figure 4. Methods’ testing workflow 

 

Figure 4 presents a schematic representation of the workflow 

for the testing of all three cases. The input data comprised 

lidargrams and their approximate EOPs (EO_Ldr0) (see Figure 

4a), photographs with approximate EOPs (EO_Pho0) (see 

Figure 4b), and control point coordinates (GCP_ChP0) (see 

Figure 4c). 

The initial phase of the study involved the alignment and 

preliminary simultaneous alignment of photographs and 

lidargrams. The matching process was executed through the 

utilisation of machine learning algorithms, employing a 

Superpoint model (Detone et al., 2018) for keypoints detection 

and a Lightglue matcher (Morelli et al., 2024) within the Deep 

Image Matching software framework, which was developed by 

the Bruno Kessler Foundation in Trento, Italy (see Figure 4d). 

The fundamental parameters were set to a low level of quality, 

with a geometric verification threshold of 1 and a keypoints 

limit of 10,000. The remaining settings were found to be in their 

default configuration. 

As demonstrated in Figure 5, an example of a mixed pair from 

the Graz test field is provided, consisting of a photograph and a 

lidargram. Figure 6 presents the results of their matching, which 

in this case amounts to approximately 4,000 matches. For the 

tested Superpoint and Superglue methods, as well as for the 

medium quality setting, the matching result did not allow for 

further use due to the low number of matches. 
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Figure 5. Example images to match: lidargram on the left and 

photo on the right. 

 

 
Figure 6. The above images with shown matches 

 

In the subsequent stage of the analysis, the model of all the 

photographs and their matches was imported into COLMAP 

software (https://colmap.github.io/, 2025) and subjected to strict 

alignment (see Figure 4e). The initial evaluation determined the 

alignment to be correct, on the premise that all images were 

incorporated within the model. 

Subsequently, a project was created in Agisoft Metashape  

(www.agisoft.com, 2024) (Figure 4f), and the photos and 

lidargrams, coordinates of GCPs and CHPs, and approximate 

EOPs for all images were imported. The GCPs and CHPs were 

measured on the photos, while no measurements were made on 

the lidargrams due to the potentially low accuracy of 

observations resulting from the limited visual quality of these 

synthetic images. A standard camera was designated for the 

photographic documentation, with its input optical parameters 

fixed to ensure they remained constant during the adjustment 

process. The DIM (Morelli et al., 2024) and COLMAP software 

results, in the form of tie points, were imported into the 

Metashape project. Following precise alignment in Metashape, 

the coordinates of the GCPs (GCP_ChP1) (Figure 4g) were 

exported and, using Cloud Compare software 

(cloudcompare.org, 2025), a 6-element transformation to the 

secondary GCP_ChP2 (Figure 4h) system was performed. This 

resulted in a new set of coordinates to which the test data for 

each of the three test cases were to be adjusted. The co-

adjustment (Figure 4i) was performed, and the EOPs of the 

photos (EO_Pho2) and lidargrams (EO_Ldr2) were exported in 

the secondary system. 

Subsequently, three copies of the Metashape project were 

created in the original layout. Each of these copies was then 

subjected to the following steps, in order to differentiate them 

according to one of the three cases. 

 

3.3.1 Case 1 testing 

 

Case 1 involved the adjustment of a data set for the external 

orientation of lidargrams (see Figure 4j). A copy of the 

Metashape project in the primary alignment (see Figure 4f) was 

completed with the alignment to the secondary coordinate 

system EO_Pho2 and GCP_ChP2 coordinates. In this instance, 

minor EO_Pho2 errors were predetermined, precluding their 

modification during the alignment process. GCPs served as the 

reference point. The resultant alignment was subsequently 

utilised to calculate new EOPs (EO_Ldr3_1), which can be 

employed for multiple forward intersections of a new point 

cloud according to the scheme illustrated in Figure 1 (LIDAR'). 

This is facilitated by the process of lidargram generation, 

wherein all points that are projected onto the lidargrams are 

assigned unified LiDAR point identifiers (ULPIs). It is therefore 

possible to determine, during the inverse process of projecting 

points onto the lidargram planes, which specific points of the 

transformed cloud are to be intersected. This determination is 

made based on the points projected onto the lidargram. 

 

3.3.2 Case 2 testing 

 

Case 2 involves the simultaneous alignment of the EOPs of the 

lidargrams (EO_Ldr3_2) and of the photos (EO_Pho3_2) 

(Figure 4k), without blocking with small EO errors any 

calculated EOPs (Figure 4k). This is therefore a universal case. 

GCPs were also used as a reference. The resultant outcomes 

were the adjusted EOPs of lidargrams (EO_Ldr3_2) and of 

photos (EO_Pho3_2). The utilisation of EOPs of lidargrams 

(EO_Ldr3_2) facilitates the generation of a novel point cloud 

through the identification of points with ULPIs. 

 

3.3.3 Case 3 testing 

 

Case 3 results in the adjustment of the EOPs images 

(EO_Pho3_3) without the use of GCPs (Figure 4l). In this 

particular instance, all matrix points function as checkpoints. 

Errors in the EOPs of lidargrams (EO_Ldr2) are set a priori, 

thereby ensuring their invariance during adjustment. The 

calculated EOPs of photos (EO_Pho3_3) are accurate due to the 

tie points to the lidargrams. Therefore, it can be stated in basic 

terms that this case represents an intermediate orientation of a 

set of images to a point cloud (represented by lidargrams), with 

the control for this block of photos being determined by the tie 

points. 

 

3.3.4 Evaluation method of tests results 

 

The parameters employed for the evaluation of the calculations' 

precision (along with the proposed methodologies) 

encompassed the errors on the GCPs and ChPs (in meters), in 

addition to the reprojection errors in the pixels of the 

photographs. A comparison of the results of Case 2 with those 

of Case 1 and Case 3 was undertaken in order to assess whether 

the two sets of data were sufficiently linked. Furthermore, it was 

determined whether deep learning matching allowed for 

alignment at a similar level of accuracy for these two data sets 

(photos and lidargrams), and indirectly for the point cloud. 

 

4. Results and discussion 

4.1 Graz test field 

4.1.1 Case 1 
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The GSD of the photos taken at the Graz test field is 5 cm. The 

results of the study are summarised in Table 1. The Root Mean 

Square Error (RMSE) values obtained on the Global Positioning 

System (GPS) points are approximately 1-1.5 times the 

reprojection error (RE) of the height, which is about 2.5 times 

the RE. It is considered that the alignment has been performed 

correctly when the RE is less than half an image pixel. In such 

cases, the results (EO_Ldr3_1) can be used to recalculate the 

transformed point cloud.  

  
RMSE X 

[m] 

RMSE Y 

[m] 

RMSE Z 

[m] 

RE 

[px] 

GCPs (7) 0.079 0.059 0.126 0.459 

ChPs (13) 0.031 0.040 0.113 0.335 

Table 1. Case 1: RMSE and reprojection errors of GCPs and 

ChPs 

 

This is achieved through the utilisation of the ULPIs allocated 

to the points (along with their respective projections) during the 

process of generating the lidargrams within the PyLiGram 

software framework. 

 

4.1.2 Case 2 

 

The second case constitutes the general case in which EOPs of 

lidargrams (EO_Ldr2) and photos (EO_Pho2) are aligned. It can 

be concluded that the greater flexibility of the block, as 

evidenced in this instance, has a significant impact on the 

accuracy of the results obtained (see Table 2). 

At the output, the obtained EOPs of lidargrams (EO_Ldr3) and 

photos (EO_Pho3) are exemplary, and their reliability is at a 

similar level despite the different values of GSD of the images 

and the average distance of the cloud points from which the 

lidargrams were generated. 

.  
RMSE X 

[m] 

RMSE Y 

[m] 

RMSE Z 

[m] 

RE 

[px] 

GCPs (7) 0.077 0.051 0.084 0.448 

ChPs (13) 0.012 0.028 0.111 0.335 

Table 2. Case 2: RMSE and reprojection errors of GCPs and 

ChPs 

 

4.1.3 Case 3 

 

The results of this case are given in Table 3. The block of 

images is aligned exclusively on the basis of its association with 

the lidargram block. It is evident that no GCPs are utilised in 

this context; the horizontal RMSE errors obtained on the ChPs 

demonstrate a high degree of similarity to the RMSE obtained 

on the GCPs in case 2. In terms of vertical results, the outcomes 

are twice as unfavourable as in the other cases. The reprojection 

error is at an appropriate level, falling below half of a pixel. 

It is evident that the utilisation of oriented and aligned lidar data 

(i.e. lidargram blocks) facilitates the orientation of 

photogrammetric images, thereby ensuring the production of 

accurate results. 

  
RMSE X 

[m] 

RMSE Y 

[m] 

RMSE Z 

[m] 

RE 

[px] 

GCPs (0) - - - - 

ChPs (20) 0.077 0.043 0.211 0.375 

Table 3. Case 3: RMSE and reprojection errors of ChPs 

 

4.1.4 Comparison 

 

A comparison of the results obtained from the three cases for 

the Graz test field demonstrates the feasibility of aligning the 

data correctly in each variant, contingent on the initial data 

available. In terms of RMSE (both absolute and relative to GSD 

and cloud density), the results are satisfactory, while a 

reprojection error of less than 0.5 px confirms the correctness of 

the observations and adjustment. 

 

4.2 Loosdorf test field 

4.2.1 Case 1 

 

The analysis of the results for the Loosdorf test field was carried 

out in a similar manner. In the former case, the RMSE X and Z 

errors values for the GCPs and ChPs, as well as an RMSE Y 

value that was 1.5 times smaller for the control points, were 

obtained. The RMSE X values were approximately 0.5 GSD, 

the RMSE Y values were below 2 GSD for GCP and almost 

slightly above 1 GSD for ChPs, while the RMSE Z was 

approximately below 1 GSD for both types of reference points. 

Furthermore, the reprojection error values were found to be very 

low. 

  
RMSE X 

[m] 

RMSE Y 

[m] 

RMSE Z 

[m] 

RE 

[px] 

GCPs (4) 0.044 0.138 0.074 0.131 

ChPs (19) 0.044 0.090 0.070 0.229 

Table 4. Case 1: RMSE and reprojection errors of GCPs and 

ChPs 

 

4.2.2 Case 2 

 

The second case, in which reference points were selected with a 

high degree of precision, demonstrated a notably high level of 

accuracy. While the results are indeed very good, it is 

imperative to treat them as an approximation, given that they 

are subject to a priori selected errors, thereby allowing 

considerable flexibility of the block. 

   
RMSE X 

[m] 

RMSE Y 

[m] 

RMSE Z 

[m] 

RE 

[px] 

GCPs (4) 0.001 0.002 0.005 0.131 

ChPs (19) 0.002 0.002 0.005 0.229 

Table 5. Case 2: RMSE and reprojection errors of GCPs and 

ChPs 

 

4.2.3 Case 3 

 

The alignment of images with lidar data demonstrates minimal 

RMSE errors, with approximately ¼ GSD of RMSE X and 

RMSE Y, and less than ½ GSD of RMSE Z. The REs are 

comparable to those observed in the other two cases. 

  
RMSE X 

[m] 

RMSE Y 

[m] 

RMSE Z 

[m] 

RE 

[px] 

GCPs (0) - - - - 

ChPs (23) 0.022 0.022 0.033 0.219 

Table 6. Case 3: RMSE and reprojection errors of ChPs 

 

4.2.4 Comparison 

 

In this test field, the optimal outcomes were achieved for 

reference case 2. However, it is noteworthy that for case 3, the 

RMSE errors are twofold smaller than those obtained for case 1. 

The presence of reprojection errors that are similar or identical 

serves to confirm the accuracy of the measurement and 

alignment processes. 
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5. Conclusions 

The research presented here constitutes a further step in a wider 

research project on the possibilities of improving the quality of 

data captured with hybrid sensors. The utilisation of a 

methodology for the projection of LiDAR data onto virtual 

image planes, in conjunction with the application of unique 

identifiers to cloud points (ULPIs) and their images on 

lidarograms, facilitates the precise reconstruction of the point 

cloud through the implementation of photogrammetric 

techniques. 

The research phase that has been presented concerns new 

possibilities for the integration of photogrammetric and lidar 

data through efficient matching methods based on deep machine 

learning. The integration of photogrammetry and lidar data 

facilitates the standardisation of adjustments to the block. 

The results presented herein demonstrate that, irrespective of 

the configuration of the input data, the alignment proceeds in an 

optimal manner. 

In the initial instance, the orientation of lidar data is facilitated 

by the alignment of lidargrams with photographs. The 

geocoding of the hybrid block is determined by the 

georeferencing of the images, which are the basis of the 

measurement of GCPs. 

The second case is general in nature. That is to say, the external 

orientation elements of all images (photographs and lidargrams) 

are calculated in this instance, which in turn leads to a corrected 

external orientation of the point cloud. 

The third case pertains to the alignment of images in the 

absence of GCPs, with the LiDAR cloud serving as the 

reference data. 

In each of the three cases tested on the two test fields with 

different land-use and data characteristics, the results confirm 

that an accurate alignment of the data is possible despite the fact 

that the image matching was carried out with quality set on low 

level. The visual quality of the images was such that it was not 

possible to match them at a higher quality. This was due to the 

blurring of the images. It is evident that there is a necessity to 

enhance the quality of lidargram generation, which could result 

in a greater number of matches with higher precision. With 

regard to classical methods, it appears that the parameters and 

generation algorithm employed have attained their theoretical 

limits. It is anticipated that further research will be conducted 

with the utilisation of inpainting methodologies for the purpose 

of generating synthetic images. 

To summarise, the preceding studies propose fresh opportunities 

for the combination of photogrammetric and scanning data by 

means of lidargrammetry. The findings substantiate the efficacy 

and legitimacy of the method. 
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