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Abstract

Recently, data-driven feed-forward 3D reconstruction methods, such as DUSt3R, MASt3R, Fast3R and VGGT, have gained wide-
spread attention due to their superior end-to-end processing capabilities across various geometric 3D vision tasks. However, heavy
reliance on GPU hardwares limits the applicability of these 3R methods to only single-image pairs or small-scale datasets, making
them challenging to handle large-scale high-resolution photogrammetric images. In this work, we conduct a survey on these 3R
methods and employ a divide-and-conquer framework that divides the entire image dataset into several overlapping sub-blocks,
reconstructs each sub-block separately using 3R methods, and then merges them per 3D similarity transformations. Experimental
results demonstrate that our method effectively expands the number of images that the aforementioned feed-forward 3R methods
can handle. Furthermore, a comprehensive experiment on photogrammetric data is carried out by comparing the processing time,
GPU memory usage, and accuracy to explore the possibility of applying these novel feed-forward 3R methods to high-resolution

photogrammetric datasets. Project web: https://sh1nzzz.github.io/3R-methods-via-divide-and-conquer-strategy.github.io/.

1. Introduction

Nowadays, learning-based and data-driven methods have
achieved considerable results in the field of 3D reconstruc-
tion and have gradually become a research hotspot. Tradi-
tional geometry-based photogrammetry methods typically in-
volve several very complex processes, dividing the entire 3D
reconstruction task into many subtasks, including feature ex-
traction and matching (Lowe, 2004; Wang et al., 2024a; Hou
et al., 2023), image relative orientation (Nistér, 2004), triangu-
lation (Hartley and Zisserman, 2003), reconstruction of sparse
scenes (Snavely et al., 2006; Schonberger and Frahm, 2016),
dense matching (Bleyer et al., 2011; Yao et al., 2018), and so
on. However, this step-by-step approach can lead to some lim-
itations, such as error accumulation between processing that
severely impacts the accuracy of the results and collapse in
challenging cases with sparse viewpoints (Long et al., 2022)
and weak texture (Yang and Jiang, 2021; Wang et al., 2023).

In contrast, recent data-driven feed-forward 3D reconstruc-
tion methods, such as DUSt3R (Wang et al., 2024b), MASt3R
(Leroy et al., 2024), Fast3R (Yang et al., 2025), and VGGT
(Wang et al., 2025), have emerged to show fair performance in
estimating camera poses and dense point clouds. These meth-
ods leverage end-to-end learning pipelines to effectively over-
come the limitations of traditional approaches, carrying out ro-
bust and high-quality 3D reconstruction. However, according
to our tests on a computer with an RTX 3080 (10GB VRAM),
DUSt3R can handle up to 14 images at most, while MASt3R
can process about 40 images at most. The Fig. 1 shows their
GPU memory and time consumption. It can be observed that
once the GPU memory is exceeded and computation switches
to the CPU, the inference speed becomes extremely slow. Re-
cent works such as Fast3R and VGGT have significantly im-
proved runtime efficiency and, to some extent, increased the
number of images that can be processed. But on the whole,
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Figure 1. GPU memory and time consumption of
DUSt3R and Mast3R.

current feed-forward 3R methods still cannot carry out recon-
struction on personal devices (a single RTX 4090 GPU) when
the number of images is relatively large.

To address this limitation and further explore these feed-
forward methods, we make two key contributions in this paper:
first, we propose an image divide-and-conquer framework that
divides the entire scene into several overlapping sub-blocks us-
ing the “clustering block expansion method”. The sub-blocks
are first reconstructed using the aforementioned data-driven
methods, and then the sub-blocks are merged into a complete
model using 3D similarity transformation” based on their over-
lapping relationships. Based on this, high-resolution UAV im-
ages can be successfully processed by feed-forward 3R meth-
ods using limited computing resources; second, this work integ-
rates the proposed image divide-and-conquer framework with
these feed-forward 3R methods and conducts extensive exper-
iments on various photogrammetric datasets. By comparing
their processing time, GPU memory usage, and accuracy, the
possibility of applying these SOTA feed-forward 3R methods
in the field of photogrammetry is explored.

2. Related Work

3D reconstruction is a long-standing research topic in computer
vision and photogrammetry that has been extensively stud-
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ied over the past few decades (Hartley and Zisserman, 2003;
Stathopoulou and Remondino, 2023). This section reviews
some 3D reconstruction methods, which are mainly divided
into two parts: the traditional geometry-based 3D reconstruc-
tion methods and the feed-forward 3R methods.

2.1 Traditional geometry-based 3D Reconstruction Meth-
ods

Traditional geometry-based 3D reconstruction pipelines typic-
ally begin with Structure-from-Motion (SfM) to estimate cam-
era poses and recover a sparse point cloud, after which Multi-
View Stereo (MVS) is employed to generate a dense reconstruc-
tion.

Structure-from-Motion(SfM) (Schonberger and Frahm, 2016;
Wang et al., 2019; Zhan et al., 2025) aims to reconstruct a
sparse point cloud and estimate camera parameters simultan-
eously from a set of images. Traditional SfM pipeline typic-
ally consists of several key steps: image feature extraction and
matching, pose estimation, triangulation, and bundle adjust-
ment. Recently, many learning-based methods have been integ-
rated into the SfM pipeline to improve specific steps, achieving
remarkable progress—particularly in feature extraction (Dus-
manu et al., 2019; Gleize et al., 2023) and matching (Chen et
al., 2021, 2022). Despite these improvements, the sequential
structure of the SfM pipeline remains unchanged, which leads
to the accumulation of errors between subtasks as well as the
decline of overall robustness.

Mutli-view Stereo(MVS) refers to the task of performing
dense 3D reconstruction from multiple overlapping images
with known camera parameters. MVS algorithms are typically
categorized into conventional methods based on semi-global
matching (SGM) (Poggi and Mattoccia, 2016; Rothermel et al.,
2012) and learning-based approaches (Kang et al., 2019, 2024).
Since MVS is not the primary focus of this study, more detailed
information can be found in the following references (Statho-
poulou and Remondino, 2023; Wang et al., 2024a). However,
most of these methods rely heavily on accurate camera para-
meters, and their performance can degrade significantly if the
input poses are imprecise. In contrast, recent feed-forward 3D
reconstruction methods effectively address these limitations in
both MVS and SfM.

2.2 Data-driven Feed-forward 3R Method

Recently, with the growing volume of data and advances in
computational power, a variety of data-driven 3D reconstruc-
tion methods have emerged. DUSt3R is the first fully data-
driven method for multi-view geometry (Wang et al., 2024b).
It adopts an end-to-end framework that formulates pairwise re-
construction as a regression problem over pointmaps, and fur-
ther proposes a complete 3D reconstruction pipeline for un-
constrained images. Unlike traditional SfM-MVS pipelines,
DUSt3R directly infers pointmaps from input images without
relying on any prior camera information, marking a significant
paradigm shift in 3D reconstruction. However, it is worth not-
ing that when the number of input images exceeds two, DUSt3R
requires an expensive global alignment process to obtain a com-
plete reconstruction (both in time and memory consumption).

In the past year, many subsequent works based on DUSt3R
have appeared, such as MASt3R (Leroy et al., 2024), which
obtains better matching results via a 3D perceptual matching

method based on the DUSt3R framework, significantly im-
proving the accuracy of its pose estimation. Also, MASt3R
provides a sparse global alignment method, which reduces its
GPU memory consumption, allowing the processing of a lar-
ger number of images. However, similar to DUSt3R, MASt3R
still relies on pairwise inference followed by global alignment,
which limits its ability to leverage the interaction information
across all input images. As a result, it suffers from slower pro-
cessing speed and substantial memory consumption during the
global alignment phase.

More recently, Fast3R (Yang et al., 2025) and VGGT (Wang
et al., 2025) have made improvements in network architectures,
enabling direct multi-view inference and reconstruction without
additional global alignment optimization, which significantly
reduces memory and time consumption. Nevertheless, when
the number of input images becomes relatively large, current
feed-forward 3R methods still fail to perform reconstruction on
personal devices (e.g., a single NVIDIA RTX 4090 GPU). In
this paper, we propose a framework based on image divide-and-
conquer to solve this problem.

3. Preliminary

In this section, a brief explanation of the four surveyed feed-
forward methods (DUSt3R, MASt3R, Fast3R, and VGGT) is
provided.

3.1 DUSt3R

Network architecture. The architecture of DUSt3R, inspired
by CroCo (Weinzaepfel et al., 2022), consists of two identical
branches (one for each input image), each comprising an image
encoder, a decoder, and a regression head. As shown in Fig.
3, the two images are encoded using a shared-weight Vision
Transformer (ViT) encoder (Dosovitskiy et al., 2020) to pro-
duce features F/ and F2, which are then fused through self-
attention and cross-attention mechanisms in the decoder. The
aggregated features are passed to a regression head that outputs
a pointmap and a confidence map for each image.

Loss function. DUSt3R employs the Euclidean distance
between predicted and ground-truth pointmaps as its regression
loss. For an image pair v € {1,2}, let X**' and X*' denote
the ground-truth pointmaps and D' , D? represent the sets of
valid pixels. The regression loss for the i-th pixel in image v is
defined as Eq. (1):

e,egr(v,i)zuéxg’vl— X0 (1)

W | =

Where z = norm(X"!, X*!) and Z = norm(X"!, X>1)
are scaling factors introduced to resolve scale ambiguity, com-
puted as the average distance of all valid 3D points, as shown
in Eq. (2):

1 v
norm(X', X?) = D D2 E E 1X70. @
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Additionally, DUSt3R takes the predicted confidence of each
pointmap into account, which is used to reweight the regression
loss. The final training objective is the confidence-weighted
regression loss, as shown in Eq. (3):

Lent= D> Y Clleg(v,i) —alog it (3)
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Figure 2. Pipeline of the proposed image divide-and-conquer framework.

-

Image I, € R¥X<3

Figure 3. Network Architecture of DUSt3R.

Where C; '! is the confidence score for pixel i, and « is a hyper-
parameter controlling the regularization term (Wan et al., 2018).

Training datasets. DUSt3R trains the network using a mixture
of 8 datasets: Habitat, MegaDepth, ARKitScenes, MegaDepth,
Static Scenes 3D, Blended MVS, ScanNet++, CO3D-v2 and
Waymo. These datasets feature diverse scenes types: indoor,
outdoor, synthetic, real-world, object-centric, etc. DUSt3R
totally extracts 8.5M pairs to tarin. For details, please refer to
the paper of DUSt3R (Wang et al., 2024b).

3.2 MASt3R

Figure 4. Network Architecture of MASt3R.

Network architecture. As shown in Fig. 4, based on the
DUSt3R network, MASt3R introduces an additional head for
each branch to generate local features. These features are then
combined with the 3D pointmaps and fed into a fast nearest-
neighbor (NN) matcher to generate robust correspondences. As
a result, compared to DUSt3R, MASt3R achieves higher accur-
acy in both matching and camera pose estimation. However,
the enhanced performance is accompanied by a longer infer-
ence time.

Loss function. The loss function of MASt3R is also modi-
fied on the basis of DUSt3R. To address use-cases where scale
invariance is undesirable (such as map-free visual localization
), MASt3R modifies the normalization factors z and Z used in
DUSt3R. Specifically, when ground-truth pointmaps are given
in metric scale, MASt3R sets z := Zz, thus avoiding normal-
ization of the predicted pointmaps. As a result, the regression
10sS regr (v, 1) becomes the form shown in Eq. (4), while the
remaining components of the final confidence-aware regression
loss remain consistent with DUSt3R, as defined in Eq. (3):

1 vU,l
Xt - x
z

“

Creqr(v,)

Moreover, to achieve high-precision image matching, MASt3R
introduces a matching head that produces two dense feature
maps D!, D? € R¥*WXd of dimensionality d, and applies
the InfoNCE (Oord et al., 2018) loss over the set of ground-
truth correspondences M = {(4, )| X" = Xf‘l}, as shown
in Eq. (5):

ST (17])
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(%)
Here, P* = {i|(i,j) € M} and P? = {j|(i,j) € M} denote
the subset of considered pixels in each image and 7 is a temper-
ature hyper-parameter. Since MASt3R wants to encourage each
pixel to match at most one pixel in the other image as the same
3D point in the scene, the network is rewarded only when the
the correct pixel is matched, rather than a nearby pixel. Finally,
the final training objective is formulated as a sum of the revised
regression loss and the matching loss, as shown in Eq. (6):

Etotal = Econf + /Bl:match (6)

Training datasets. MASt3R trains the network with a mixture
of 14 datasets. In addition to the dataset used by DUSt3R, it
has expanded the Mapfree, WildRgb, VirtualKitti, Unreal4K,
TartanAir and an internal dataset. For details, please refer to
the paper of MASt3R (Leroy et al., 2024).

3.3 Fast3R

Figure 5. Network Architecture of Fast3R.

Network architecture. To overcome the limitation that
DUSt3R and MASt3R can only process a single pair of im-
ages in a single pass, Fast3R, inspired by DUSt3R, introduces a
novel network architecture that includes three components: im-
age encoding, fusion transformer, and pointmap decoding, as
illustrated in Fig. 5. Similar to DUSt3R, Fast3R also employs
a CroCo ViT (Weinzaepfel et al., 2022) as image feature en-
coder. After that, positional embeddings are added with one-
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dimensional image index embeddings. These index embed-
dings enable the fusion transformer to identify which patches
come from the same image and to distinguish the first image,
which is used to define the global coordinate frame. Sub-
sequently, these concatenated encoded patches from all views
are fed into a fusion transformer that performs all-to-all self-
attention, providing Fast3R with full context from all views.
Finally, two separate DPT-L (Ranftl et al., 2021) decoder heads
are used to predict both local and global pointmaps (X1, X¢)
and their corresponding confidence maps (X1, Xq).

Loss function. The total loss function of Fast3R is the com-
bination of pointmap loss for the local and global pointmaps, as
shown in Eq. (7):

['total - l:XG + ACXL (7)

where Lx and Lx; are confidence-weighted versions of the
normalized 3D pointwise regression loss, which is similar to
that of DUSt3R, as shown in Eq. (8):

L 1 . . .
Lx(%,X,X) = X Z X lreg(X, X) + alog(Xy) (8)

Since the log term requires the confidence scores to be strictly

positive, here set X = 1 + exp(X).

Training datasets. Fast3R trains the network with a mixture
of only 6 datasets. These datasets are subsets of the training
datasets in DUSt3R and do not include CO3D-v2 and Waymo.
For details, please refer to the paper of Fast3R (Yang et al.,
2025).
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Figure 6. Network Architecture of VGGT.

Network architecture. VGGT, close to Fast3R, is capable of
inferring multiple images in a single pass. Compared with the
other three methods, VGGT can simultaneously infer multiple
geometric results, including camera poses, depth maps, point-
maps, and keypoint tracks. As shown in Fig. 6, VGGT first
tokenizes the input images via DINO and then camera tokens
are added for camera pose prediction. Subsequently, the tokens
from all images are combined and processed using alternating
frame-wise and global self-attention, allowing the transformer
to alternately attend to local image features and global context.
Finally, a camera head is used to predict the camera paramet-
ers, while a DPT(Dense Prediction Transformer) head (Ranftl
et al., 2021) produces the depth maps, pointmaps, and keypoint
tracks.

Loss function. To jointly account for the four different outputs
(cameras, depth maps, pointmaps, tracks), VGGT is trained us-
ing a multi-tasks loss, as shown in Eq. (9):

L= Ecamera + Edepth + Acpmap + )\Ltrack (9)

The camera 1oss Lcamera measures the discrepancy between
the predicted and ground-truth camera parameters using the

Huber loss function. The depth loss Lgepm adopts an aleat-
oric uncertainty-weighted formulation, where the difference
between the predicted and ground-truth depth maps is weighted
by the predicted uncertainty map, and further enhanced by in-
corporating depth gradient information. The pointmap loss
Lomap follows a similar design to the depth loss but applies
the uncertainty weighting to the point map instead. Lastly, the
tracking loss L,k quantifies the difference between the pre-
dicted query points and their corresponding ground-truth loca-
tions. Please refer to the original paper (Wang et al., 2025) for
more details.

Training datasets. VGGT trains the network with a mixture of
17 datasets. These datasets use 6 from the training dataset of
MASt3R and extend 11 more: DL3DV, Kubric, ScanNet, Hy-
perSim, Mapillary, Replica, MVS-Synth, PointOdyssey, Aria
Synthetic, Aria Digital Twin, Objaverse-like. The combination
of its datasets is broadly comparable to those of MASt3R in size
and diversity. For details, please refer to the paper of VGGT
(Wang et al., 2025).

4. Methodology

To increase the number of photogrammetric images that feed-
forward methods are capable of handling, we propose an image
divide-and-conquer framework, as illustrated in Fig. 2. The
pipeline primarily consists of the following steps: image view-
graph generation, sub-blocks division, sub-blocks reconstruc-
tion via feed-forward 3R methods and sub-blocks merging.

4.1 Image View-Graph Generation

Take all images of the given scene as input, a pre-trained Res-
Net 50 model is employed to extract the global features f;
for each image. Subsequently, a weighted image view-graph
G = (V, E,W) is generated based on these extracted features.
In this view-graph, vertices V represent all input images, and
edges e;; € F indicate the matching relationships between im-
age pairs {v;, v; } € V. W represents the set of edge weights w,
with larger weights corresponding to higher similarity between
image pairs. Specifically, the weights are computed using a
Gaussian kernel function, as shown in Eq. (10), where the para-
meter +y is empirical and in this paper it is set to 0.00001.

we,; = exp (= * || fi — fill3) (10)

4.2 Sub-blocks Division

Based on the weighted image view-graph G = (V, E, W) , the
graph can be partitioned into £ unconnected subgraphs, ensur-
ing that these subgraphs G1,Ga, ..., G satisfy G; N G; = 0
and G1 U G2 U ... UG = G. To achieve this, Normal-
ized Cut (Shi and Malik, 2000) is employed for spectral clus-
tering, resulting in & mutually exclusive sub-blocks G?;, =
(Viios Blivs Wain) si =1, k.

To ensure successful merge of these sub-blocks in subsequent
steps, a sufficient number of common images between adja-
cent sub-blocks is essential. Therefore, it is necessary to fur-
ther expand each sub-block to include additional common im-
ages. Based on the connection relationships provided by the
global image view-graph G = (V, E, W) before partitioning,
the edges that originally connected two adjacent sub-blocks
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G, and Géiv in the global graph are used to introduce com-
mon images into both sub-blocks. The process is iteratively per-
formed until each sub-block contains at least 10 images shared
with other sub-blocks. As a result, the expanded sub-blocks are
denoted as Gizp = (Veizp, Eézp, Weixp) =1,k

4.3 Sub-blocks feed-forward Reconstruction

After obtaining the expanded sub-blocks, each sub-block is in-
dividually processed using the feed-forward methods (DUSt3R,
MASt3R, Fast3R, VGGT), producing the reconstructed dense
point clouds and estimated image poses.

4.4 Sub-blocks Merging

Finally, to obtain a complete reconstruction of the scene, all the
individually reconstructed sub-blocks need to be merged into a
unified model. For two adjacent sub-blocks Gizp, Gézp with
common images, the coordinates of these common images in
their respective coordinate frames are denoted as (X, Y*, Z%)
and (X?,Y7, Z7). When the number of common images
between two sub-blocks reaches 3, a 3D similarity transforma-
tion algorithm (Wang et al., 2019) is employed to compute the
transformation matrix between their coordinate systems based
on these common images (X*, Y% Z%), (X7,Y7,Z7). The
transformation matrix B = A(R|T’) is composed of a scaling
factor A, a 3*3 rotation matrix R, and a 3*1 translation vector
T.

To ensure the robustness of the results, a gold standard out-
lier rejection method, RANSAC, is used to estimate the trans-
formation matrix. In each iteration, three pairs of correspond-
ing coordinates are randomly selected to compute a candidate
transformation. The remaining correspondences are then used
to evaluate the transformation error. The number of RANSAC
iterations is set to 500, and the transformation matrix B that
yields the lowest error is selected as the optimal solution.

In order to transform all sub-blocks into a unified coordinate
system, a weighted sub-block connection graph is constructed
based on their overlapping relationships, where the weight of
each edge is defined as the negative number of common im-
ages. A minimum spanning tree (MST) is then generated from
this graph, with the coordinate system of its root node chosen as
the reference. Subsequently, each sub-block is transformed into
this reference system along the MST paths. Finally, the point
clouds of all sub-blocks, now aligned in the same reference co-
ordinate system, can be merged together to produce a complete
3D dense point cloud of the entire scene.

5. Experiments

To verify the effectiveness of the proposed framework and
explore the possibility of applying these novel feed-forward
3R methods to high-resolution photogrammetric datasets, four
main experiments are run in this section. The first experiment
applies the four feed-forward 3R methods to a single sub-block
and compares the results with referenced point clouds to eval-
uate their performance. The second experiment evaluates the
feasibility of the proposed divide-and-conquer framework by
comparing the Colmap results reconstructed from partitioned
sub-blocks with those obtained from the entire dateset. The
third experiment studies the influence of different numbers of
blocks in partition to identify an optimal strategy within the
framework. Finally, we apply the optimal strategy to four 3R
methods, aiming to analyze the strengths and limitations of four
3R methods in the field of photogrammetric reconstruction.

5.1 Datasets

As Tab. 1 shows, three datasets are tested in our experiment:
XHSD, YD, and Caffe. Among them, YD consists of UAV im-
ages captured with five cameras, XHSD includes UAV images
taken only from a downward perspective, and Caffe comprises
close-range images collected using three smartphones. Due to
the multi-camera acquisition, the YD and Caffe datasets are dis-
ordered. Overall, these three datasets contain a relatively large
number of high-resolution images ( normally exceeding the pro-
cessing capacity of 3R methods in a single run) and cover di-
verse photogrammetric situations, making them representative
and well-suited for evaluating both the proposed framework and
the 3R methods.

5.2 Implementation Details

For the four feed-forward 3R methods, except for the imple-
mentation of DUSt3R, which is optimized for GPU memory
usage by ourselves, the other three methods are just from the
original open-source version. In addition, to compare with
the traditional methods, this paper also runs Colmap, and all
experiments in this paper are conducted on a single NVIDIA
RTX4090 GPU.

5.3 Performance of 3R methods on single sub-block

To evaluate the performance of these 3R methods within one
single inference, a single sub-block from caffee dataset is tested
and their results are compared with the ground-truth point
clouds from LiDAR, as shown in Fig. 7. It can be found that,
for individual sub-block, all four methods generally achieve fair
results, and VGGT generates the highest quality reconstruc-
tion, followed by DUSt3R and MASt3R, while Fast3R yields
the poorest results.

(¢) MASt3R

(d) VGGT

Figure 7. Individual sub-block reconstruction results.

5.4 Feasibility of the image divide-and-conquer frame-
work

In order to validate the feasibility of proposed image divide-
and-conquer framework, we divide the dataset XHSD into 15
sub-blocks and perform reconstruction using COLMAP within
the proposed framework. The reconstruction results obtained
from our proposed framework are compared with those from
directly applying COLMAP to the entire scene without parti-
tioning. The results are shown in Fig. 8. Experimental res-
ults indicate that the reconstruction obtained from the proposed
framework exhibits only a minor difference in accuracy com-
pared to result entirely reconstructed from Colmap, demon-
strating the feasibility of proposed image divide-and-conquer
framework.
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Dataset name Image number Ordered/Disordered Number of cameras Data type Image resolution
XHSD 400 Ordered 1 UAV 5472%3648
YD 291 Disordered 5 UAV 6000*4000
Caffe 287 Disordered 3 close-range 1920%1980

Table 1. Information of the experimental dataset

(b) Colmap-with our proposed

(a) Colmap-only (c) Pointcloud compare result

framework
Figure 8. Colmap results with/without our divide-and-conquer
strategy.

5.5 Investigation on the impact of different blocks num-
bers

To explore the impact of different partitioned sub-blocks num-
ber, the XHSD dataset is divided into 15, 20, and 25 sub-blocks,
respectively. Then they are reconstructed using four 3R meth-
ods within the proposed framework in this paper. Taking the
reconstruction result of VGGT as an example, as shown in Fig.
9, it can be observed that when the number of sub-blocks in-
creases, the visual reconstruction result shows a higher degree
of misalignment. We take the reconstruction result of Colmap
as the ground-truth and conduct point cloud comparison with
the reconstruction result of VGGT. It can be seen that the re-
construction error of the blocks divided into 15, 20, and 25
sub-blocks gradually increases, which may be attributed to the
accumulation of errors during the merging process.

(a) ;Svﬁl‘t.)cks (b) 20hlocks (c) Zéﬁiocks
Figure 9. VGGT reconstruction results for different number of
blocks.

DUST3R MAST3R FAST3R VGGT
15blocks  2937.83 6407.41 204.03 276.07
20blocks  2714.01 6009.35 105.69 265.58
25blocks  2710.41 5979.25 90.10 259.72

Table 2. Reconstruction Time (s)

DUST3R MAST3R FAST3R VGGT

15blocks 15.20 6.10 12.00 21.70
20blocks 11.43 5.03 10.66 17.96
25blocks 8.21 5.01 10.25 16.83

Table 3. Maximum graphics memory consumption (G)

By comparing the reconstruction time and GPU memory con-
sumption of different partitioning strategies, as shown in the
Tab. 2 and Tab. 3, it can be found that for the same recon-
struction method, increasing the number of sub-blocks gener-
ally leads to a reduction in total reconstruction time, although
the difference is relatively small. In terms of GPU memory, a
higher number of sub-blocks results in fewer images per sub-
block, thereby reducing memory consumption. However, when
reconstruction quality is the primary concern, the optimal par-
titioning strategy under the proposed framework is: the smal-
ler the number of sub-blocks, the better, as long as the GPU
memory can support it.

5.6 Evaluation of 3R methods on image partitioning
framework

Based on the optimal partitioning strategy in Sec. 5.5, we di-
vided the three datasets XHSD, YD, and Caffe into 15, 12,
and 10 sub-blocks, respectively. Using four feed-forward 3R
methods, experiments are conducted under the proposed frame-
work, and the reconstruction results of XHSD, YD, and Caffe
are shown in Fig. 10. To evaluate the reconstruction results
of the four 3R methods, the reconstructions generated by the
traditional method COLMAP (well-known for its accuracy and
robustness) are selected as the ground-truth for XHSD, YD and
Caffe, comparing the 3R method results with the reference point
clouds from COLMAP, the 3D spatial accuracy of the four 3R
methods is shown in Fig. 11.

The results indicate that among the four 3R methods, VGGT
achieves the best performance, followed by MASt3R, while
DUSt3R and Fast3R perform poorly and can be considered
reconstruction failures. This may be attributed to the fact
that merging sub-blocks requires highly accurate image poses.
VGGT benefits from incorporating a large amount of global in-
formation from all input images and employs a dedicated cam-
era head to estimate high-precision image poses. Similarly,
MASt3R leverages an additional head specifically designed to
produce accurate pose information. In contrast, DUSt3R and
Fast3R lack such components, which likely contributes to their
lower performance.

In addition to reconstruction quality, the time efficiency and
GPU memory consumption of these four methods are also com-
pared, and the result is shown in the Tab. 4 and Tab. 5.
With the results, we can find that all four 3R methods out-
perform COLMAP in terms of reconstruction speed, especially
Fast3R and VGGT, which achieve reconstruction times tens of
times shorter than COLMAP. In terms of GPU memory usage,
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Figure 10. Reconstruction results of XHSD, YD and Caffe.

DUSt3R Fast3R

MASt3R VGGT

Figure 11. 3D spatial accuracy of the four 3R methods.

COLMAP has relatively low memory consumption, primar-
ily during feature extraction and dense matching. Among the
3R methods, VGGT has the largest memory consumption, fol-
lowed by DUSt3R and Fast3R, while MAST3R demonstrates
the lowest memory usage.

XHSD YD Caffe
COLMAP  14520.00 9720.00 11820.00
DUST3R  2937.83  1898.34  1882.79
MAST3R 640741  6120.22  3889.46
FAST3R 204.03 102.32 82.39
VGGT 276.07 261.46 73.65

Table 4. Reconstruction Time (s)

XHSD YD  Caffe
COLMAP 5.80 5.60 5.60
DUST3R 1520 1430 15.00
MAST3R 6.10 5.30 6.90
FAST3R 12.00  11.10  12.00
VGGT 21.70  19.40 21.70

Table 5. Maximum GPUs memory consumption (G)

Considering overall reconstruction quality, speed, and GPU
memory usage, VGGT emerges as the most effective method

under the framework proposed in this paper. It achieves the
highest reconstruction quality among the four 3R methods,
while also maintaining a fast processing speed, ranking in the
top tier alongside Fast3R, and performing dozens of times
faster than the traditional method COLMAP. Although VGGT
has the highest GPU memory consumption, it is capable of
efficiently handling dense reconstruction of several hundred
high-resolution photogrammetric images on a single RTX 4090
GPU, while still maintaining a reliable reconstruction accuracy
and quality under the proposed framework.

6. Conclusion

This paper extensively surveys four SOTA feed-forward 3R
methods (DUSt3R, MASt3R, Fast3R, and VGGT) and employs
a corresponding divide-and-conquer framework to make these
3R methods feasible on dealing with a large number of high-
resolution photogrammetric images. Our comprehensive exper-
imental results demonstrate that, via the proposed framework,
among these 3R methods, VGGT can successfully perform fast
and dense reconstruction for several hundred high-resolution
photogrammetric images on a single RTX 4090 GPU. Although
there remains a certain gap in 3D accuracy compared to the tra-
ditional COLMAP, the reconstruction speed is several tens of
times faster. Therefore, this approach shows promising prac-
tical possibility in scenarios where time efficiency is prioritized
over the requirement of very high 3D accuracy. Nevertheless,
the performance of our divide-and-conquer strategy is heavily
reliant on block partitioning and the accuracy of camera pose
estimation. In the future, we would like to explore a better block
partition as well as a more robust estimator for merging. Also,
a fine-tuning solution of 3R method that is tailored for photo-
grammetric images is of great interest to further investigate.
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