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Abstract

As digital cities evolve, the demand for 3D reconstruction increases, but challenges in accuracy and completeness remain. This study
proposes a 3D virtual scene reconstruction and application framework, which overcomes the limitations of single-source data by
incorporating multi-source data, improving accuracy, completeness, and interactivity. The method incorporates Unmanned Aerial
Vehicle (UAV) photogrammetry, UAV oblique photogrammetry, and Backpack Laser Scanning (BLS) to generate high resolution
mapping products, including Digital Orthophoto Map (DOM), Digital Surface Model (DSM), and dense point clouds. In this study,
UAYV images are utilized for 3D reconstructing large-scale scenes. For smaller scenes and complexindividual buildings, two distinct
data sources - oblique photogrammetry and BLS - are employed for modeling. The fusion of multi-source data addresses issues such
as image blind spots and deformations, resulting in models with improved geometric accuracy and richer textural details. System
development integrates a high resolution image viewer optimized with tiling technology and a 3D virtual reality interactive system
constructed based on Unreal Engine 5, enabling immersive exploration and real - time interaction. This study offers a scalable solution
for urban 3D reconstruction and provides tools for campus management and virtual tours, holding potential applications in the

development of smart cities.
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1. Introduction

With the development of digital and smart cities, urban
simulation has evolved from 2D to 3D, and the demand for 3D
reconstruction of urban scenes is increasing. As an essential
information-based tool, 3D virtual systems are playing an
increasingly important role in urban management and cultural
dissemination(Tang and Wang, 2024). However, due to the
limitations of data acquisition and processing technologies, the
existing 3D virtual system development technologies still have
shortcomings in terms of accuracy, completeness, and
interactivity(Liu etal., 2023).

Reconstructing three-dimensional (3D) scenes is crucial for the
development of 3D virtual systems. If the parameters of
geographical objects are measured and 3D models are manually
constructed, accuracy can be guaranteed. However, a
considerable amount of time will be taken, and substantial labor
costs will be incurred.

There are three main categories of methods for automatic 3D
scene model construction, based on the data type: image-based,
point-cloud-based, and multi-source data fusion-based
reconstructions.

Using only image information is the most widely-used method
for developing 3D urban systems at present. This method
primarily employs Structure from Motion (SFM) or Multi-view
stereo (MVS) algorithms to generate a large-scale 3D model in a
short time from the aerial image sequences captured by
Unmanned Aerial Vehicle (UAV) (Méndez-Barroso et al., 2018;
Rublee et al., 2011; Seitz et al., 2006). The advantages of these
methods are thatthe dataacquisition is fast, it coversalarge area,
and the entire scene can be covered in a short time. Additionally,
the sensor's characteristics allow it to capture texture information
of geographical objects. However, when UAV capture images,
visual blind spots often occur due to the mutual coverage and
occlusion between geographical objects. Moreover, since this
method relies solely on images to infer the properties of
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geographical objects, errors are likely to occur in areas with poor
image coverage. Therefore, although this method can quickly
build large-scale models, its local accuracy is low, and there are
many model deformationsand distortions.

Regarding the reconstruction method that uses only point clouds,
the current ways of collecting point cloud data mainly include:
Terrestrial Laser Scanning (TLS), Backpack Laser Scanning
(BLS), Mobile Laser Scanning (MLS), and UAV Laser Scanning
(ULS), etc (Tangetal.,2024). Generally, pointcloud data is used,
followed by Delaunay triangulation to obtain the 3D model of
geographical objects(Barber et al., 1996; Mao and Luo, 2025).
Light Detection and Ranging (LiDAR), with its sensor
characteristics, can provide high precision point clouds, which
enables the generated models to also have high accuracy (Guo et
al., 2021). Although LiDAR technology provides high-accuracy
point clouds, its operation can be obstructed by obstacles such as
pedestrians and trees, leadingto missingdata. Additionally, since
LiDAR sensors are usually single-band, they cannot collect
texture information of geographical objects. Therefore, while it
can build high precision 3D models, these models may suffer
from missing data and a lack of texture information due to data
defects.

To overcome the limitations of single-source methods, this study
proposes a multi-source data fusion algorithm that optimizes the
registration process between UAV imagery and LiDAR point
clouds, significantly enhancing model accuracy and detail. For
instance, scholars Bodis-Szomoru et al. proposed the fusion of
Airborne Laser Scanning (ALS) point clouds and MLS point
clouds for modeling, which helps resolve the problem of over-
smoothing in model surfaces caused by the use of ALS point
clouds (Bodis-Szomoru et al., 2016). In addition, Liu et al.
introduced a novel 3D model generation method based on the
fusion of multi-source 3D data, including 3D pointcloud dataand
3D meshdata (Liu etal., 2023). In general, these methods require
the fusion of multi-source data before model construction.
Afterward, 3D models are built based on the point cloud data.
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Although this approach offershigh accuracy, it also introduces
complexities in the construction process and large-scale model
storage requirements.

This study proposes a multi-source data fusion framework,
combiningUAYV imagery and BLS datato address the limitations
of single-source methods, improving model accuracy and detail
for large-scale scene reconstruction. For large-scale scenes,
methods with lower detail precision but faster dataacquisitionare
employed. In contrast, for irregular and complex buildings,
methods with higher precision are adopted for construction.
Furthermore, by integrating system development techniques, the
development of a high resolution imagery viewer and a virtual
reality interaction system has been realized. This research
provides a reliable tool for scenarios such as campus
management and virtual tours, and it can be further extended to
the construction of urban 3D virtual scenes.

2. Study Data

Figure 1. Study area and data collection area. The red box is the
oblique photogrammetry dataacquisition range, and the blue
box is the BLS data collection range.

Figure 2. Top view of the initial image position. Green lines
represent the route, and blue dot is the shooting location.

2.1 Study area.

The study area was selected in the Qingshuihe campus of
University of Electronic Science and Technology of China, as
shown in Figure 1. The campus spans approximately 309.06
hectares, with a total building area of about 1,490,000 square
meters. The campus elevation ranges from 552.36 meters to
623.16 m. It is characterized by a predominantly modem
architectural style, comprising structures of diverse heights and
contemporary designs. It not only offers a wide range of data for
the development of the 3D virtual campus system but also
presents certain challenges in terms of data acquisition,
processing, and modeling.

2.2 UAV photography data.

A DJI - Phantom 4 Pro UAV was used to obtain UAV images of
the entire campus. The UAV was flown at an altitude of 100m,
with a headingoverlap of 80% andaside-to-side overlap of 75%.
The UAV was flown at a speed of 10m/s, and the camera was a
1-inch CMOS, taking pictures at equal intervals along the
direction of the course, with the lens pointing vertically
downwards. A total of 4,732 photos were taken during the data
acquisition process. The initial image position is shown in Figure
2.

2.3 UAV oblique photogrammetry data.

Oblique photogrammetry data were also collected using the DJI
- Phantom 4 Pro. A total of three buildings in the study area were
photographed. Among the three buildings, the irregular ones
included the gymnasium and the library, as well as a regular
building, as shown in red box of Figure 1. The UAV flight
altitude was approximately 120 m, and photos were taken from
five directions: front, back, left, right, and below. Each building
had an average of about 500 images.

2.4 Backpack Laser Scanning Data.

To address the issue of insufficient accuracy in photogrammetry
data, additional datawere collected. The BLS data were acquired
using the LiBackpack DGC50 system, which is equipped with
two laser sensors and has a scanning distance of 120m. The
system offers a relative accuracy of approximately 3cm, and the
scanning frequency is 640,000 pts/s. Data from two buildings
were collected to supplement the dataset, as shown in blue box
of Figure 1. In the BLS data, the point cloud density is relatively
high, providing more complete information about the building
facades.

3. Method

This study focuses on 3D virtual scene reconstruction and
application based on multi - source data fusion. The methodology
consists of three stages: First, mapping data products, including
the Digital Orthophoto Map (DOM), the Digital Surface Model
(DSM), and the point cloud, are generated from processed UAV
imagery. Second, 3D scene reconstruction is performed using
three methods: UAV photography reconstruction, UAV oblique
photogrammetry reconstruction, and multi - source data fusion
reconstruction. These methods generate comprehensive and
accurate 3D models. Third, system development integrates the
generated data products and 3D models into user-friendly
systems, including a high-resolution imagery viewer and a 3D
virtual reality interactive system. The study aims to develop a
comprehensive 3D virtual system that provides detailed, accurate,
and interactive representations of urban scenes.
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3.1 Mapping Data Product Generation

This section details the process of generating mapping data
products from processed UAV imagery. The Digital Orthophoto
Map (DOM) is generated to provide a high-resolution,
orthorectified image of the study area. The Digital Surface Model
(DSM) is produced to represent the elevation data of the surface
features. Additionally, the point cloud of the entire study area is
generated to offer a detailed 3D representation of the spatial
distribution of objects and terrain. These products are crucial for
subsequent 3D scene reconstruction and analysis.

3.1.1 DOM Generation. The DOM generation involves
creating orthophoto imagery from the photos captured by UAV.
DOM is imagery that has undergone geometric correction and
can be used for precise measurement and analysis.

First, the images captured by the UAV undergo preprocessing.
Radiometric correction is applied to the images to eliminate the
effects of illumination, atmosphere, and other factors.
Subsequently, geometric correction is performed on the images
using the camera's internal and external parameters (e.g., focal
length, optical center) to remove geometric distortions caused by
cameratilt and terrain undulations. The internal parameter matrix
K is expressed as:
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where  f;, f, = focal length (in pixels) along the x-axis, y-axis
cx, ¢y = the coordinate of the center of the image
Subsequently, image mosaicking is carried out. An optimization
algorithm is employed to determine the seam positions between
adjacent images, ensuring that the mosaicked image is seamless.
Then, the blendingalgorithmisapplied to the images atthe seams
to avoid discontinuities in grayscale values. Finally, the DOM
can be generated.

3.1.2 DSM Generation. The generation of DSM involves
creating a 3D representation of the objects’ surface and its
features, such as buildings and trees, using image data.

The process begins with stereo matching, where feature points
are extracted from the images using SIFT algorithm, and then
matched across different views to establish correspondences
(Lowe, 2004, 1999). The disparity, which is the difference in
pixel coordinates of the same feature point in different images, is
calculated.

Next, triangulation is performed using the disparity information
and camera parameters to calculate the three-dimensional
coordinates of the feature points. This results in a sparse point
cloud. The depth Z can be calculated as follow:

== @

where  f =the focal length of the camera

B = the baseline distance between the two cameras

d =the disparity.

The point cloud is then filtered to remove noise and outliers,
enhancing the accuracy and quality. This is followed by surface
reconstruction, wherethe pointcloud data is convertedinto a grid
model. Then, the nearest neighbor interpolation is used to assign
height values to each grid cell. After the above processing is

completed, the DSM of the corresponding region is generated.

3.1.3 Point Cloud Generation. Point cloud generation
involves creating a dense point cloud from the UAV image. the

dense point cloud generated accurately represents the geometric
shape and spatial position of objects or environments. In this step,
the dense point cloud is primarily generated based on the sparse
point cloud from Section 3.1.2.

Specifically, to generate a dense point cloud, it is necessary to
use the corresponding points in the sparse point cloud to infer the
3D positions of other neighboring points in the image. This
involves depth estimation, which is the process of calculating the
depth value for each pixel in the image. Depth estimation is
carried out using the Semi-Global Matching (SGM)
(Hirschmuller, 2008). The SGM algorithm approximates the 2D
energy optimization problem by aggregating costsalongmultiple
scanlines, thereby significantly reducing the processing time.
First, for each pixel, the matching cost at different disparities is
calculated. The matching cost is typically computed based on
pixel intensity differences or mutual information. Then, the
matching costs are aggregated along multiple directions to
incorporate global contextual information. The aggregated cost
C (p, d) can be expressed as:

C.d) = ) () cost(p,q,d) ®
qEN

where  p =the current pixel
q =the neighboring pixels
N = the set of neighboring pixels
w(g) = the weight function
cost(p, q, d) =the matchingcostbetween pixels p and
q atdisparity d
For each pixel, the disparity with the minimum aggregated cost
is selected as the final disparity. Using the disparity and camera
parameters, the depth Z for each pixel is calculated, resulting in
a dense point cloud. After generating the dense point cloud,
further post-processing is required to enhance the quality and
accuracy, including filtering to remove noise and outliers.

3.2 3D Scene Reconstruction

This section outlines the method employed for 3D scene
reconstruction. The process encompasses three primary
approaches: UAV photography reconstruction, UAV oblique
photogrammetry reconstruction, and multi-source data fusion
reconstruction. These methods complement one another,
providing different frameworks for reconstructing accurate 3D
models.

3.21 UAV Photography Reconstruction. In this section,
large-scale 3D models are generated based on the dense point
cloud generated in Section 3.1.3. The process involves three main
steps. First, the dense point cloud is transformed into a triangular
mesh model using the Delaunay triangulation algorithm. This
ensures that the resulting mesh has a well-structured topology
and high geometric accuracy. Then, the generated mesh is
optimized to reduce the number of polygons and enhance the
smoothness and efficiency of the model. Laplacian smoothing
algorithm is used for this optimization. Finally, the color
information from the images is mapped onto the mesh model to
create realistic textures.

3.22 UAV Obliqgue Photogrammetry Reconstruction.
UAYV oblique photogrammetry reconstruction is an important
method for generating detailed and accurate 3D models of
buildings. This technology uses images captured by UAVs from
multiple angles to create a comprehensive 3D representation,
which is particularly suitable for complex and irregularly shaped
buildings (Verykokou and loannidis, 2018). Compared to
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traditional orthophotography, oblique photogrammetry offers
significant advantages in handling large scenes, providing richer
details and greater geometric accuracy (Zhang et al., 2020). In
this step, the same processing procedure as that for the
photography datais applied to the oblique photogrammetry data.
Since oblique photogrammetry captures images from multiple
different angles, the dense point cloud it generates retains more
building facade information, resulting in a more realistic model
after triangulation.

3.23 Multi-source Data Fusion Reconstruction. Models
reconstructed through imagery often suffer from poor accuracy
in fine detailsand areas not covered by the camera, itis necessary
to fuse other data for reconstruction. In this study, BLS was
chosen to supplement the photogrammetry data.

Firstly, data registration is performed. The BLS data and the
photogrammetry point cloud are dimensionally reduced to obtain
their corresponding DSM. After dimensional reduction,
normalization and binarization are carried out to highlight areas
with significant elevation changes. Then, the KAZE operator is
used for feature extraction on the binarized image (Alcantarilla
et al, 2012). Subsequently, the transformation matrix is
calculated based on the extracted features to match the images.
Further, the transformation matrix obtained from image
registration is used to guide point cloud registration, ultimately
obtaining point clouds under the same coordinate system.

Next, the BLS point cloud is colored using the nearest-neighbor
interpolation algorithm, based on the color of the
photogrammetry point cloud. This results in two point clouds
with RGB information.

Finally, the registered point cloud is down-sampled to reduce the
data volume. After down-sampling, Delaunay triangulation
algorithm is performed on the point cloud to obtain the final 3D
model.

3.3 System Development

The development of the 3D virtual system involves the
integration of high-resolution imagery and 3D models to create
an interactive and immersive environment. This section outlines
the key components of the system development, including the
high-resolution imagery viewer and the 3D virtual reality
interactive system.

3.3.1 High-resolution Imagery Viewer. Due to the high
resolution of the DOM generated in section 3.1.1, it loads slowly
in common image viewers. This section aims to develop a high-
performance high-resolution imagery viewer and implement
some interactive features.

In this study, high-resolution, large-scale imagery is compressed
and divided into different levels using map tiling technology,
thereby optimizing image access speed and memory usage
(Clouston and Peterson, 2014; Lin et al., 2019). This enables
rapid zooming in and out, panning, and high-detail viewing of
imagery. Furthermore, based on viewing, building location and
introduction functions are also provided.

3.3.2 3D virtual Reality Interactive System. This section,
based on the models in Section 3.2, has developeda 3D virtual
reality interactive system using Unreal Engine 5 (UE 5) (Lietal,
2023; Wang et al., 2024). The system allows character
movements such as walking, jumping, and flying within the
scene, offering an immersive user experience. Leveraging the
capabilities of UE5, such as high-fidelity rendering and physics
simulation, the system can respond to user interactions in real-
time and view buildings and structures from different angles.

4. Results
4.1 Data Products

During the processing of UAV imagery, three types of data
products were generated: the DOM, the DSM, and the pointcloud
for the entire area. These products were then used to generate the
3D model of the area The DOM, DSM, and 3D model are shown
in Figure 3 (a), (b), and (c), respectively. Among them, the
resolution of both DOM and DSM is 0.02m. In the point cloud,
there are a total of 545,197,552 points, with an average point
cloud density is about 154.32 pts/m3.

ol = P O r
Figure 3. Data product result. (a), (b) and (c) is DOM, DSM and
3D model, respectively. (c_1) is local view of the model
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Figure 4. Oblique Photogrammetry recnructed results. (a) and
(b) represent irregular buildings, and (c) represents regular
building. (a_1), (b_1), and (c_1) are the corresponding detail
views.

4.2 3D Model

4.21 UAV Photography Model. The results of the generated
3D modelare shown in Figure 3(c), with a detailed viewin (c_1).
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The model size is approximately 2193.79 x2464.76x93.27 m (X
x y x z), consisting of about 1,000,000 faces. This model
effectively represents the distribution of buildings, vegetation,
and other land features across the entire study area. However,
when it comes to individual buildings or land features, the level
of detail is relatively poor, and there are noticeable deformations
and other issues.

Box Dimensions (m)
Faces
X Y z
A 389.04 520.09 40.69 6,268,575
B 521.77 463.34 56.72 7,466,351
C 666.51 639.82 61.63 17,880,741
Average | 525.77 541.08 53.01 10,538,556

Table 1. Oblique photogrammetry model parameter.

Figure 5. Point cloud registration result. RGB is shown for the
photogrammetric point cloud and height information is shown
forthe BLS pointcloud. (a_1) and (a_2) are overall views.
(b_1)and (b_1) are top zoom views. (c_1) and (c_2) are side
zoom views.

Figure 6. Multi-source Data Fusion reconstructed results.

4.2.2 UAV Oblique Photogrammetry Model. The results of
oblique photogrammetry modeling are shown in Figure 4. This
model provides clearer details of various buildings, as illustrated
in the detail view on the right. Compared to the photogrammetry
model, although this model has a smaller scale, it has more faces.
The parameters of the three models are presented in Table 1,
which correspond to the serial numbers in Figure 4. The average

size of the three models is 525.77*541.08*53.01 m, and on
average, they have 10,538,556 faces. In this model, it is possible
to accurately measure parameterssuch as the length and size of
land features. Moreover, this model can also be utilized for the
development of a 3D virtual system.

4.2.3  Multi-source Data Fusion Model. 3D reconstruction
through the fusion of multi - source data involves the registration
of different point clouds. The registration results for point clouds
of two different buildings are shown in Figure 5. As seen, both
buildings have achieved good registration effects. The model
constructed using the registered point clouds is shown in Figure
6. Compared to the oblique photogrammetry model, this model
preserves more details. Additionally, the deformation issues
presentin the UAV photography blind spots have been largely
addressed. The final model, constructed by fusing multi - source
data, is approximately 607.35%1133.71*92.25 m in size and
consists of 56,926,748 faces.

4.3 System Development

The high-resolution image viewer results are shown in Figure 7,
where (a), (b), and (c) represent different zoom levels. In this
system, users can quickly zoom in and out of the map. They can
also search and locate buildings by selecting building’s names
and view the corresponding building introductions.

The 3D virtual interaction system is shown in Figure 8. It allows
users to perform actions such as walking, jumping and flying in
the virtual scene. This system has strong interactivity.

>

Figure 7. High resolution image viewer interfae screenshot.
(a), (b) and (c) represent different zoom levels.

Figure 8. 3D virtual Reality Interactive System interface
screenshot.
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5. Discussion
5.1 Research Framework

The primary objective of this study is to reconstruct and apply
3D virtual scenes. To obtain comprehensive and precise data, this
research employed a variety of data acquisition methods,
including UAV photography, UAV oblique photogrammetry,
and BLS. UAV photography provided extensive image data,
while UAV oblique photogrammetry captured images of specific
buildings from multiple angles. BLS was utilized to supplement
the deficiencies in detail and accuracy of the photogrammetric
data. This multi-source data acquisition approach not only
ensured the comprehensiveness of the data but also enhanced its
accuracy and reliability.

During the data processing stage, several data products were
generated, including the DOM, DSM, and point cloud. The
generation of DOM involved geometric correction and image
mosaicking, ensuring precise measurement and analysis of the
imagery. The DSM was produced through stereo matching and
triangulation, utilizing camera parameters to generate a sparse
point cloud, which was then filtered and subjected to surface
reconstruction. The point cloud was generated using the SGM
algorithm, producing a dense point cloud that accurately
represented the geometric shape and spatial position of objects or
environments.

In the 3D reconstruction phase, this study adopted three main
methods: UAV photography reconstruction, UAV oblique
photogrammetry reconstruction, and multi-source data fusion
reconstruction. These methods complemented each other,
providing 3D model reconstruction within different frameworks.
UAV photography reconstruction involved converting the dense
point cloud into a triangular mesh model, followed by
optimization and texture mapping, to generate large-scale 3D
models. UAV oblique photogrammetry reconstruction utilized
images captured from multiple angles to produce detailed and
accurate 3D models, particularly suitable for complex and
irregularly shaped buildings. Multi-source data fusion
reconstruction involved registering BLS data with
photogrammetric point clouds to generate more precise 3D
models, addressing the shortcomings of photogrammetric data in
terms of detail and blind spots.

In the system development stage, this study integrated the
generated data products and 3D models into user-friendly
systems, including a high-resolution imagery viewer and a 3D
virtual reality interactive system.

5.2 3D Model Reconstruction

While the system generally achieves satisfactory outcomes,
certain errors and shortcomings still exist, which are primarily
reflected in the model's inaccuracies.

G g <ou ) e ©)

Figure 9. The area of the photogrammetry model that is
obviously deformed

iy

5.21 UAV photogrammetry model. Regarding the UAV
photogrammetry model, despite its extensive coverage, it only
provides nadir imagery. This type of data offers relatively good

representations of building rooftops, tree canopies, and
prominentland features. However, itis less effective at capturing
building facades and the understory structure of forests. These
areas often exhibit poor or even absent data. As a result,
noticeable deformations can be observed in the reconstructed
models, as shown in Figure 9.

5.22 UAV oblique photogrammetry model. To address the
limitations of the photogrammetry model, the oblique
photogrammetry approach was employed to model certain land
objects. The models constructed using this method have
demonstrated relatively good performance in representing
building facades, enabling accurate measurement of parameters
such as object length and area. However, due to the limitations of
UAV photography, significant errors remain in some blind spots.
For instance, in areas like building passages, deformations or
even voids can be observed, as shown in Figure 10(a), (b), and
(c). Additionally, at the model's edges, insufficient photography
coverage results in further deformations and voids, as shown in
Figure 10(d).

Figure 10. Examples of the main errors in the oblique
photogrammetry model

5.2.3 Multi-source Data Fusion Model. For models
generated through multi-source data fusion, the issues of model
deformation and insufficient detail have been significantly
mitigated. This method has compensated for the shortcomings of
single-source modeling approaches. The main errors stem from
the registrant process. However, this method has efficiency-
related issues, such as high memory consumption and low
generation efficiency. Future research should focus on
developing more efficient algorithms to enhance the modeling
process with multi-source data.

6. Conclusions

This study demonstrates the effectiveness of multi-source data
fusion in 3D virtual campus reconstruction, addressing the
limitations of single-source methods. By integrating UAV
imagery, oblique photogrammetry, and BLS data, the framework
achieves a balance between large-scale coverage and high-detail
modeling. The developed systems-a high-performance imagery
viewer and a UE5-based virtual reality platform-enhance
usability and interactivity for urban management applications.
Despite these advancements, challenges such as computational
inefficiencies and registration inaccuracies underscore the need
for optimized algorithms in future work. The research
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underscores the importance of hybrid methodologies in
geospatial modelingand providesafoundation for scalable smart
city solutions.
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