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Abstract 
Image orientation, nowadays called Structure from Motion (SfM), is still an open research topic in particular in case of scenes featuring 
visual aliasing, or doppelgangers. Indeed, visually similar but distinct elements of the scene can cause incorrect matches, not detected 
by geometric or learning-based outliers removal methods, leading to misplaced camera poses and wrong 3D reconstructions. The paper 
reviews various state-of-the-art approaches to orient ambiguous image sequences and determination correct camera orientation 
parameters. We also present an in-house graph-based approach to reliably and precisely orient sets of images with doppelgangers. 
Different experiments on common ambiguous datasets are reported and commented. 
 

        
Figure 1: Examples of ambiguous image sequences, including symmetries, repeated structures, lack of features or low-texture surfaces. 
 

1. Introduction 

The problem of reconstructing static 3D scenes from images has 
been explored extensively in the past three decades (Agarwal et 
al., 2009; Ozyesil et al., 2017; Remondino et al. 2017) and still 
represents an important focus of the photogrammetric and 
computer vision communities.  The entire pipeline consists of 
multiple steps, the first being camera calibration and image 
orientation, generally referred to Structure from Motion (SfM).  
Originally coined in neuroscience in reference to the human 
visual system, it was Ullman who first used it within a 
computational context, albeit at the intersection of neuroscience. 
In his seminal work (Ullman, 1979), the interpretation of 
structure from motion is examined from a computational point of 
view. "The question addressed is how the 3-D structure and 
motion of objects can be inferred from the 2-D transformations 
of their projected images when no 3-D information is conveyed 
by the individual projections". He articulated the so-called SFM 
theorem: given three orthographic views of four non-coplanar 
points, the structure and motion compatible with these views are 
uniquely determined. Afterwards, Longuet-Higgins (1981) 
introduced the first correspondences-based automated 
methodology to solve SfM for a pair of images using the epipolar 
constraint. Later advances in reconstruction of multiple 
unordered image sequences served as the foundation for the 
reconstruction of large-scale datasets in urban scenarios or from 
internet photo collections (Pollefeys et al., 2004; Frahm et al., 
2010; Heinly et al., 2015).  The process of SfM generally consists 
of an initial feature extraction and matching from 2D images, 
carried out with either local, SIFT-like descriptors (Hartmann et 
al., 2015) or by more recently developed learned descriptors (Jin 
et al., 2021; Morelli et al., 2024), geometry verification of 
correspondences by outliers filtering and removal, bundle 
adjustment for camera pose and 3D points estimation (Triggs et 
al., 1999; Weber et al., 2023). Nowadays, existing SfM can 
handle hundreds of thousands of unordered images using 
conjugate gradient method (Byrod, and Astrom, 2010), visibility-
based preconditioner (Kushal and Agarwal, 2012), dense 
factorization (Zhou et al., 2020), square root bundle adjustment 
(Demmel et al., 2021), or search-space (Weber et al., 2021), 
parallelization (Ren et al., 2022). SfM has followed three main 
research directions and implementations: Incremental SfM (Wu, 

2013; Schönberger and Frahm, 2016; Wang et al., 2018), which 
involves a sequential chain of resection and 
intersection; Hierarchical SfM (Farenzena et al., 2009; Toldo et 
al., 2015), which clusters images into overlapping subsets 
afterwards oriented in a hierarchical manner; Global SfM (Jiang 
et al., 2013; Cui and Tan, 2015; Wang and Heipke, 2020), which 
simultaneously estimates all unknown parameters at the same 
time. Hyrbid SfM was also proposed (Cui et al., 2017), 
mentioning efficiency, accuracy and robustness in a unified 
framework which takes the advantages of both incremental and 
global methods. The vast majority of SfM methods work in an 
offline mode, but 3D reconstruction with collaborative (Nocerino 
et al., 2017) and on-the-fly (Gan et al., 2024; Zhan et al., 2025) 
approaches were also presented. Most of the methods retrieve 
correct camera poses in various scenarios, although robustness 
and scalability can still be improved, in particular when 
ambiguous scenes are present. Most popular methods rely on the 
correctness of the feature matching step and a subsequent outliers 
removal. Ambiguous datasets (Figure 1) consist of repeated 
structures such as similar building facades, repetitive patterns and 
symmetric objects. These characteristics can lead to unregistered 
or misregistered images, folded or incomplete reconstructed 
point clouds with heavy consequences on time and costs.  
 
1.1 Paper’s Aim 

The paper aims to report state-of-the-art approaches to orient 
image sequences featuring symmetries, repeated structures and 
visually similar (but distinct) features (Figure 1) which are 
generally hampering the extraction of correct image 
correspondences and the determination of precise camera 
orientation parameters. Moreover, the work presents a developed 
method, based on graphs, to reliably and precisely orient sets of 
images of ambiguous scenarios.  
 

2. Related works 

In case of ambiguous image sequences, handcrafted or learning-
based tie points extraction methods generally provide many 
outliers which hamper the recovery of correct camera poses. 
These outliers are eliminated with a conventional iterative 
sampling strategy based on RANSAC (Fischler and Bolles, 1981),   
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a)  b)  

d)  c)  

Figure 2: Front (a) and back (b) views of the Brandenburg Ture (Berlin, Germany) with distinct (at a certain scale) but quite similar 
features and shapes. Despite not being the same side of the monument, geometrically verified matches are established (c). Incorrect 
3D reconstruction of the entire dataset without disambiguation (d). 

 
relying on some geometric model, e.g. essential/fundamental ma-
trix or homography. There were several attempts to improve 
RANSAC performances, such as spatial relations between image 
correspondences (Fotouhi et al., 2019), randomized model 
verification strategy (Chum and Matas, 2008), termination 
criterion to avoid the noise-free data assumption (Imre and Hilton, 
2015), graph-cut approach (Barath and Matas, 2018), 
identification of independent inliers (Ivashechkin et al., 2021), 
etc. Alternatives to RANSAC include hand-crafted approaches 
such as LMedS (Rousseeuw and Leroy, 1987), MLESAC (Torr 

and Zisserman, 2000), PROSAC (Chum and Matas, 2005), 
DEGENSAC (Chum et al., 2005), MAGSAC (Barath et al., 
2019), MAGSAC++ (Barath et al., 2020), AdaLAM(Cavalli et 
al., 2020) or learning-based approaches such as DSAC 
(Brachmann et al., 2017), CNe (Moo Yi et al., 2018) or OEAM 
(Ding et al., 2022). Despite all these possible approaches, in case 
of ambiguous image sequences, some problematic match pairs 
still remain as local feature matching methods easily confuse the 
scene (Figure 2). 
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Manam and Govindu, 2024 
Michelini and Mayer, 2020 
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Xiao et al., 2021 
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Uses graph connectivity 
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consistency and remove 
ambiguous links. 
Graph theory techniques 
ensuring transitive 
consistency (3-cycle, 
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Wang and Heipke, 2020 
Wang et al., 2019 
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Zhu et al., 2018 
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consistent ways 

- Scalable to 
massive 
datasets 
- High tolerance 
to matching 
noise 
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connectivity 
- Needs good 
initial geometry 

- Aerial imagery 
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often 
distributed 
or GPU-
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across datasets 
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image quality 
and context 
- Sensitive to 
feature density 

- Indoor 
mapping 
- Cultural 
heritage 
- Image-based 
modeling 

High; 
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filtering 
scales 
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Heinly et al., 2014 
Jiang et al., 2012 
Roberts et al., 2011 
Zach et al, 2008 

Focuses on resolving 
structural aliasing via 
geometric priors, 
duplicate-aware 
processing, or missing 
data heuristics 

- Resolves 
aliasing in man-
made 
environments 
- Integrates 
structure priors 

- Scene-specific 
(urban/facade) 
- Less useful in 
natural scenes 

- Architecture- 
Urban scenes 
- Multi-object 
modeling 

Moderate; 
limited by 
structure 
regularity 
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Cai et al., 2023 
Leroy et al., 2024 
Peng et al., 2022 
Wang et al., 2024 
Xiangli et al., 2025 

Deep learning for 
contextual 
disambiguation of 
structurally similar 
features 

- Learn scene-
level context 
- Adaptable to 
new domains 

- Training data 
required 
- Potential 
dataset bias 

- Autonomous 
driving 
- Real-world 
city 
reconstruction 

High; 
compute 
resources 
dependence 

Table 1: Proposed taxonomy and salient works covering the subject of image disambiguation. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W4-2025 
EuroCOW 2025 – European Workshop on Calibration and Orientation Remote Sensing, 16–18 June 2025, Warsaw, Poland

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W4-2025-95-2025 | © Author(s) 2025. CC BY 4.0 License.

 
96



Therefore, wrong tie points lead to wrong 3D reconstructions. 
This is normally called visual disambiguation or the Big Ben 
problem (Cai et al., 2023). Methods to remove disambiguation in 
scenes - also called illusory image matches or doppelgangers (Cai 
et al., 2023) - use heuristics-based analysis in the structure of the 
underlying scene graph (Zach et al., 2010; Wilson and Snavely, 
2013), post-processing detection of incorrect reconstructions via 
minimal spanning tree (MST) and conflicting observations 
(Heinly et al., 2014), CNN-based feature consistency in the scene 
graph (Cai et al., 2023), training dataset that incorporates geo-
tagged images (Xiangli et al., 2025) but also non-visual 
information, like timestamps or image ordering (Roberts et al., 
2011). Methods based on geometric reasoning use the relative 
orientations (RO) of image pairs to either compute global 
rotation/translation averaging to estimate camera positions 
globally or check cycle consistency (CC) over image cycles 
(triplets or longer cycles) by chaining relative orientations and 
measuring the deviation from the identity or infer CC (CCI) over 
cycles in a Bayesian framework.  
These methods then perform global, incremental or hierarchical 
SfM. Consistency is always checked on the view graph in which 
edges are represented by RO of image pairs. On the other hand, 
methods based on feature consistency do reasoning on the mutual 
absence or presence of features in image pairs or on their 
distribution in images. Features could be grouped together into 
clusters of correspondences, shared correspondences of an image 
pair are searched into a third image and if large portions of the 
correspondences are missing, that third image is likely matched 
incorrectly and its pose is an outlier. 
As shown in Table 1, since almost decades new approaches are 
constantly proposed demonstrating how visual aliasing is 
challenging and still far from being fully solved (Havlena et al., 
2010; Enqvist et al., 2011; Jiang et al., 2012; Heinly et al., 2014; 
Lin et al., 2016; Wang et al., 2019; Chen et al., 2020; Michelini 
and Mayer, 2020; Xiao et al., 2021; Morelli et al., 2022; Peng et 
al., 2022; Cai et al., 2023; Gong et al., 2024; Xiangli et al., 2025). 
All presented methods are based on assumptions which hamper 
generalization. These include the processing of ordered image 
sequences (Figure 2), the mandatory presence of rotations 
between image pairs, a relative orientation estimated from correct 
correspondences, geo-tagged metadata, presence of landmark 
images, etc. and none of the available solutions can correctly 
handle every possible example of ambiguous image sequence. 
Even newly presented SfM pipeline fully based on learning-
based methods (transformer, differentiable reconstruction 
function, etc. (Leroy et al., 2024; Wang et al., 2024; Yang et al., 
2025) suffer visual aliasing and generally cannot retrieve correct 
camera poses.  
As there are no datasets with real ground truth data in object 
space to evaluate methods performances, beside visual 
inspections (Table 3), metrics used in the literature include: 
number of oriented images, weighted average of inlier ratio in the 
different components of a 3D reconstruction (Xiangli et al., 2025), 
orientation error with respect to given geolocations or, for 
learning-based approaches, the ROC AUC (Area Under the 
Receiver Operating Characteristic Curve) (Cai et al., 2023). 
 

3. Methodology 

The proposed method is a graph-based solution similar to other 
approaches (Sweeney et al., 2015; Shen et al., 2016; Chen et al., 
2020). It begins with the construction of a weighted, undirected 
view graph, where each node represents an image and each edge 
indicates a pairwise correspondence between images. Edges are 
weighted solely by the number of verified feature matches but 
information on the pairwise geometry, such as the epipolar error, 
can be combined in the weight score. A community identification 

stage is then applied to the view graph using a greedy modularity-
maximization algorithm. It begins with each node in its own 
community and repeatedly joins the pair of communities that lead 
to the largest modularity until no further increase in modularity 
is possible. The modularity function to be optimizes is defined as: 
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where 𝐿!  denotes the total weight of edges within community c, 
𝑘! is the sum of the degrees (number of edges connected to the 
node) of all nodes in c, m is the sum of all edge weights in the 
graph, and γ is a resolution parameter that controls the granularity 
of the partition. A typical choice is γ=1, which balances the trade-
off between the density of intra- and inter-community 
connections. The community identification step effectively 
groups images capturing visually repetitive or structurally similar 
regions into distinct clusters. Within each community, a 
maximum spanning tree (MST) is extracted using the edge 
weights as the selection criterion. The MST ensures that all nodes 
in a community remain connected with the minimum number of 
edges, while avoiding cycles that could propagate reconstruction 
errors in highly repetitive scenes. To increase local connectivity 
without reintroducing significant ambiguity, the MST is 
subsequently expanded in two stages. First, all original intra-
community edges that were not part of the MST are reinstated as 
they are deemed robust and non-ambiguous.  This enriches the 
local structure of each cluster, promoting stability in downstream 
geometric computations such as pose estimation and 
triangulation, which would not work properly for a too sparse 
view graph. Second, inter-community connectivity is restored by 
reintroducing all edges that originally connected neighbouring 
communities, that is communities which are connected by an 
edge in the MST. These edges provide the necessary global 
linkage between clusters, enabling coherent scene-wide 
reconstruction while maintaining robustness against the 
formation of spurious loops. Nodes of the graph which lie inside 
communities which depict different parts of the scene are hence 
not connected between them.  
The result of this process is a sparsified yet sufficiently connected 
view graph that preserves meaningful geometric relationships 
within and across image clusters. The structure offers a strong 
foundation for incremental structure-from-motion, particularly in 
environments featuring strong repetition or limited texture.  
The proposed method, like many graph-based approaches, 
perform well if the image dataset features a sequential acquisition 
whereas it can fail in case of unordered sets of images. 
 

4. Datasets 

The community has prepared and shared various datasets with 
ambiguous scenes to be disambiguated. Our tests used Cup, 
Cereal, Street, Temple of Heaven, Arc the Triomphe and A. 
Nevsky Cathedral available at: 
https://snsinha.github.io/proj/DupSFM/index.html, 
https://github.com/yanqingan/SfM_Disambiguation, 
https://github.com/cvg/sfm-disambiguation-colmap. 
Further datasets (Big Ben, Berliner Dome, Brandenburg Gate, 
Doppelgangers, MegaScenes, VisymScenes, etc.) are available at: 
https://www.cs.unc.edu/~jheinly/duplicate_structure.html,  
https://megascenes.github.io/, 
https://github.com/doppelgangers25/doppelgangers-plusplus.  
Many of these datasets are collections of Internet images. None 
of the ambiguous datasets features ground truth data for metric 
evaluation in object space.
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a)  b)  
Figure 2: Images of the ambiguous Street sequence (top) and orientation results with “sequential” (a) and with no (b) assumptions. 

a) b)  c) d)  
Figure 3: Results of the proposed graph-based approach. Initial graph (a) and derived incorrect camera poses (b). Refined graph with 
expanded MST (c) and correct camera poses (d). 
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  E S E S         MST Exp. 
MST 

Cup 64 X X X X X X X X ✓ ✓ ✓ X ✓ ✓ 
Cereal 25 X ✓ ✓ ✓ ✓ ✓ X X ✓ X ✓ X* ✓ ✓ 
Street 19 X ✓ X X ✓ X X ✓ ✓ X* X ✓ X ✓ 
Temple of Heaven 338 X ✓ X X ✓ X - - X* ✓ OoM ✓ ✓ ✓ 
Arc de Triomphe 435 X X X X X ✓ X X ✓ ✓ OoM ✓ X X 
A. Nevsky Cathedral 448 X X X X X* ✓ X ✓ ✓ ✓ OoM ✓ X X 

Table 2: Disambiguation results on the tested datasets across different methods. E = exhaustive. S = sequential. ✓/X/X*/- = 
correct disambiguation/incorrect disambiguation/reconstruction split or incomplete/not tested. OoM = Out of Memory 
(NVIDIA GeForce RTX 4080 16GB VRAM). 

5. Experiments  

The proposed disambiguation method (feature extraction and 
matching, view graph extraction, view graph refinement and 
bundle adjustment) and some state-of-the-art open or commercial 
methods are tested on various ambiguous sequences. Table 2 and 
Table 3 summarize the outcomes, showing image orientation 
results when the scene present repeated structures creating many 
illusory image matches. Assumption like “sequential” image 
acquisition or “exhaustive” image matching cannot generally 
help in case of complex scenarios. Graph-based approaches seem 
to be the reliable even if unordered datasets can still cause 
incorrect disambiguation and wrong or split 3D reconstruction. 
For sure the importance of using proper image acquisition 
protocols (Pierrot-Deseilligny et al., 2011; Nony et al., 2012; 
Remondino et al., 2013) in not neglectable as proper camera 

networks could reduce the ambiguities and support image 
matching. 
 

6. Conclusions 

When two (or more) images observe a diverse but visually similar 
scene, illusory image matches are generally created. Such 
scenarios are already challenging for human eyes to be 
differentiate therefore reliable and robust processes are needed to 
derive correct camera poses and sparse 3D point clouds.  
The paper presented a review of visual disambiguation methods 
presented in the literature in the last two decades. Experiments 
clearly show that image orientation is still an open research task, 
in particular when acquired images contains ambiguous scenes 
and repeated structures. No method consistently works well over 
various ambiguous datasets and assumptions are always crucial. 
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Table 3: Visual results of recovered camera poses and sparse point clouds for the tested datasets across different methods. S = 
sequential; E = Exhaustive. 

Datasets generally considered unordered sets of images coming 
from the web, hampering ground truth data for metric 
evaluations. Newly developed learning-based methods are 
promising though customized on specific set of images and might 
generalize badly in case of context different from the training 
sets. Future research should not neglect conventional geometric 
approaches or an integration with learning ones to take the 
advantages of both sides. 
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