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ABSTRACT: 
Recent advancements in aerial imaging, including high-resolution sensors and integrated GNSS/IMU systems, have significantly 
enhanced photogrammetric methods for geospatial data acquisition. While most aerial data is captured during daylight, night-time 
imaging is increasingly being used in applications such as urban analysis and disaster assessment. However, automatic co-registration 
of day and night imagery remains challenging due to substantial radiometric differences. This study investigates the use of deep 
learning-based feature matching techniques for the alignment of multi-temporal, day-night aerial datasets. Experimental results show 
that feature extraction is highly sensitive to scale, with only a limited subset of deep learning (DL) methods—particularly ALIKED 
with LightGlue and SuperPoint with SuperGlue—proving robust under low-illumination conditions. Additionally, a U-Net-like model 
was trained to pre-process night-time images by approximating their radiometric characteristics to those of daytime images, enabling 
consistent feature matching across all tested methods. Among them, ALIKED with LightGlue offered the best balance between match 
quantity and computational efficiency. Object-space evaluations confirmed that the proposed pre-processing step significantly 
improves co-registration accuracy. The methodology offers a promising foundation for future multi-sensor and multi-modal image 
alignment tasks, including RGB-thermal and 2D-3D matching.

(a) (b) 
Figure 1: Sample images of a day acquisition with a Vexcel UltraCam Dragon 4.1 camera (a) and a night acquisition with the IGI 
DigiCAM 150 camera (b). 

1. INTRODUCTION

The improvements of aerial cameras and the integration of 
GNSS/IMU onboard sensors have been followed by numerous 
developments in automated photogrammetric methods for 
geospatial data generation and interpretation (Heipke and 
Rottensteiner, 2020; Kocaman et al., 2022).  
Modern aerial platforms are equipped with cameras featuring 
large-format, high-spatial-resolution sensors, enabling GSD-
level (ground sampling distance) reconstruction accuracy for 
both urban and rural landscapes. A common trend is the 
combined use of nadir and oblique imagery to enhance the 
reconstruction of vertical and sub-vertical surfaces (Remondino 
and Gerke, 2015; Toschi et al., 2017). These camera systems 
generally capture data in the visible spectrum, although there is 
an increasing request for multispectral or thermal bands 
acquisitions. This facilitates a broad range of applications, 
including the analysis of urban heat islands, land classification 
through spectral signature analysis, forestry assessments, etc. 
(Rodriguez et al., 2022; Beber et al., 2023). In some cases, these 
imaging systems are integrated with LiDAR sensors, which offer 
additional benefits such as the ability to penetrate vegetative 
cover and classify surfaces based on return time and other metrics 
(Toschi et al., 2019). 
While most aerial data are usually acquired during daylight 
hours, the collection of night-time datasets (visible and thermal) 
is increasingly attracting interest and gaining traction in recent 
research and operational practices. For example, night-time 

1 https://www.agisoft.com/ 

imagery has been employed in the assessment of earthquake 
damage (Li et al., 2025) or, combined to daytime datasets, to 
support urban functional zone classification (Huang et al., 2021) 
or landscape monitoring (Santise et al., 2018). 
Combining day and night imagery represents a specific multi-
temporal acquisition scenario and the automatic co-registration 
of night-time imagery and daytime datasets poses challenges, 
primarily due to the substantial variations in illumination 
(Burdziakowski and Bobkowska, 2021). Conventional feature-
matching algorithms, such as Scale-Invariant Feature Transform 
(SIFT - Lowe, 2004), often struggle under these conditions, 
necessitating the development or adaptation of more robust 
techniques. 

1.1 Paper’s Aim 

This paper proposes a solution for the night and day co-
registration problem in aerial photogrammetry. Indeed 
commercial (e.g. Metashape1) and open-source (e.g. COLMAP2) 
methods, based on SIFT-like feature matching, are unsuccessful 
in generating reliable correspondences between night and day 
image blocks. 
The proposed approach is based on the extraction and matching 
of deep learning (DL) local features. These features are found 
with algorithms trained on large datasets that exhibit significant 
variation in viewing angles and - particularly relevant to this 
study - substantial radiometric differences caused by illumination 
changes (Jin et al., 2021). Deep learning-based local features 

2 https://colmap.github.io/ 
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have demonstrated considerable advantages in handling multi-
temporal and multi-modal datasets (Song et al., 2024; Morelli et 
al., 2022). After initial experience with oblique blocks 
(Remondino et al., 2022), this work aims to evaluate the 
effectiveness of learning-based tie points for the co-registration 
of aerial night and day imagery using off-the-shelf pretrained 
models. 
 

2. DATASETS 

Two datasets (Table 1) over the city of Graz (Austria) are 
utilized: 
- daytime RGB images (50) acquired with a Vexcel UltraCam 

Dragon 4.13 system (Farella et al., 2025);  
- night-time RGB images (191) captured using the IGI DigiCAM 

camera. 
A representative example of the imagery is shown in Figure 1. 
For both datasets, sensor position and orientation parameters, 
derived from the respective onboard navigation systems, are 
available and are used as initial approximations for the aerial 
triangulation process. 
 

 Day RGB images Night RGB images 
Date June 2024 November 2024 

Camera Vexcel UltraCam 
Dragon 4.1 

IGI DigiCAM 150 
(PhaseOne) 

Sensor size 53.181 x 39.706 
mm 

53.407 x 40.051 
mm 

Sensor type Sony IMX-411 
(CMOS) 

Phase One BSI 
(CMOS) 

Original size 14144 x 10560 px 14204 x 10652 px 
Reduced size 1024 x 764 px 1024 x 768 px 

# images 50 191 
Focal length 81 mm 40 mm 

Above ground 
height 1060 m 860 m 

Table 1: Night and day datasets information. 
 
 

3. PRELIMINARY STUDY 

Given the multiple learning-based methods available in the 
literature, preliminary experiments assessed the suitability of 
deep learning-based matching algorithms for handling significant 
radiometric and temporal differences between night and day 
images. A qualitative evaluation was conducted on a small 
dataset comprising nine images, with both night and day 
acquisitions covering the same urban area. The experiments 

employed the DIM 4  library (Morelli et al., 2024a), which 
provides a collection of both hand-crafted and deep learning-
based local feature extractors and matchers, with the added 
capability of exporting correspondences directly into 
photogrammetric software. Given the high computational 
demands associated with processing high-resolution imagery, 
DIM supports high-resolution matching through a tiling strategy. 
The following DL methods were tested (Table 2): ALIKED 
(Zhao e t al., 2023) combined with LightGlue (Lindenberger et 
al., 2023), DISK (Tyszkiewicz et al., 2020) combined with 
LightGlue, DeDoDe (Edstedt et al., 2024a), SuperPoint (DeTone 
et al., 2018) combined with SuperGlue (Sarlin et al., 2020), 
SuperPoint combined with LightGlue, Key.Net (Barroso-Laguna 
et al., 2019) combined with HardNet (Mishchuk et al., 2017), 
LoFTR (Sun et al., 2021) and RoMa (Edstedt et al., 2024b). SIFT 
has been testes as representative of hand-crafted features. 
However, no local feature method was able to generate a 
sufficient number of matches to triangulate the night and day 
multi-temporal images at full resolution. The only successful 
approach involved a significant downsampling of the images 
(Table 1). This suggests that discriminative correspondences, 
such as building corners or road intersections, can only be 
reliably detected at a lower resolution, where radiometric and 
structural differences between night and day images are less 
pronounced. Consequently, all subsequent experiments were 
conducted using downsampled image sets. Figure 2 presents a 
subset of methods that successfully produced matches passing the 
epipolar geometry verification. The figure shows that night and 
day matching is a complex task, which only a few DL local 
features can handle. Moreover, even among the methods that 
successfully detect tie points – such as DeDoDe, LoFTR and 
RoMa - a high number of outliers is observed. 
 

Local features and matcher Computation time [s] 
SuperPoint + SuperGlue 33.96 
SuperPoint + LightGlue 9.44 
Disk + LightGlue 9.85 
Aliked + LightGlue 8.18 
DeDoDe + LightGlue 35.30 
KeyNet + HardNet8 10.44 
LoFTR 16.32 
RoMa 488.92 

Table 2: Computation time of different local features and 
matchers to extract tie points exhaustively in the subset of the full 
night and day block. Tests performed on 12th Gen Intel(R) 
Core(TM) i7-12700H 2.30 GHz, 32.0 GB RAM and NVIDIA 
GeForce RTX 3050.

 

 
ALIKED + LightGlue - 149 verified matches 

 
DeDoDe - 18 verified matches 

 
LoFTR - 124 verified matches 

 

 
SuperPoint + SuperGlue - 80 verified matches 

 
RoMa - 8625 verified matches 

 

Figure 2: Verified matches (RANSAC on epipolar geometry) visualized with green lines between a daytime and night-time image.  
 

 
3 https://www.vexcel-imaging.com/ultracam-dragon-4-1/  4 https://github.com/3DOM-FBK/deep-image-matching  
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ALIKED + LightGlue SuperPoint + SuperGlue RoMa 
 

Figure 3: The only three DL-based methods able to orient a subset of the night and day image block composed of 4 daytime (lower 
strip) and 5 night-time (upper strip). 
 
Ultimately, the ALIKED and LightGlue combination was 
selected as the preferred matching method, because of its speed 
(Table 2) and capability of extracting valid correspondences and 
successfully orienting the entire subset (Figure 3). RoMa, a dense 
matcher, demonstrated the ability to orient the multi-modal 
block, but it was excluded due to its prohibitively high 
computational cost. SuperPoint combined with SuperGlue could 
be instead a valid alternative to ALIKED combined with 
LightGlue. 
 
 

4. METHODOLOGY 

Of the eight matching approaches evaluated in the preliminary 
study, only three produced reliable results for the co-registration 
of night and day imagery blocks. While this outcome is 
noteworthy due to its novel application in aerial photogrammetry, 
it is somewhat unexpected. Deep learning methods, which were 
included in the evaluation, are typically trained on challenging 
day-night image pairs, and a better ability to manage such 
datasets was expected. Therefore, an optional image 
enhancement step is introduced, which involves adjusting the 
radiometry of daytime images to resemble that of night-time 
images, with the goal of increasing the number of feature 
matches, hence the quality of the bundle adjustment. As 
anticipated in Section 3, the proposed solution for the co-
registration of day-night multi-temporal image blocks is based on 
ALIKED combined with LightGlue, utilizing the pre-trained 
model provided by the original authors. 
 
4.1 DL feature-based day-night image co-registration 

Based on the initial investigation, all images are downsampled by 
a factor of approximately 14 - an empirically determined 
resolution at which correct tie points can be extracted using 
ALIKED+LightGlue, SuperPoint+SuperGlue and RoMa. The 
matching is conducted using the DIM library, employing a brute-
force strategy that exhaustively attempts to match daytime and 
night-time images. No image tiling is required when working at 
this resolution.  
Image orientation is performed within DIM using pycolmap – the 
Python bindings of COLMAP – keeping the interior parameters 
constant for the Vexcel UltraCam Dragon camera as provided in 
the calibration certificate. The IGI DigiCAM camera was instead 
processed in self-calibration allowing for radial distortion 
parameters to be estimated. DIM outputs the 3D tie points and 
camera orientation in a COLMAP reconstruction format which is 
loaded with pycolmap to finalize the orientation. The camera 
poses of the night images obtained from the onboard inertial 
navigation system of the aerial platform are utilized as constraints 
in a final bundle adjustment. To emphasize the co-registration 
errors of the night-time block on the daytime block, only daytime 

poses are used. In pycolmap, the bundle adjustment cost function 
minimizes at the same time the reprojection error of the tie points 
and the residuals on the night images positions with a prior 
accuracy of 5 cm. 
The final output is hence a COLMAP reconstruction scaled and 
georeferenced in the reference system of the night images. The 
reconstruction is exported in Bundler format and imported into 
Metashape to independently generate dense point clouds for both 
night and day images.  The proposed method does not rely on 
ground control points (GCPs), as it is designed to be a fully 
automatic co-registration approach. However, incorporating 
GCPs into the pre-oriented day and night image blocks would 
likely further enhance the accuracy of the reconstruction. 
 

    

    

    

    
Figure 4: Example of 512x512 px patch pairs used for the training 
process and extracted from daytime and night-time orthophotos. 
 
4.2 Image enhancement 

Prior to extracting keypoints with ALIKED, an optional pre-
processing step is proposed in which the radiometry of daytime 
images is transformed to more closely resemble that of night-time 
images. This is achieved using an in-house U-Net-like 
architecture (Ronneberger et al., 2015), i.e. a convolutional 
neural network trained in a supervised manner with paired RGB 
daytime and night-time images. The objective is to enable the 
prediction of a night-time-like version of any given daytime 
image at inference time. Given the difficulty of acquiring drone 
imagery captured from precisely the same viewpoint during both 
day and night, the network was trained using image tiles from 
georeferenced daytime and night-time orthophotos. 
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The developed U-Net model is trained on a custom training 
dataset comprising aligned daytime (input) and night-time 
(output) image pairs. The initial dataset is composed of an 
aligned pair of images which is partitioned into three subsets: 
70% for training, 10% for validation, and 20% for testing. The 
training dataset is then created by applying a random cropping of 
size 512×512 to the training area, as shown in Figure 4. In total 
6400 patches of size 512×512 are generated for the training, half 
of them by using augmentation techniques based on Geometric 
transformations (flipping and rotation) and Color space 
transformations (brightness adjustment). 
The U-Net is trained for a maximum of 100 epochs with a batch 
size of 8 and an initial learning rate of 1×10⁻⁴, optimized using 
the ADAM method (Kingma & Ba, 2015). The loss function is 
defined as the mean absolute error (MAE) between the predicted 
image (y) and the ground truth night-time image (x). 
 

𝑀𝐴𝐸(𝑥, 𝑦) =
1
𝑁,

|𝑥! − 𝑦!|
"

!#$

 

where N is the total number of pixels.  
 

5. RESULTS 

5.1 Evaluation of image enhancement 

RGB daytime images are transformed into night-time-like 
images to improve matching performance on day-night image 
pairs. The U-Net model effectively adjusts the radiometry of 
daytime images to resemble that of night-time images, as shown 
in Figure 5. Inaccuracies in the radiometric transformation 
spuriously appear as the exact negative of the expected outcome. 
Regardless, details over smaller well-lit objects (road marks, 
cars) and the geometries of buildings are preserved. To evaluate 
the effects of this radiometric transformation on the co-
registration of the day-night image block, four daytime images 
included in the nine-image day-night block of the preliminary 
study are transformed with U-Net. Exhaustive image matching is 
then carried out with the matching algorithms listed in Section 3.

a)  b)  c)  
Figure 5: Original daytime image (a) transformed to night-time with U-Net (b) to match the radiometry of an original night-time image 
over the same urban area (c). 

SIFT + NN 
0 verified matches 

SuperPoint + LightGlue 
533 verified matches 

ALIKED + LightGlue 
765 verified matches 

   
DISK + LightGlue 

408 verified matches 
DeDoDe + NN 

119 verified matches 
SuperPoint + SuperGlue 
1010 verified matches 

   
Key.Net + HardNet 
36 verified matches 

LoFTR 
454 verified matches 

RoMa 
9614 verified matches 

   
Figure 6: Example of feature matching between a transformed night-time image (from a daytime image, left) and an original night-
time image (right), across different methods. NN= nearest neighbour matching. 
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Figure 6 presents image matching examples on an image pair, 
reporting the number of tie points which pass epipolar geometry 
verification. Compared to the preliminary analysis conducted on 
the same image pair, although there are clear differences in the 
number of tie points - ranging from just 36 for Key.Net+HardNet 
to 9614 for RoMa - all methods appear to benefit from the current 
enhancement, as they are now able to find correct matches. 
For methods that had previously succeeded in producing tie 
points even without radiometric adjustment, a significant 
increase in the number of verified tie points is now observed: 
ALIKED+LightGlue increased from 149 to 765, DeDoDE from 
18 to 119, LoFTR from 124 to 454, SuperPoint+SuperGlue from 
80 to 1010, and RoMa from 8625 to 9614. Additionally, a 

qualitative reduction in outliers is noticeable in the results 
produced by LoFTR and RoMa.  
These findings suggest that, although the tested matching 
algorithms are originally trained on images with substantial 
radiometric variation - including day-to-night pairs—they still 
benefit from the radiometric adjustment to achieve optimal 
matching performance.  
Finally, Figure 7 illustrates the orientation of the 9-image block 
after the four daytime images were transformed to night-time 
using the U-Net model. All matching approaches, except for 
LoFTR, result in a qualitatively correct sparse reconstruction of 
the block. In the case of LoFTR, the daytime images fail to orient 
properly and are incorrectly aligned along a straight line, 
corresponding to the original flight path. 

 

 
SuperPoint + LightGlue 

2933 3D tie points 

 
ALIKED + LightGlue 

3935 3D tie points 

 
DISK + LightGlue 
6112 3D tie points 

 

 
DeDoDe + NN 

4726 3D tie points 

 
SuperPoint + SuperGlue 

5783 3D tie points 

 
Key.Net + HardNet 
5811 3D tie points 

 
LoFTR 

19041 3D tie points 

 
RoMa 

43632 3D tie points 
 
Figure 7: Orientation of a subset of the night and day image block, 4 daytime (lower strip) and 5 night-time (upper strip), after 
radiometric adjustment with U-net. NN= nearest neighbour matching. 
 
5.2 Evaluation in object space 

Figure 8 presents the results of night and day concurrent image 
triangulation using image correspondences extracted by coupling 
ALIKED and LightGlue. Initial experiments revealed that 
ALIKED outperformed other methods in both speed and the 
number of tie points detected. SuperPoint + SuperGlue also 

proved to be a viable alternative. While it extracted fewer tie 
points than ALIKED during the preliminary phase, it 
outperformed ALIKED in terms of tie point extraction following 
image enhancement with U-Net. However, SuperPoint + 
SuperGlue is significantly slower than ALIKED in tie point 
extraction. Consequently, given ALIKED’s strong performance 
both with and without image enhancement, along with its 
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computational efficiency, it was selected as the deep learning-
based feature extractor for the object space analysis. 
The accuracy of the co-registration is evaluated by comparing the 
day and night 3D dense reconstructions, since the objective of the 
proposed method is to automatically co-register night and day 
image blocks. A cloud-to-cloud (C2C) distance is used as metric.  
Figures 8a and 8b display the sparse point cloud and camera 
orientations in COLMAP with GNSS-INS positions used as 
constraint in the adjustment. The C2C distance computed 
between the day and night dense point clouds generated with the 

orientation results based on the original (Figure 8c) and with U-
Net enhanced (Figure 8d) images.  On average, the U-net camera 
network achieves a 8 cm lower distance between day and night 
points (Table 3), highlighting that the camera poses estimated 
with the transformed images are more accurate. Improved 
orientation is associated with a higher number of tie points (Jin 
et al., 2021) extracted on images enhanced with U-Net, which 
likely also enhances the robustness to outliers during filtering 
using RANSAC and epipolar geometry.  

 

a)  
b)  

c)  d)  

e)  
f)  

g)  

h)  
Figure 8: Results of the joint constrained adjustment of the night and day images using ALIKED + LightGlue in COLMAP (a – top 
view, b – side view). C2C distances between night and day point clouds generated with poses from the orientation of the original 
images (c) and from poses after U-Net processing (d). Histograms of C2C distances for the original images (e) and U-Net pre-processed 
images (f). Cross-section comparison in meters of day and night point clouds (blue: night image block; red: day image block) 
processing original images (g) and pre-processed with U-Net (h). 
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Applying an Iterative Closest Point (ICP) algorithm to the day-
night point clouds results in negligible changes in the Cloud-to-
Cloud (C2C) distance (Table 3). This indicates that the proposed 
automatic co-registration method achieves accuracy comparable 
to that obtained through manual co-registration followed by ICP 
refinement - a procedure commonly adopted in practice. 
Additionally, a qualitative comparison was provided through a 
representative cross-sectional analysis. Figure 8g presents the 
cross-section for the original images, while Figure 8h 
corresponds to the images pre-processed using U-Net. Overall, 
the night-time point cloud (in blue) is frequently shifted in height, 
it shows much less details and is much noisier, primarily due to 
reduced illumination, particularly noticeable on building rooftops 
that are often completely dark in the night images.  
 

C2C error [m] Before ICP After ICP 
Original images 1.80 1.78 
U-net enhancement 1.72 1.73 

Table 3: C2C error between night and day point clouds using 
original or enhanced images (i.e. daylight images converted to 
night radiometry with U-Net). The orientation is performed with 
ALIKED + LightGlue.  
 
 

6. CONCLUSIONS 

Co-registering day and night aerial images presents a significant 
challenge. Preliminary investigations have demonstrated that 
successful feature extraction in this context depends heavily on 
the scale at which local features are detected. In particular, the 
high level of noise typically present in night-time imagery makes 
fine-scale feature extraction unreliable, forcing substantial 
downsampling to achieve consistent results. Even at coarser res-
olutions, only a limited subset of deep learning-based feature ex-
tractors - specifically ALIKED combined with LightGlue and Su-
perPoint combined with SuperGlue - proved effective for estab-
lishing night and day correspondences. Though RoMa also 
demonstrated the ability to extract suitable features, its dense 
matching strategy results in prohibitively long processing times. 
To address the limited efficiency of deep learning-based meth-
ods, it has been demonstrated that a neural network—specifi-
cally, U-Net—can be trained to approximate the radiometric 
characteristics of daytime images to those of night-time images 
prior to matching. This additional pre-processing step enabled the 
orientation of the day-night image block using all eight deep 
learning-based methods evaluated. 
With or without pre-processing, ALIKED combined with 
LightGlue demonstrated the best trade-off between the number 
of extracted matches and processing speed. Therefore, it was se-
lected for metric evaluation in object space, where pre-processing 
with U-Net led to a significant improvement in the co-registration 
accuracy of the night-on-day image block. Future work will ex-
plore the possibility of extending this technique to the matching 
of images acquired from different sensors and modalities, such as 
RGB-thermal or 2D-3D (Morelli et al., 2024b). 
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