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Abstract

This paper addresses how to utilize multiple spinning lidar sensors for real-time applications. Especially how to derive back the
problem to having only a single lidar input, to which there are countless available algorithms solving odometry, mapping, object
detection and tracking and many other tasks. We provide a strategy that can be implemented to most if not all spinning lidars on the
market. Instead of traditional data batching that accumulates data packets based on the spinning angle, we propose batching based
on the sampling time, which also enable us to ensure strict time alignment within the multiple lidar sources. In order to demonstrate
our batching strategy, we provide a case study where we evaluated a SLAM algorithm with a single and a dual-lidar setup. Our
batching algorithm enabled us to use the SLAM algorithm that was previously designed for a single spinning lidar without any
additional change, while it showcased benefits, especially in stability due to the larger field of view and reduced occlusion.

1. Introduction

Spinning lidars with fast and accurate range measurements has
become essential in many modern real-time automation applic-
ations. As the cost of these sensors is decreasing, today’s ques-
tion is more about how to utilize multiple units on the same
platform rather than concerns related to its adoption. Com-
bining multiple units can increase field of view (FOV), reduce
occlusion problems posed by the platform or the environment,
and provide redundancy in case a sensor fails. However, it is
not perfectly clear and explicitly discussed how to utilize mul-
tiple sensor units at the same time. Most state-of-the-art al-
gorithms reliant on lidar data including odometry, positioning,
mapping (e.g. SLAM) and object detection and tracking (ODT)
algorithms assume only a single lidar. While efforts on sensor
fusion is immense, the focus has primarily been to fuse lidar
with other type of sensors, including inertial measurement units
(IMUs) and cameras.

Oftentimes, the manufacturer provides a driver that batches and
assembles raw data packets provided by the sensor into a point
cloud or single scan. Algorithms that utilize multiple lidars
either: (a) combine these point clouds right after the driver and
consider them as a single point cloud (from now on referred to
as Approach A), or (b) they process each of these point clouds
individually and fuse the measurements derived from them (see
e.g Jiao et al. 2022; Tasdelen and Sezer 2020 and Figure 1). The
first approach can be cumbersome, as ideally, we want to ensure
that points are batched within the same time window synchron-
ously for all lidar. This requires additional support from the
hardware and/or the driver on top of sensor clock synchron-
ization. In certain cases, synchronous batching might not be
guaranteed even if the sensor supports phase locking, due to
considerations in mounting angles or inference issues. On the
other hand, the second approach requires special care during the
algorithm design (e.g. how to estimate and propagate uncertain-
ties of the observations derived from the different lidars), often
introducing a lot of complexity. The survey Lee et al. (2024)
further discusses efforts taken towards using multiple lidars for
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(a) Combines point clouds into a single unit and handles it similarly to a
single lidar system (see e.g., Tasdelen and Sezer 2020).
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(b) Develops algorithms that derive measurements from each lidar
separately and fuses them on the observation level (e.g., Jiao et al. 2022).

e.g. SLAM, ODT

S
X
& Q0%
o

L
Q
S
7 .
@ S & Processing
S
)
)
5

o

(c) The proposed batching strategy that eliminates potential issues
arising in approach (a)

>
771 e.g SLAM, ODT

O

Figure 1. Common (a and b) and proposed (c) strategies to
utilize multiple lidar sensors.

odometry purposes.

We propose a generic strategy to combine data from any num-
ber of lidars. Up to the authors knowledge, the only similar
solution has been implemented in Nguyen et al. (2023). How-
ever, we believe our strategy further generalizes, optimizes, and
emphasizes the concept, and it could provide value for multi-
lidar data consumers focused not only on state estimation and
mapping, but any lidar related tasks. Similar to the Approach
A, our goal is to combine data from multiple lidars before it
is fed to any other subsystem. Hence easier utilization of the
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Figure 2. Illustration of time misaligned combination of multiple
lidar data.

wide range of available algorithms already developed consider-
ing only a single lidar, but with the benefits of larger FOV and
reduced occlusion. Our multi-lidar batching strategy is imple-
mented directly in the sensor driver, and it ensures time con-
sistency within the batched point cloud data across all sensors.
It relies on time information included in the raw data pack-
ets (available for most commonly used, if not all, spinning
lidars) ensuring time consistency also throughout all ignition
cycle even without phase locking mechanisms. Furthermore,
it provides flexibility to output partial scans in case faster up-
date times are required, similary as in Qu et al. (2021). On the
downside, this approach requires custom implementation of the
sensor drivers, including the computation of transforming the
raw sensor readings into cartesian coordinates.

1.1 Potential issues with Approach A in real-time applica-
tions

Figure 2 illustrates what might happen if we are batching the
data based on spinning angle, independently for each lidar.
When we would combine those scans afterward relying on Ap-
proach A, we would get a scan that covers a significantly lar-
ger time period than what we would get from a single lidar.
This can cause a lot of issues when we try to integrate this kind
of sensor data to real-time algorithms, especially where timely
updates are required and synchronization is essential. There
might be situations where we want to use different lidars, and
they might have different spinning frequencies. Approach A
would be inconsistent which scans to actually combine, and the
time period at which we want to update our e.g. state estim-
ation algorithm might end up varying causing inconsistencies
and difficulties.

Additional issues might appear in scenarios with dynamic sur-
rounding. Especially when it is not the lidar that is moving
but external objects whose trajectories we cannot estimate from
other sources to apply corrections for. We illustrate in Figure
3 what might happen with highly misaligned batching. As our
batching might cover one and a half times more time than what
a single lidar scan would, it is possible that the same object ap-
pears in the combined scan a full scan period apart. To provide
an example, if our lidars spin at 10 Hz, and two lidars both see
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Figure 3. Additional potential issues when considering external
dynamic objects in time misaligned scans.

the same object going at 10 km/h, it might appear in the com-
bined scan twice with around 28 cm offset. An offset we would
have no means to correct.

Our approach solves these potential issues, and it makes it easy
and straightforward to integrate multi-lidar setups with any real-
time algorithm that was designed with a single spinning lidar in
mind (e.g. Shan et al. (2020); Xu et al. (2021); Vizzo et al.
(2023)).

2. Materials and Methods
2.1 Multi-lidar batching strategy

For our batching strategy, we consider measurement blocks as
the smallest building elements. A single measurement block
contains a number of lidar reading (usually depending on the
number of channels in the given sensor), and they all corres-
pond to the same time stamp. Spinning lidars usually organize
their data broadcast into packets containing multiple measure-
ment blocks. Our goal is to batch measurement blocks into
single scans with a 2D structure, where each column corres-
ponds to the same time stamp, and the columns are increasing
in time. Furthermore, the output rate of batched scans should
be consistent.

First we need to initialize our system. An arbitrary output fre-
quency fscan can be selected for the batcher, from which the
nominal scan period can be computed as tscan = 1/fscan-
Then, after caching at least one packet from each lidar, we
identify the largest starting timestamp to maq. Within all sensor.
From which we compute the starting time for the first full scan
as:

(to,maz mod tscan) +tscan - (1)

tinit - tO,maz -

Finally, we discard all measurement blocks with stamps smaller
than ¢;y,+, concluding the initialization phase.

The main batching strategy is illustrated in Figure 4. We main-
tain a custom packet cache, implementing a first in, first out

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-1-W4-2025-37-2025 | © Author(s) 2025. CC BY 4.0 License. 38



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W4-2025
EuroCOW 2025 — European Workshop on Calibration and Orientation Remote Sensing, 16—18 June 2025, Warsaw, Poland

scan

i
\ /|

\ / |
data corresponding to
a measurement block I
with a single time stamp !
|
I
i

[l fined next
| location
i '
! fixed time span |

| (@)- load data to current scan
\ - update location

— @G- transform lidar readings into required format
>

(e.g. cartesian coordinates, numeric convertion for other fields)

/D check if current scan completed
= - ensure there is at least one measurement
block cached for all sensor

packet cache

IR T

next data
pointer

lidar 1

(2)- select next measurement block
=’ based on their time stamps —

lidar 2 Mﬂﬂ
—_— .‘ne{(t data <5> update cache pointers
N — |pointer = _ flush packet if empty

data
packet

Y

. lidari
]|
~ A

\ /
X7
measurement
blocl

used
meas. blocks

Figure 4. Illustration of the main batching strategy. Two main components are the scan under construction having columns with
monotone increasing timestamps, and a packet cache, maintaining a FIFO-like queue for each lidar sensor.

(FIFO) type queue for each sensor. Furthermore, we maintain
the location of the next available measurement block within the
front (head) packet for all lidar. The algorithm is triggered every
time after a new packet is cached, and it repeatedly executes
5 main steps until a stopping condition in the first step yields
false. This condition checks whether there is available data for
all lidar sensors, in order to ensure that the measurement blocks
are selected in a strictly increasing manner. The second step is
the selection process itself, where we look through the front ele-
ments in the packet cache and identify the measurement block
with the smallest timestamp. In the third step we convert the
selected measurement block into the desired format. This con-
tains conversion of range values and all other fields from how
they are encoded in the raw packets into formats desired. This
is also the step where we convert from polar coordinates into
cartesian coordinates. In order to improve efficiency, sensor
drivers often compute a lookup table once in the initialization
phase that already contains extrinsic calibration information on
top of the conversion from polar to cartesian coordinates. We
do the same, applying known transformation matrices for each
lidar, directly converting the raw data into a common body
frame, saving additional computations transforming the point
clouds once again as it would be in Approach A. The forth
step is to load the converted data into the scan under construc-
tion at the current location pointer and shift this pointer by one
column. Finally, mark the selected measurement block used
in the packet cache by incrementing the packet’s data pointer.
In case it was the last block in the packet, we flush the whole
packet.

During the first step we also check whether the currently
batched scan has been completed. We check this by maintain-
ing the start time of the next scan by adding ¢scqn to the previ-
ous starting time, initialized by ¢;,¢ as discussed previously. If
the lowest timestamp in the packet cache is larger than the start
time of the next scan, than the batching of the current scan is
concluded. We publish it and empty the scan buffer in order to
start batching the next one.

2.2 Case study - Forest harvester positioning

In this case study we illustrate the benefits of having mul-
tiple lidars on top of a forest harvester for a lidar-inertial based
SLAM solution, furthermore illustrate how our custom batcher
enables us to run our algorithm previously designed and func-
tion only with a single lidar.

We collected data with a dual Ouster 0SO-128 lidar setup,

mounted at angles on both side of the boom on a Ponsse
Scorpion King CTL forest harvester (see Figure 5). Besides
the lidars, we also mounted a Lord Microstrain 3DM-GQ7
GNSS/IMU to support our lidar-inertial positioning algorithm.
We recorded data in two scenarios, in which both the forest
harvester performed commercial thinning operation inside the
forest. In one case, the machine was in a sparse pine forest,
providing a scenario considered as an easier environment for
lidar based real-time positioning. The other case was a dense
and young forest, that is considered as a difficult area including
a lot of occlusion and irregular shapes. An image to illustrate
both case can be seen in Figure 6. In both cases the machine was
continue thinning and go deeper into the forest following a rel-
atively straight trajectory until the total station was able to track
the machine, at which point it turned back and drove back to the
starting location. The easier scenario took about 15 minutes,
while the difficult one took 60 minutes of machine operation.
In order to evaluate the positioning of the forest harvester, we
recorded reference trajectory throughout the measurements us-
ing a Leica TS60 robotic total station, that was tracking a prism
also mounted on the machine. The reference trajectories can be
seen in Figure 7.

The actual positioning algorithm for this case study was based
on our earlier forest harvester related work from Faitli et al.
(2023, 2024), with certain changes and improvements. The
algorithm expected complete lidar scans and IMU measure-
ments. We first performed a preprocessing step on the scan,
where we removed the machine points and corrected for mo-
tion distortion. The machine points were removed using a large

Figure 5. Forest harvester equipped with multiple lidars in
different orientations. The topmost sensors on both sides (circled
with red) are the Ouster OS0-128 lidars used in this work.
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(a) a thinning of a pine forest

(b) a pre-commercial thinning of a mixed-species forest

Figure 6. The two forest environments for a comparative study. Subfigure (a) shows a sparser pine forest that is considered as an easier
case, while (b) depicts a younger mixed-species forest that provided the harder use case.
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Figure 7. Reference trajectories recorded by the total station, overlaid on aerial images by the National Land Survey of Finland from
the easier (a) and more difficult (b) forest environment. The trajectories are colored by the time of the measurement. Both sites are
located at Evo region in southern Finland.

bounding box with a constant size and location in lidar frame.
The box was sized with the preference on removing all ma-
chine points even if it sacrificed a lot of non-harvester points.
Then the preprocessed scan was roughly aligned to a local map
using the Distribution-to-Distribution (D2D) Normal Distribu-
tions Transform (NDT) proposed by Stoyanov (2012), and fur-
ther developed by Kivioja (2022). For this rough alignment, we
used an initial guess computed by integrating the IMU measure-
ments, which was already computed earlier during the motion
correction. We applied a larger cell size of 2.5 m for the prepro-
cessed scan, while we maintained the local map’s NDT repres-
entation with 1 m cell size. The result from the rough alignment
was fed into a factor graph (Dellaert and Kaess (2017)) as prior

factors containing measurements about the absolute pose with
respect to the local map frame. Additionally, we generated and
added preintegrated IMU factors (Forster et al. (2017)) to this
graph. We then optimized the graph using the iSAM optimizer
(Kaess et al. (2012)) and updated our current state including
pose and IMU biases. When the machine travelled far enough
from the previous mapped scan (4.0 m in our experiments), we
updated the local map using the most recent scan. Before up-
dating the local map, we registered the scan again but using a
smaller cell size of 0.5 m. This result was used then to trans-
form the current scan into the map frame. Then we recomputed
the NDT representation with the local map’s cell size of 1 m,
and merged it into the map itself. To keep the local map reas-
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Figure 8. Drift error for the (a) easy and (b) difficult scenario.
DL stands for dual-lidar and SL stands for single lidar system.

onably sized, we only maintained the last 3 scans this way, and
always removed the oldest one after exceeding this size. At
this point of experiments, we applied no further logic to correct
for drifts, such as loop closure mechanisms or additional pose
graph optimization.

To understand the benefits of the dual lidar setup, and to show-
case that the batching strategy is functional, we measured the
maximum drift occurred throughout the measurements. To
measure the drift, we first resampled the output trajectory to
match the timestamps of the total station trajectory. Then, we
identified an initial segment based on the first 10% of accumu-
lated travelled distance. We then used this segment to compute
the alignment between the SLAM and the total station traject-
ories. As it is an initial alignment, the two trajectories were
drifting away from each other as time passed. We computed
this drift error between the corresponding trajectory points, and
observed and noted the largest error that occurred, usually be-
fore the machine started driving backwards.

We performed the drift evaluation for trajectories generated by
the SLAM algorithm processed using only one of the lidars as
input, and then the dual-lidar provided by our batcher. In ad-
dition, we wanted to see the stability of the SLAM algorithm
with both single and dual lidar configurations. Therefore we
reprocessed the trajectories but using only every N-th scans to
update the algorithm. The complete list including processing
every scan were N =1, 5, 10 and 15.

2.3 Results and discussion

First of all, we had no issue integrating the multi-lidar data after
applying our custom batching strategy. The outcome of the

batcher (see Fig. 9) was directly compatible with the original
algorithm that was designed for a single spinning lidar.

The observed drift from the forest harvester positioning study
can be seen in Figure 8. We found that in the easier (more
sparse) forest, our SLAM functions relatively similar whether
we used single or dual lidar setup. Both setups remained stable
even with updating as little as only every 15th scans. On the
more difficult forest environment we however observed a big
difference in the two setups. Having two lidars enabled us to
update the SLAM algorithm only with every 10th or 15th scans,
while having only one lidar the algorithm did not manage to
stay stable. Updating with every 10th scan already caused a
huge drift, while it just exploded when we tried updating with
every 15th scan.

Currently the implementation used only two similar Ouster
0OS0-128 sensors. The setup has not yet been tested with
sensors from other brands nor with more than two similar
sensors. In the future work, we will test more sensors from dif-
ferent brands that also contain different number of lidar chan-
nels.

Furthermore, it is important to note that some of these lidars
might have different modes (e.g. single or dual return), which
include different raw data package structures. In cases when
it is desired to test different modes, our batcher algorithm is
less flexible and requires more implementation effort to use.
However, this work has to be experimented and done once for
a sensor setup, which enables then the use of most available al-
gorithms designed for a single spinning lidar without additional
implementation and design efforts. The one exception, and as
limitations might arise with algorithms using the lidar scans as
2D images (e.g. with range or intensity values), feeding them
into deep learning based models commonly trained on camera
images. As data packages might arrive randomly from the dif-
ferent sensors, and the packages are anyway mixed from the
multiple sources, the 2D image representation of the combined
scans most likely looks very far from an actual camera image.

3. Conclusions

We have shown an alternative approach to combine data ob-
tained from multiple lidars for real-time applications. Our ap-
proach guarantees by design that the merged point clouds have
no temporal issues, making multi-lidar systems more robust
and compatible with algorithms originally designed for a single
lidar system. Our strategy is generic and in theory works with
most, if not all, spinning lidar sensors on the market, however
it requires additional effort as our implementation must replace
existing drivers commonly provided by the manufacturer. Our
case study showed that our batching strategy is functional. Fur-
thermore it hinted some of the benefits of having multiple lid-
ars, especially the significant improvement in the the stabil-
ity of our positioning and mapping algorithm inside difficult
forest area. Currently the implementation used only two similar
Ouster OS0-128 sensors. In the future work, we will compare
sensors from different manufacturers and different amount of
lidar beams in them using the proposed framework.
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Figure 9. A combined scan batched using our custom strategy.
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