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Abstract

Accurate registration between RGB-D images and point clouds is a critical task for various indoor applications. Estimating the relative
pose by aligning the sensor frame with indoor 3D point clouds significantly enhances environmental perception and scene
understanding. Existing research primarily focuses on cross-modal feature association through traditional unsupervised methods or
supervised learning-based approaches. However, these methods often rely on strong assumptions, such as the availability of an initial
pose or substantial overlap between the RGB-D images and the target point clouds. Moreover, the quality of registration is highly
sensitive to the density and completeness of the point clouds. To address these limitations, this paper presents a novel coarse-to-fine
registration framework with the aid of CAD models. First, a data enhancement process is introduced using the Scan2CAD method to
replace functional objects (e.g., chairs and tables) with CAD models, improving semantic and quality consistency. Second, a geometry-
aware graph matching is computed to identify regions of interest (ROI) within the point cloud map and estimate the initial pose of the
RGBD sensor. Finally, an iterative fine matching using cross-modal is introduced to refine the initial estimated pose. Experimental
validation on the ScanNet dataset demonstrates that the proposed framework achieves robust and accurate registration between RGB-

D images and 3D point clouds.

1. Introduction

With the rapid advancement of indoor robotics, mobile mapping
systems, and related technologies, estimating the relative pose
between real-time sensor perception data and pre-built indoor
maps has become as a fundamental challenge in both academic
research and industry applications (Asl Sabbaghian Hokmabadi
et al., 2023). RGB-D sensors, which capture synchronized color
and depth information, have emerged as the dominant sensing for
indoor environments due to their ability to simultaneously
acquire semantic and geometric information. A core task in this
domain is determining the relative pose, comprising rotation and
translation matrix, between an RGB-D sensor and a pre-built
point clouds map of the environment. This paper addresses the
problem of estimating the sensor-to-map relative pose, with a
particular focus on the challenges associated with cross-modal
registration. These include variations in viewpoint and
resolution, occlusions, sensor noise, and partial or incomplete
observations. The goal of this study is to estimate the sensor-to-
map relative pose, even in the environments with these
mentioned practical limitations.

Recent works have focused on a variety of solutions to the pose
estimation between the RGBD sensor and point clouds maps,
which can be broadly categorized into the following two aspects:
traditional geometric and feature design solutions and learning-
based approaches. Traditional methods typically reply on the
hand-crafted features such as Scale-Invariant Feature Transform
(SIFT) (Lowe, 1999), Speeded Up Robust Features (SURF) (Bay
et al., 2006), Orientated Fast and Rotated Brief (ORB) features
(Rublee et al., 2011). The designed features are often followed
by the matching solution such as such as Random Sample
Consensus (RANSAC) (Fischler and Bolles, 1981), Normal
Distribution Transform (NDT) (Biber, 2003), and Iterative
Closest Point (ICP) (Segal et al., 2010). The traditional solutions
can often achieve standard accuracy; however, the performance
is unstable and often sensitive to the quality of the initial pose
estimation and the initial overlap, noise data, and the point clouds
density.

With the advantage of deep learning, learning-based solutions
have gained significant traction, with the advantages of
robustness to varied viewpoint, noised raw data, and occlusion of
measurements. Deep networks encode the multi-modal features
and match the heterogeneous data within a unified representation
space. For example, recent publications such as CorrI2P (Ren et
al., 2023), CoFil2P (Kang et al., 2023), and 2D3D-MatchNet
(Feng et al., 2019) introduce matching framework of image to
point clouds by designing multi-modal encoders. Image encoder
and point clouds encoder are designed to find the similarity, to
find the corresponding key feature layer and calculate the relative
pose.

Beyond finding feature similarity, some methods incorporate
geometric constraints collected from RGBD sensors to improve
the reliability of registration. For example, RGBD-Glue (Chen et
al., 2024) proposes a feature combination framework fusing the
visual feature descriptor and geometric feature descriptor, using
an adaptive filter to estimate the alignment matrix. PointMBF
(Yuan et al., 2023) proposes a bidirectional fusion network to
find the correspondence estimation by calculating the
photometric and geometric consistency losses. LLT (Wang et al.,
2022) designs a geometry-aware visual feature extractor
followed by a proposed local linear transformation module for
the alignment. These works demonstrate improved performance,
particularly under conditions of stable and dense point cloud
coverage.

Despite of the current progresses, there are remaining limitations
of the current registration frameworks, which can be discussed as
following:

(1). Dependency on high-quality point clouds maps: Occlusions,
sparsity, even inconsistency of the point clouds map can
significantly reduce the accuracy of the RGBD point clouds
registration.

(2). Sensitivity to initial positioning: Many methods reply on
prior information or assumptions such as pose priors or high-
overlap regions between the RGBD data and pre-built map,
limiting the applicability.
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Figure 1. The proposed framework.

To address the mentioned challenges, this paper proposes a CAD
model aided, multi-modal coarse-to-fine registration framework
that estimate the relative pose between RGBD data and a pre-
built point clouds map. The proposed framework includes two
main stages: Firstly, with the aid of CAD models of functional
objects (e.g., chairs and desks), data enhancement of the pre-built
point clouds map is implemented. Secondly, a cross-modal
coarse-to-fine registration framework is proposed to register the
visual point clouds generated from RGBD sensor and the
enhanced point clouds map, through a graph-based initial pose
estimation and a refinement step. The proposed algorithm aims
to reduce the dependency on dense point clouds quality and to
improve the robustness in various of indoor environments,
especially with occlusions, partial observations and viewpoint
variations.

2. Methodology
2.1 Overview

The proposed RGBD-to-point cloud framework consists of three
sequential steps. First, the indoor point clouds are enhanced by
replacing the raw point cloud representations of instant functional
objects using a pre-built CAD model library. This step enables
accurate extraction of object centroids and semantic and instant
information, facilitating improved geometric and semantic
precision of the graph-based representation. Secondly, graph-
based instance representation is implemented for the preparation
of the initial pose estimation and the fine registration. For each
extracted CAD model, the centroid of the bounding box and the
semantic information is considered as the graph node with
semantic labelling, while the pairwise Euclidean distance is
calculated as the edge.

Through this process, instant objects within indoor environments
can be represented as graph with topology information and
semantic information. In addition, the input image is represented
using another graph with the fusion of depth image and semantic
information. A coarse matching strategy based on the constructed
graph is then employed to identify regions of interest (ROIs),
providing candidate environmental regions for further alignment.
Finally, fine registration is performed by aligning the generated
visual-semantic point clouds with the original indoor point

clouds to achieve accurate spatial correspondence. An overview
of the proposed framework is illustrated in Figure 1.

2.2 Multi-modal data enhancement

In this work, a data enhancement is firstly implemented to
augment the data quality of indoor environment using
Scan2CAD solution. By replacing the CAD models, centre of the
object and the distance between objects can be easily extracted.
To make this work easy to understand, a brief introduction of
Scan2CAD is introduced (Dahnert et al., n.d.).

The Scan2CAD aims to align the CAD models to targeted objects
in point clouds maps, providing the relative pose and
corresponding instance semantic information. The Scan2CAD
pipeline consists of the following key stages: Firstly, a 3D object
detection is implemented to identify the potential object-level
instances in the point clouds map, using a bounding box. The
bounding box provides both location information and geometry
information, served as initial candidates for the alignment.
Secondly, a correspondence prediction network is employed,
learning the point-level correspondence between the geometry of
the detected candidates, and the corresponding CAD models.
Finally, the alignment prediction is implemented to estimate a
rigid transformation, which can align the CAD model to the
determined and detected instance points. To demonstrate the
results we had, Figure 2 shows an example of the result on the
Scan2CAD model implemented on the ScanNet Dataset (Dahnert
et al., n.d.; Dai et al., n.d.). For a better visualization, only
replaced objects are visualized in the Figure 3, with random
colors.
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Figure 2. Example of the alignment results via Scan2CAD. Points
sampled from CAD models are in green, while other points are

coloured using RGB information. Blue boxes show the
orientation and position of the CAD model.

Figure 3. Visualization of the instance information from z-
direction, while the color is randomly set.

Y = (u-cy)z (2)
fy
X 0 CX
where K= |0 f, cy] is the intrinsic calibration matrix,
0 0 1

while Z is the depth information provided by the depth camera
I = (u, v). The result of this process is dense point clouds within
the range of view. An example of the generated colored point
clouds can be found in Figure 4 (a).

Here, we assume the label information is aligned with the color
frame. To implement the graph-based representation, a class-
wise Euclidean clustering algorithm based on spatial proximity is
implemented. The goal of this step is to extract the instance label
and segment multiple objects with same class types. Given the
3D visual points generated from RGBD with labelling for each
point, the points are firstly organized using a KD-tree structure to
achieve the nearest-neighbour searching. The clustering process
iteratively expands the local regions by grouping the points
whose distances are below a pre-defined spatial threshold.
Starting from a seed point, all neighbouring points are added to
the same groups. Once the local neighbourhood is over, the
algorithm continues to the next unvisited point and starts a new
group. This cluster step provides a set of instance labels,
supporting the graph-based representation. An example is shown
in Figure 4 (b).

2.3.2  Semantic graph construction

(a)

Figure 4. Example of the visual point clouds generated using RGBD (a), and the graph-based representation (b) Red lines demonstrate

(b)

the edge between each center point. (Dataset: ScanNet, scene0000 01, Image 001700

2.3 Graph-based representation

This section introduces the detailed steps of object instances’
graph-based representation. Following the Scan2CAD
implementation, CAD models are aligned to the point clouds, and
are sampled to dense point clouds. Visual point clouds and
sampled point clouds are used for the semantic graph generation.
Details are introduced in this following section.

2.3.1 Visual point clouds generation and graph-based

representation: Firstly, the RGB-D image will be converted to

point clouds using the intrinsic parameters and extrinsic

calibration between the depth camera and the color camera. The

process can be formulated using the following equations,
X = (u—cy)-Z

fx M

To facilitate robust and efficient coarse registration between the

RGBD sensor and the pre-built map, a semantic graph G = <

V,E,A > is constructed to abstract key functional objects layout

information from the observed scene. In this representation:

o Vican and Vg, denote the set of the nodes of the detected
semantic object instance in the RGBD frame and the point
clouds map, respectively.

e  Escan and Eygy represents the set of edges encoding the
topological and relationships between these functional
objects.

e A demonstrates the semantic instance information which
can be associated with each node.
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Figure 5. Example of the generated graph using the enhanced point clouds. After removing the unrelative edges using a pre-defined
threshold &, red lines are the edges, while point clouds are colored using Y value.

For each detected instant /;, we represent it using the centre of
the object (X, ¥, z,) for the sampled point clouds (X,Y,Z),
composing the 3D node V;, as following,
VL' = ()?Lr _)_71; Z_l) (3)
To model the spatial relationship between instances, edges are
calculated using the directional edge encoding, as following:
= 9% e, — o
dij = "Cj_cillz’ lf”C] C; "2 <7t (4)
where direction vectors ¢ = |g_1|ZiE7k X;, Jp is the set of
k

point indices belonging to the instance k, and cy.

The graph-based representation can improve the robustness
of the viewpoint changes and make it resilient to minor
occlusion, as it abstracts the topological relationship and
semantic information to extract higher -level scene structure.
The visualization of the G =< Viyap, Emap, A > can be
found in Figure 5 (a), while the blue lines demonstrate the
edges connected between each two objects. Considering the
spatial relationship, only center within a pre-defined range
will be kept as the edges aiming to improve the efficiency of
the whole framework.

2.4 Geometry-aware Coarse-level Graph matching

To determine the approximate initial position of the RGBD
sensor within the pre-built point clouds map, a coarse-level graph
matching is implemented using the generated semantic graphs.
Specifically, the problem of the estimating the Region of Interest
(ROI) is formulated as a graph similarity matching task between
the generated two graphs: one generated from the visual point
clouds generated from RGBD sensor, and another one generated
from the entire point clouds map. This approach considered both
semantic attributes and topological structure to estimate the
initial pose of the RGBD sensor, serving as an initialization step
for the next level of fine registration.

The objective is to identify the subgraph G* € G, that matches
the G; considering both node similarity and edges distribution.
The matching problem can be formulated as the following
equation:

G* = arg maxSim (G4, G; 5
ggiegz ( 1 L) ( )

Here, the Sim demonstrate the similarity score between two
graphs, which can be calculated as a weighted combination of
node similarity and edge similarity, using the following equation:

Sim (G1,G;)) =a-Sy + B - Sg (6)
where @ and [ are normalization weights, balancing the
influence of the nodes and edges terms.

The node similarity term Sy and edge similarity term Sg are

calculated using the following equations:
1 r
Sy = WZvescan mg‘gc o, (v,v") 7

where §; (v, v") = 1 if the semantic labels can be matched, and 0
otherwise.

Simgir (eij, ex) = dfjdy (8
where simg;, aggregates directional cosine similarities over
corresponding edges. An example of the matched nodes and
edges are shown in Figure 6, while red lines demonstrate the
matched edges and the corresponding nodes.

Following the geometry-aware graph matching process, the ROI
is detected based on the similarity. Assuming P = {P;, P, ... B}
and Q = {Q4, Q, ...Q,} are the 3D centroids of the nodes of
RGBD scan and the corresponding centroids detected in the
global map. The goal is to estimate the rigid transformation
matrix T = [R,t] € SE(3), consisting of the rotation matrix R
and a translational matrix t. The process can be formulated in the
following equation:

Ty = arg ”&itn Yioy IRpy + t— qgli? O]

The optimal solution is calculated using pointset P and Q. The
result will be served as the initial position of the pose estimation.
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Figure 6. An example of graph matching. Black lines
demonstrate the graph of the indoor map, while the red lines show
the matched edges and nodes.
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Here, only translational initial pose is used for the
refinementT, = [0; t,]. The rotational initial value is set to zero.
The final pose will be obtained once the error is less than a pre-
defined threshold, enabling RGBD sensor’s accurate pose in the
point clouds map.

3. Experimental results
3.1 Experiment details

In this work, the process of data enhancement is implemented
using Scan2CAD framework, and the data from ShapeNet and
ModelNet. Indoor scene 001 from ScanNet is selected as
experimental area, while three RGBD data are used for the
registration as raw data. Based on the assumption of well -
calibration, extrinsic and intrinsic calibration files are used for
visual point clouds generation. Pre-defined threshold used in this
paper are listed in the Table 1.

Meaning Parameters/Value
Edge removal é 1.5m
ROI Y 3m

Residual threshold € 10-3e

Table 1. Pre-defined parameters and threshold
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Figure 7. (a) Demonstration of Cross-Modal Matching. (b) Example of the ROI detection.

2.5 Iterative cross-modal matching for pose refinement

After obtaining the initial pose estimation Tj,; via coarse-level
sgraph alignment, an iterative cross-modal fine matching process
is introduced to refine the pose matrix, as demonstrated in Figure
7 (a). The ROI is selected based on the position of the initial
position, with the radius of pre-defined threshold y, as shown in
Figure 7 (b). To implement the cross-modal matching, both 3D
geometric and visual semantic correspondence is constructed.
Via a colored information aided G-ICP, the iterative registration
will be stop until the regsistration error meets the pre-defined
threshold (Korn et al., 2014). By using the G-ICP, with the aid of
consistency of colored information, the objective function of
pose refinement can be formulated as,

AT = arg min $i0, wic- IARPy + At = Qill®  (10)
The final transforma‘ttion is iteratively updated, using the

following equation:
Ty =AT T )

3.2 Experimental results and performance evaluation

Figure 9 illustrates an example of the RGBD-to-point cloud
registration, where the colored RGBD visual points are aligned
within the Region of Interest (ROI) successfully, with a
translational registration error at 0.095 m. To have a
quantitatively evaluation, the error calculation includes both the
mean and the maximum translational errors, providing a
comprehensive assessment of accuracy. As shown in Table 2, the
results demonstrate that the proposed framework achieves
reliable and precise alignment performance.

Value Translational error
Average 0.12 m
Max error 0.16 m

Table 2. Translational errors.
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Figure 9. Visualization of the registration results (Image 0017
and Indoor scene 001).

4. Conclusion

This paper presents a CAD-aided cross-modal pose estimation
framework for RGBD sensors operating in pre-built indoor point
clouds map. The proposed method firstly adopts the Scan2CAD
framework as a data enhancement step, using the CAD model to
represent the spatial information and semantic instances.
Secondly, the framework proposes a coarse-to-fine strategy,
beginning with geometry-aware semantic graph matching to
determine the ROI and estimate the initial pose, enabling the
efficient matching across large-scale indoor maps. Following the
coarse matching, an iterative cross-modal fine matching
algorithm that fuses both visual features and geometric features
to establish reliable correspondences, via a G-ICP. The final
output is the estimated pose of the RGBD sensor in the point
clouds map, supporting the applications such as robotic
navigation and positioning. Experiments are implemented on
opensource dataset, demonstrating that the proposed framework
can accurately estimate the pose of RGBD sensor in point cloud
maps.

The limitation of proposed approach can be discussed in the
following two aspects: (1). The refine mapping still rely on hand-
crafted feature description and heuristic matching pipelines,
which may limit the ability of the highly dynamic environments.
(2). An assumption of this paper is that the semantic graph
matching relies on the topological relationship between clear
objects. Clear objects within an image are required for the graph
matching. The initial pose estimation will fall if there is no clear
object in the RGBD data.

Aiming the limitation, future works will focus on developing an
end-to-end deep learning-based pose estimation framework that
directly infers the transformation between the RGBD input and
the global point clouds map. By replacing the modular steps with
fully trainable networks, the system can potentially lean richer
cross-modal correspondences. In addition, the domain adaptation
techniques for cross-modal recognition will be developed to
further enhance the performance.
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