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Abstract 

Accurate registration between RGB-D images and point clouds is a critical task for various indoor applications. Estimating the relative 

pose by aligning the sensor frame with indoor 3D point clouds significantly enhances environmental perception and scene 

understanding. Existing research primarily focuses on cross-modal feature association through traditional unsupervised methods or 

supervised learning-based approaches. However, these methods often rely on strong assumptions, such as the availability of an initial 

pose or substantial overlap between the RGB-D images and the target point clouds. Moreover, the quality of registration is highly 

sensitive to the density and completeness of the point clouds. To address these limitations, this paper presents a novel coarse-to-fine 

registration framework with the aid of CAD models. First, a data enhancement process is introduced using the Scan2CAD method to 

replace functional objects (e.g., chairs and tables) with CAD models, improving semantic and quality consistency. Second, a geometry-

aware graph matching is computed to identify regions of interest (ROI) within the point cloud map and estimate the initial pose of the 

RGBD sensor. Finally, an iterative fine matching using cross-modal is introduced to refine the initial estimated pose. Experimental 

validation on the ScanNet dataset demonstrates that the proposed framework achieves robust and accurate registration between RGB-

D images and 3D point clouds. 

1. Introduction

With the rapid advancement of indoor robotics, mobile mapping 

systems, and related technologies, estimating the relative pose 

between real-time sensor perception data and pre-built indoor 

maps has become as a fundamental challenge in both academic 

research and industry applications (Asl Sabbaghian Hokmabadi 

et al., 2023). RGB-D sensors, which capture synchronized color 

and depth information, have emerged as the dominant sensing for 

indoor environments due to their ability to simultaneously 

acquire semantic and geometric information. A core task in this 

domain is determining the relative pose, comprising rotation and 

translation matrix, between an RGB-D sensor and a pre-built 

point clouds map of the environment. This paper addresses the 

problem of estimating the sensor-to-map relative pose, with a 

particular focus on the challenges associated with cross-modal 

registration. These include variations in viewpoint and 

resolution, occlusions, sensor noise, and partial or incomplete 

observations. The goal of this study is to estimate the sensor-to-

map relative pose, even in the environments with these 

mentioned practical limitations.  

Recent works have focused on a variety of solutions to the pose 

estimation between the RGBD sensor and point clouds maps, 

which can be broadly categorized into the following two aspects: 

traditional geometric and feature design solutions and learning-

based approaches. Traditional methods typically reply on the 

hand-crafted features such as Scale-Invariant Feature Transform 

(SIFT) (Lowe, 1999), Speeded Up Robust Features (SURF) (Bay 

et al., 2006), Orientated Fast and Rotated Brief (ORB) features 

(Rublee et al., 2011). The designed features are often followed 

by the matching solution such as such as Random Sample 

Consensus (RANSAC) (Fischler and Bolles, 1981), Normal 

Distribution Transform (NDT) (Biber, 2003), and Iterative 

Closest Point (ICP) (Segal et al., 2010). The traditional solutions 

can often achieve standard accuracy; however, the performance 

is unstable and often sensitive to the quality of the initial pose 

estimation and the initial overlap, noise data, and the point clouds 

density.  

With the advantage of deep learning, learning-based solutions 

have gained significant traction, with the advantages of 

robustness to varied viewpoint, noised raw data, and occlusion of 

measurements. Deep networks encode the multi-modal features 

and match the heterogeneous data within a unified representation 

space. For example, recent publications such as CorrI2P (Ren et 

al., 2023), CoFiI2P (Kang et al., 2023), and 2D3D-MatchNet 

(Feng et al., 2019) introduce matching framework of image to 

point clouds by designing multi-modal encoders. Image encoder 

and point clouds encoder are designed to find the similarity, to 

find the corresponding key feature layer and calculate the relative 

pose.  

Beyond finding feature similarity, some methods incorporate 

geometric constraints collected from RGBD sensors to improve 

the reliability of registration. For example, RGBD-Glue (Chen et 

al., 2024) proposes a feature combination framework fusing the 

visual feature descriptor and geometric feature descriptor, using 

an adaptive filter to estimate the alignment matrix. PointMBF 

(Yuan et al., 2023) proposes a bidirectional fusion network to 

find the correspondence estimation by calculating the 

photometric and geometric consistency losses. LLT (Wang et al., 

2022) designs a geometry-aware visual feature extractor 

followed by a proposed local linear transformation module for 

the alignment. These works demonstrate improved performance, 

particularly under conditions of stable and dense point cloud 

coverage.  

Despite of the current progresses, there are remaining limitations 

of the current registration frameworks, which can be discussed as 

following:  

(1). Dependency on high-quality point clouds maps: Occlusions, 

sparsity, even inconsistency of the point clouds map can 

significantly reduce the accuracy of the RGBD point clouds 

registration.  

(2). Sensitivity to initial positioning: Many methods reply on 

prior information or assumptions such as pose priors or high-

overlap regions between the RGBD data and pre-built map, 

limiting the applicability.  
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To address the mentioned challenges, this paper proposes a CAD 

model aided, multi-modal coarse-to-fine registration framework 

that estimate the relative pose between RGBD data and a pre-

built point clouds map. The proposed framework includes two 

main stages: Firstly, with the aid of CAD models of functional 

objects (e.g., chairs and desks), data enhancement of the pre-built 

point clouds map is implemented. Secondly, a cross-modal 

coarse-to-fine registration framework is proposed to register the 

visual point clouds generated from RGBD sensor and the 

enhanced point clouds map, through a graph-based initial pose 

estimation and a refinement step. The proposed algorithm aims 

to reduce the dependency on dense point clouds quality and to 

improve the robustness in various of indoor environments, 

especially with occlusions, partial observations and viewpoint 

variations.  

 

2. Methodology 

2.1 Overview  

The proposed RGBD-to-point cloud framework consists of three 

sequential steps. First, the indoor point clouds are enhanced by 

replacing the raw point cloud representations of instant functional 

objects using a pre-built CAD model library. This step enables 

accurate extraction of object centroids and semantic and instant 

information, facilitating improved geometric and semantic 

precision of the graph-based representation. Secondly, graph-

based instance representation is implemented for the preparation 

of the initial pose estimation and the fine registration. For each 

extracted CAD model, the centroid of the bounding box and the 

semantic information is considered as the graph node with 

semantic labelling, while the pairwise Euclidean distance is 

calculated as the edge.  

 

Through this process, instant objects within indoor environments 

can be represented as graph with topology information and 

semantic information. In addition, the input image is represented 

using another graph with the fusion of depth image and semantic 

information. A coarse matching strategy based on the constructed 

graph is then employed to identify regions of interest (ROIs), 

providing candidate environmental regions for further alignment. 

Finally, fine registration is performed by aligning the generated 

visual-semantic point clouds with the original indoor point 

clouds to achieve accurate spatial correspondence. An overview 

of the proposed framework is illustrated in Figure 1. 

 

2.2 Multi-modal data enhancement 

In this work, a data enhancement is firstly implemented to 

augment the data quality of indoor environment using 

Scan2CAD solution. By replacing the CAD models, centre of the 

object and the distance between objects can be easily extracted. 

To make this work easy to understand, a brief introduction of 

Scan2CAD is introduced (Dahnert et al., n.d.).  

 

The Scan2CAD aims to align the CAD models to targeted objects 

in point clouds maps, providing the relative pose and 

corresponding instance semantic information. The Scan2CAD 

pipeline consists of the following key stages: Firstly, a 3D object 

detection is implemented to identify the potential object-level 

instances in the point clouds map, using a bounding box. The 

bounding box provides both location information and geometry 

information, served as initial candidates for the alignment. 

Secondly, a correspondence prediction network is employed, 

learning the point-level correspondence between the geometry of 

the detected candidates, and the corresponding CAD models. 

Finally, the alignment prediction is implemented to estimate a 

rigid transformation, which can align the CAD model to the 

determined and detected instance points. To demonstrate the 

results we had, Figure 2 shows an example of the result on the 

Scan2CAD model implemented on the ScanNet Dataset (Dahnert 

et al., n.d.; Dai et al., n.d.). For a better visualization, only 

replaced objects are visualized in the Figure 3, with random 

colors.  

 

 
Figure 1. The proposed framework. 
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Figure 2. Example of the alignment results via Scan2CAD. Points 

sampled from CAD models are in green, while other points are 

coloured using RGB information. Blue boxes show the 

orientation and position of the CAD model.   

 

Figure 3. Visualization of the instance information from z-

direction, while the color is randomly set. 

 

2.3 Graph-based representation 

This section introduces the detailed steps of object instances’ 

graph-based representation. Following the Scan2CAD 

implementation, CAD models are aligned to the point clouds, and 

are sampled to dense point clouds. Visual point clouds and 

sampled point clouds are used for the semantic graph generation. 

Details are introduced in this following section.   

 

2.3.1 Visual point clouds generation and graph-based 

representation: Firstly, the RGB-D image will be converted to 

point clouds using the intrinsic parameters and extrinsic 

calibration between the depth camera and the color camera. The 

process can be formulated using the following equations,  

𝑋 =  
(𝑢−𝑐𝑥)∙𝑍

𝑓𝑥
                                 (1) 

𝑌 =  
(𝑢−𝑐𝑦)∙𝑍

𝑓𝑦
                                 (2) 

where 𝐾 =  [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]  is the intrinsic calibration matrix, 

while 𝑍 is the depth information provided by the depth camera 

𝐼 = (𝑢, 𝑣). The result of this process is dense point clouds within 

the range of view. An example of the generated colored point 

clouds can be found in Figure 4 (a).  

Here, we assume the label information is aligned with the color 

frame. To implement the graph-based representation, a class-

wise Euclidean clustering algorithm based on spatial proximity is 

implemented. The goal of this step is to extract the instance label 

and segment multiple objects with same class types. Given the 

3D visual points generated from RGBD with labelling for each 

point, the points are firstly organized using a KD-tree structure to 

achieve the nearest-neighbour searching. The clustering process 

iteratively expands the local regions by grouping the points 

whose distances are below a pre-defined spatial threshold. 

Starting from a seed point, all neighbouring points are added to 

the same groups. Once the local neighbourhood is over, the 

algorithm continues to the next unvisited point and starts a new 

group. This cluster step provides a set of instance labels, 

supporting the graph-based representation. An example is shown 

in Figure 4 (b).   

2.3.2 Semantic graph construction 

 

To facilitate robust and efficient coarse registration between the 

RGBD sensor and the pre-built map, a semantic graph 𝐺 = <
𝑉, 𝐸, 𝐴 > is constructed to abstract key functional objects layout 

information from the observed scene. In this representation:  

• 𝑉𝑠𝑐𝑎𝑛 and 𝑉𝑚𝑎𝑝  denote the set of the nodes of the detected 

semantic object instance in the RGBD frame and the point 

clouds map, respectively.  

• 𝐸𝑠𝑐𝑎𝑛  and 𝐸𝑚𝑎𝑝  represents the set of edges encoding the 

topological and relationships between these functional 

objects.  

• 𝐴  demonstrates the semantic instance information which 

can be associated with each node.  

 

Figure 4. Example of the visual point clouds generated using RGBD (a), and the graph-based representation (b) Red lines demonstrate 

the edge between each center point. (Dataset: ScanNet, scene0000_01, Image 001700 
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For each detected instant 𝐼𝑖, we represent it using the centre of 

the object (𝑥𝑖̅, 𝑦𝑖̅, 𝑧𝑖̅)  for the sampled point clouds (𝑋, 𝑌, 𝑍) , 

composing the 3D node 𝑉𝑖, as following,  

 𝑉𝑖 = (𝑥𝑖̅, 𝑦𝑖̅, 𝑧𝑖̅)                                   (3) 

To model the spatial relationship between instances, edges are 

calculated using the directional edge encoding, as following:  

𝐝𝑖𝑗 =
𝐜𝑗−𝐜𝑖

∥∥𝐜𝑗−𝐜𝑖∥∥2

, if ∥∥𝐜𝑗 − 𝐜𝑖∥∥2
≤ 𝜏                  (4) 

where direction vectors 𝐜𝑘 =
1

|ℐ𝑘|
∑  𝑖∈ℐ𝑘

𝐱𝑖 , ℐ𝑘  is the set of 

point indices belonging to the instance 𝑘, and 𝐜𝑘. 

 

The graph-based representation can improve the robustness 

of the viewpoint changes and make it resilient to minor 

occlusion, as it abstracts the topological relationship and 

semantic information to extract higher -level scene structure. 

The visualization of the 𝐺 = < 𝑉𝑚𝑎𝑝, 𝐸𝑚𝑎𝑝 , 𝐴 >  can be 

found in Figure 5 (a), while the blue lines demonstrate the 

edges connected between each two objects. Considering the 

spatial relationship, only center within a pre-defined range 

will be kept as the edges aiming to improve the efficiency of 

the whole framework.  

 

2.4 Geometry-aware Coarse-level Graph matching  

To determine the approximate initial position of the RGBD 

sensor within the pre-built point clouds map, a coarse-level graph 

matching is implemented using the generated semantic graphs. 

Specifically, the problem of the estimating the Region of Interest 

(ROI) is formulated as a graph similarity matching task between 

the generated two graphs: one generated from the visual point 

clouds generated from RGBD sensor, and another one generated 

from the entire point clouds map. This approach considered both 

semantic attributes and topological structure to estimate the 

initial pose of the RGBD sensor, serving as an initialization step 

for the next level of fine registration.   

 

The objective is to identify the subgraph 𝐺∗ ∈ 𝐺2 that matches 

the 𝐺1 considering both node similarity and edges distribution. 

The matching problem can be formulated as the following 

equation:  

 

𝐺∗ = arg 𝑚𝑎𝑥
𝒢𝑖∈𝒢2

 Sim (𝐺1, 𝐺𝑖)                         (5) 

Here, the 𝑆𝑖𝑚  demonstrate the similarity score between two 

graphs, which can be calculated as a weighted combination of 

node similarity and edge similarity, using the following equation:  

Sim (𝐺1, 𝐺𝑖) = 𝛼 ⋅ 𝑆𝑉 + 𝛽 ⋅ 𝑆𝐸                   (6) 

where  𝛼  and 𝛽  are normalization weights, balancing the 

influence of the nodes and edges terms.  

 

The node similarity term 𝑆𝑉  and edge similarity term 𝑆𝐸  are 

calculated using the following equations:  

𝑆𝑉 =
1

|𝑉1|
∑  𝑣∈scan 𝑚𝑎𝑥

𝑣′∈𝑉𝑖

 𝛿𝐿(𝑣, 𝑣′)                     (7) 

where 𝛿𝐿(𝑣, 𝑣′) = 1 if the semantic labels can be matched, and 0 

otherwise.  

Simdir (𝑒𝑖𝑗 , 𝑒𝑘𝑙) = 𝐝𝑖𝑗
⊤ 𝐝𝑘𝑙                           (8) 

where simdir aggregates directional cosine similarities over 

corresponding edges. An example of the matched nodes and 

edges are shown in Figure 6, while red lines demonstrate the 

matched edges and the corresponding nodes.  

Following the geometry-aware graph matching process, the ROI 

is detected based on the similarity. Assuming 𝑃 = {𝑃1, 𝑃2 … 𝑃𝑛} 

and 𝑄 = {𝑄1, 𝑄2 … 𝑄𝑛}  are the 3D centroids of the nodes of 

RGBD scan and the corresponding centroids detected in the 

global map. The goal is to estimate the rigid transformation 

matrix 𝑇 = [𝑅, 𝑡] ∈ 𝑆𝐸(3), consisting of the rotation matrix 𝑅 

and a translational matrix 𝑡. The process can be formulated in the 

following equation:  

                     𝐓init = arg 𝑚𝑖𝑛
𝐑,𝐭

 ∑  𝑛
𝑘=1 ∥∥𝐑𝐩𝑘 + 𝐭 − 𝐪𝑘∥∥2

            (9) 

The optimal solution is calculated using pointset 𝑃 and 𝑄. The 

result will be served as the initial position of the pose estimation.  

 

Figure 5. Example of the generated graph using the enhanced point clouds. After removing the unrelative edges using a pre-defined 

threshold 𝛿, red lines are the edges, while point clouds are colored using Y value.  
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Figure 6. An example of graph matching. Black lines 

demonstrate the graph of the indoor map, while the red lines show 

the matched edges and nodes.  

 

2.5 Iterative cross-modal matching for pose refinement  

After obtaining the initial pose estimation 𝐓init via coarse-level 

sgraph alignment, an iterative cross-modal fine matching process 

is introduced to refine the pose matrix, as demonstrated in Figure 

7 (a). The ROI is selected based on the position of the initial 

position, with the radius of pre-defined threshold 𝛾,  as shown in 

Figure 7 (b).  To implement the cross-modal matching, both 3D 

geometric and visual semantic correspondence is constructed. 

Via a colored information  aided G-ICP, the iterative registration 

will be stop until the regsistration error meets the pre-defined 

threshold (Korn et al., 2014). By using the G-ICP, with the aid of 

consistency of colored information, the objective function of 

pose refinement can be formulated as,  

Δ𝐓 = arg 𝑚𝑖𝑛
𝐑,𝐭

 ∑  
|𝒞|
𝑘=1 𝑤𝑘 ⋅ ∥∥∆𝐑𝐏𝑘 + ∆𝐭 − 𝐐𝑘∥∥

2
      (10)  

The final transformation is iteratively updated, using the 

following equation:  

𝐓𝑡+1 = Δ𝐓 ⋅ 𝐓0                             (11) 

Here, only translational initial pose is used for the 

refinement𝑇𝑜 = [0; 𝑡0]. The rotational initial value is set to zero. 

The final pose will be obtained once the error is less than a pre-

defined threshold, enabling RGBD sensor’s accurate pose in the 

point clouds map.  

 

3. Experimental results 

3.1 Experiment details 

In this work, the process of data enhancement is implemented 

using Scan2CAD framework, and the data from ShapeNet and 

ModelNet. Indoor scene 001 from ScanNet is selected as 

experimental area, while three RGBD data are used for the 

registration as raw data. Based on the assumption of well -

calibration, extrinsic and intrinsic calibration files are used for 

visual point clouds generation. Pre-defined threshold used in this 

paper are listed in the Table 1.  

 

Meaning Parameters/Value 

Edge removal 𝛿 1.5 m 

ROI 𝛾 3 m  

Residual threshold 𝜀 10-3e 

Table 1. Pre-defined parameters and threshold 

 

3.2 Experimental results and performance evaluation 

Figure 9 illustrates an example of the RGBD-to-point cloud 

registration, where the colored RGBD visual points are aligned 

within the Region of Interest (ROI) successfully, with a 

translational registration error at 0.095 m. To have a 

quantitatively evaluation, the error calculation includes both the 

mean and the maximum translational errors, providing a 

comprehensive assessment of accuracy. As shown in Table 2, the 

results demonstrate that the proposed framework achieves 

reliable and precise alignment performance.  

 

Value Translational error 

Average 0.12 m  

Max error 0.16 m  

                            Table 2. Translational errors.   

 

Figure 7. (a) Demonstration of Cross-Modal Matching. (b) Example of the ROI detection. 
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Figure 9. Visualization of the registration results (Image 0017 

and Indoor scene 001). 

 

4. Conclusion  

This paper presents a CAD-aided cross-modal pose estimation 

framework for RGBD sensors operating in pre-built indoor point 

clouds map. The proposed method firstly adopts the Scan2CAD 

framework as a data enhancement step, using the CAD model to 

represent the spatial information and semantic instances. 

Secondly, the framework proposes a coarse-to-fine strategy, 

beginning with geometry-aware semantic graph matching to 

determine the ROI and estimate the initial pose, enabling the 

efficient matching across large-scale indoor maps. Following the 

coarse matching, an iterative cross-modal fine matching 

algorithm that fuses both visual features and geometric features 

to establish reliable correspondences, via a G-ICP. The final 

output is the estimated pose of the RGBD sensor in the point 

clouds map, supporting the applications such as robotic 

navigation and positioning. Experiments are implemented on 

opensource dataset, demonstrating that the proposed framework 

can accurately estimate the pose of RGBD sensor in point cloud 

maps.  

 

The limitation of proposed approach can be discussed in the 

following two aspects: (1). The refine mapping still rely on hand-

crafted feature description and heuristic matching pipelines, 

which may limit the ability of the highly dynamic environments. 

(2). An assumption of this paper is that the semantic graph 

matching relies on the topological relationship between clear 

objects. Clear objects within an image are required for the graph 

matching. The initial pose estimation will fall if there is no clear 

object in the RGBD data.  

 

Aiming the limitation, future works will focus on developing an 

end-to-end deep learning-based pose estimation framework that 

directly infers the transformation between the RGBD input and 

the global point clouds map. By replacing the modular steps with 

fully trainable networks, the system can potentially lean richer 

cross-modal correspondences. In addition, the domain adaptation 

techniques for cross-modal recognition will be developed to 

further enhance the performance.  
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