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Abstract 

 

As digital cities evolve, the demand for 3D reconstruction increases, but challenges in accuracy and completeness remain. This study 
proposes a 3D virtual scene reconstruction and application framework, which overcomes the limitations of single-source data by 
incorporating multi-source data, improving accuracy, completeness, and interactivity. The method incorporates Unmanned Aerial 
Vehicle (UAV) photogrammetry, UAV oblique photogrammetry, and Backpack Laser Scanning (BLS) to generate high resolution 

mapping products, including Digital Orthophoto Map (DOM), Digital Surface Model (DSM), and dense point clouds. In this study, 
UAV images are utilized for 3D reconstructing large-scale scenes. For smaller scenes and complex individual buildings, two distinct 

data sources - oblique photogrammetry and BLS - are employed for modeling. The fusion of multi-source data addresses issues such 
as image blind spots and deformations, resulting in models with improved geometric accuracy and richer textural details. System 

development integrates a high resolution image viewer optimized with tiling technology and a 3D virtual reality interactive system 
constructed based on Unreal Engine 5, enabling immersive exploration and real - time interaction. This study offers a scalable solution 
for urban 3D reconstruction and provides tools for campus management and virtual tours, holding potential applications in the 
development of smart cities. 
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1. Introduction 

With the development of digital and smart cities, urban 
simulation has evolved from 2D to 3D, and the demand for 3D 
reconstruction of urban scenes is increasing. As an essential 

information-based tool, 3D virtual systems are playing an 
increasingly important role in urban management and cultural 
dissemination(Tang and Wang, 2024). However, due to the 
limitations of data acquisition and processing technologies, the 

existing 3D virtual system development technologies still have 
shortcomings in terms of accuracy, completeness, and 
interactivity(Liu et al., 2023). 
Reconstructing three-dimensional (3D) scenes is crucial for the 

development of 3D virtual systems. If the parameters of 
geographical objects are measured and 3D models are manually 
constructed, accuracy can be guaranteed. However, a 

considerable amount of time will be taken, and substantial labor 

costs will be incurred. 
There are three main categories of methods for automatic 3D 
scene model construction, based on the data type: image-based, 
point-cloud-based, and multi-source data fusion-based 

reconstructions. 
Using only image information is the most widely-used method 
for developing 3D urban systems at present. This method 
primarily employs Structure from Motion (SFM) or Multi-view 

stereo (MVS) algorithms to generate a large-scale 3D model in a 
short time from the aerial image sequences captured by 
Unmanned Aerial Vehicle (UAV) (Méndez-Barroso et al., 2018; 
Rublee et al., 2011; Seitz et al., 2006). The advantages of these 

methods are that the data acquisition is fast, it covers a large area, 
and the entire scene can be covered in a short time. Additionally, 
the sensor's characteristics allow it to capture texture information 
of geographical objects. However, when UAV capture images, 

visual blind spots often occur due to the mutual coverage and 
occlusion between geographical objects. Moreover, since this 
method relies solely on images to infer the properties of 
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geographical objects, errors are likely to occur in areas with poor 
image coverage. Therefore, although this method can quickly 

build large-scale models, its local accuracy is low, and there are 
many model deformations and distortions. 

Regarding the reconstruction method that uses only point clouds, 
the current ways of collecting point cloud data mainly include: 
Terrestrial Laser Scanning (TLS), Backpack Laser Scanning 
(BLS), Mobile Laser Scanning (MLS), and UAV Laser Scanning 

(ULS), etc (Tang et al., 2024). Generally, point cloud data is used, 

followed by Delaunay triangulation to obtain the 3D model of 
geographical objects(Barber et al., 1996; Mao and Luo, 2025). 
Light Detection and Ranging (LiDAR), with its sensor 

characteristics, can provide high precision point clouds, which 
enables the generated models to also have high accuracy (Guo et 
al., 2021). Although LiDAR technology provides high-accuracy 
point clouds, its operation can be obstructed by obstacles such as 

pedestrians and trees, leading to missing data. Additionally, since 
LiDAR sensors are usually single-band, they cannot collect 
texture information of geographical objects. Therefore, while it 
can build high precision 3D models, these models may suffer 

from missing data and a lack of texture information due to data 
defects. 
To overcome the limitations of single-source methods, this study 
proposes a multi-source data fusion algorithm that optimizes the 

registration process between UAV imagery and LiDAR point 
clouds, significantly enhancing model accuracy and detail. For 
instance, scholars Bodis-Szomoru et al. proposed the fusion of 
Airborne Laser Scanning (ALS) point clouds and MLS point 

clouds for modeling, which helps resolve the problem of over-

smoothing in model surfaces caused by the use of ALS point 
clouds (Bodis-Szomoru et al., 2016). In addition, Liu et al. 
introduced a novel 3D model generation method based on the 

fusion of multi-source 3D data, including 3D point cloud data and 
3D mesh data (Liu et al., 2023). In general, these methods require 
the fusion of multi-source data before model construction. 
Afterward, 3D models are built based on the point cloud data. 
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Although this approach offers high accuracy, it also introduces 
complexities in the construction process and large-scale model 

storage requirements. 
This study proposes a multi-source data fusion framework, 

combining UAV imagery and BLS data to address the limitations 
of single-source methods, improving model accuracy and detail 

for large-scale scene reconstruction. For large-scale scenes, 
methods with lower detail precision but faster data acquisition are 
employed. In contrast, for irregular and complex buildings, 
methods with higher precision are adopted for construction. 

Furthermore, by integrating system development techniques, the 

development of a high resolution imagery viewer and a virtual 
reality interaction system has been realized. This research 
provides a reliable tool for scenarios such as campus 

management and virtual tours, and it can be further extended to 
the construction of urban 3D virtual scenes. 
 

2. Study Data 

 

Figure 1. Study area and data collection area. The red box is the 

oblique photogrammetry data acquisition range, and the blue 

box is the BLS data collection range. 

 

Figure 2. Top view of the initial image position. Green lines 

represent the route, and blue dot is the shooting location. 

2.1 Study area.  

The study area was selected in the Qingshuihe campus of 

University of Electronic Science and Technology of China, as 
shown in Figure 1. The campus spans approximately 309.06 

hectares, with a total building area of about 1,490,000 square 
meters. The campus elevation ranges from 552.36 meters to 

623.16 m. It is characterized by a predominantly modern 
architectural style, comprising structures of diverse heights and 
contemporary designs. It not only offers a wide range of data for 
the development of the 3D virtual campus system but also 

presents certain challenges in terms of data acquisition, 
processing, and modeling. 
 
2.2 UAV photography data.  

A DJI - Phantom 4 Pro UAV was used to obtain UAV images of 
the entire campus. The UAV was flown at an altitude of 100m, 

with a heading overlap of 80% and a side-to-side overlap of 75%. 
The UAV was flown at a speed of 10m/s, and the camera was a 

1-inch CMOS, taking pictures at equal intervals along the 
direction of the course, with the lens pointing vertically 
downwards. A total of 4,732 photos were taken during the data 
acquisition process. The initial image position is shown in Figure 

2. 

 
2.3 UAV oblique photogrammetry data.  

Oblique photogrammetry data were also collected using the DJI 

- Phantom 4 Pro. A total of three buildings in the study area were 
photographed. Among the three buildings, the irregular ones 

included the gymnasium and the library, as well as a regular 
building, as shown in red box of Figure 1. The UAV flight 

altitude was approximately 120 m, and photos were taken from 
five directions: front, back, left, right, and below. Each building 
had an average of about 500 images. 
 

2.4 Backpack Laser Scanning Data.  

To address the issue of insufficient accuracy in photogrammetry 
data, additional data were collected. The BLS data were acquired 
using the LiBackpack DGC50 system, which is equipped with 

two laser sensors and has a scanning distance of 120m. The 
system offers a relative accuracy of approximately 3cm, and the 
scanning frequency is 640,000 pts/s. Data from two buildings 

were collected to supplement the dataset, as shown in blue box 

of Figure 1. In the BLS data, the point cloud density is relatively 
high, providing more complete information about the building 
facades.  
 

3. Method 

This study focuses on 3D virtual scene reconstruction and 
application based on multi - source data fusion. The methodology 
consists of three stages: First, mapping data products, including 

the Digital Orthophoto Map (DOM), the Digital Surface Model 
(DSM), and the point cloud, are generated from processed UAV 
imagery. Second, 3D scene reconstruction is performed using 

three methods: UAV photography reconstruction, UAV oblique 

photogrammetry reconstruction, and multi - source data fusion 
reconstruction. These methods generate comprehensive and 
accurate 3D models. Third, system development integrates the 

generated data products and 3D models into user-friendly 

systems, including a high-resolution imagery viewer and a 3D 
virtual reality interactive system. The study aims to develop a 

comprehensive 3D virtual system that provides detailed, accurate, 
and interactive representations of urban scenes. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025 
13th International Conference on Mobile Mapping Technology (MMT 2025)  

“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20–22 June 2025, Xiamen, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W5-2025-117-2025 | © Author(s) 2025. CC BY 4.0 License.

 
118



 

 

3.1 Mapping Data Product Generation 

This section details the process of generating mapping data 

products from processed UAV imagery. The Digital Orthophoto 
Map (DOM) is generated to provide a high-resolution, 

orthorectified image of the study area. The Digital Surface Model 
(DSM) is produced to represent the elevation data of the surface 

features. Additionally, the point cloud of the entire study area is 
generated to offer a detailed 3D representation of the spatial 
distribution of objects and terrain. These products are crucial for 
subsequent 3D scene reconstruction and analysis. 

 
3.1.1 DOM Generation. The DOM generation involves 
creating orthophoto imagery from the photos captured by UAV. 
DOM is imagery that has undergone geometric correction and 

can be used for precise measurement and analysis. 
First, the images captured by the UAV undergo preprocessing. 
Radiometric correction is applied to the images to eliminate the 

effects of illumination, atmosphere, and other factors. 

Subsequently, geometric correction is performed on the images 
using the camera's internal and external parameters (e.g., focal 

length, optical center) to remove geometric distortions caused by 
camera tilt and terrain undulations. The internal parameter matrix 

𝐾 is expressed as： 

 

𝐾 = [
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] (1) 

 
where  𝑓𝑥 , 𝑓𝑦 = focal length (in pixels) along the x-axis, y-axis 

𝑐𝑥, 𝑐𝑦 = the coordinate of the center of the image 

Subsequently, image mosaicking is carried out. An optimization 
algorithm is employed to determine the seam positions between 
adjacent images, ensuring that the mosaicked image is seamless. 
Then, the blending algorithm is applied to the images at the seams 

to avoid discontinuities in grayscale values. Finally, the DOM 
can be generated. 

 
3.1.2 DSM Generation. The generation of DSM involves 

creating a 3D representation of the objects’ surface and its 
features, such as buildings and trees, using image data.  
The process begins with stereo matching, where feature points 
are extracted from the images using SIFT algorithm, and then 

matched across different views to establish correspondences 

(Lowe, 2004, 1999). The disparity, which is the difference in 
pixel coordinates of the same feature point in different images, is 
calculated.  

Next, triangulation is performed using the disparity information 
and camera parameters to calculate the three-dimensional 
coordinates of the feature points. This results in a sparse point 

cloud. The depth 𝑍 can be calculated as follow: 

 

𝑍 =
𝑓 · 𝐵

𝑑
(2) 

 

where  𝑓 = the focal length of the camera 

 𝐵 = the baseline distance between the two cameras 

 𝑑 = the disparity.  
The point cloud is then filtered to remove noise and outliers, 

enhancing the accuracy and quality. This is followed by surface 
reconstruction, where the point cloud data is converted into a grid 

model. Then, the nearest neighbor interpolation is used to assign 
height values to each grid cell. After the above processing is 

completed, the DSM of the corresponding region is generated. 

 
3.1.3 Point Cloud Generation. Point cloud generation 
involves creating a dense point cloud from the UAV image. the 

dense point cloud generated accurately represents the geometric 
shape and spatial position of objects or environments. In this step, 

the dense point cloud is primarily generated based on the sparse 
point cloud from Section 3.1.2.  

Specifically, to generate a dense point cloud, it is necessary to 
use the corresponding points in the sparse point cloud to infer the 

3D positions of other neighboring points in the image. This 
involves depth estimation, which is the process of calculating the 
depth value for each pixel in the image. Depth estimation is 
carried out using the Semi-Global Matching (SGM) 

(Hirschmuller, 2008). The SGM algorithm approximates the 2D 

energy optimization problem by aggregating costs along multiple 
scanlines, thereby significantly reducing the processing time. 
First, for each pixel, the matching cost at different disparities is 

calculated. The matching cost is typically computed based on 
pixel intensity differences or mutual information. Then, the 
matching costs are aggregated along multiple directions to 
incorporate global contextual information. The aggregated cost 

𝐶(𝑝, 𝑑) can be expressed as: 
 

𝐶(𝑝,𝑑) = ∑ 𝜔(𝑞) · 𝑐𝑜𝑠𝑡(𝑝,𝑞,𝑑)

𝑞∈𝑁

(3) 

 

where  𝑝 = the current pixel 

 𝑞 = the neighboring pixels 
 𝑁 = the set of neighboring pixels 

 𝜔(𝑞) = the weight function 

 𝑐𝑜𝑠𝑡(𝑝,𝑞, 𝑑) = the matching cost between pixels 𝑝 and 
𝑞 at disparity 𝑑 
For each pixel, the disparity with the minimum aggregated cost 
is selected as the final disparity. Using the disparity and camera 

parameters, the depth 𝑍 for each pixel is calculated, resulting in 
a dense point cloud. After generating the dense point cloud, 

further post-processing is required to enhance the quality and 
accuracy, including filtering to remove noise and outliers. 
 
3.2 3D Scene Reconstruction 

This section outlines the method employed for 3D scene 
reconstruction. The process encompasses three primary 
approaches: UAV photography reconstruction, UAV oblique 
photogrammetry reconstruction, and multi-source data fusion 

reconstruction. These methods complement one another, 
providing different frameworks for reconstructing accurate 3D 

models. 
 

3.2.1 UAV Photography Reconstruction. In this section, 
large-scale 3D models are generated based on the dense point 
cloud generated in Section 3.1.3. The process involves three main 
steps. First, the dense point cloud is transformed into a triangular 

mesh model using the Delaunay triangulation algorithm. This 

ensures that the resulting mesh has a well-structured topology 
and high geometric accuracy. Then, the generated mesh is 
optimized to reduce the number of polygons and enhance the 

smoothness and efficiency of the model. Laplacian smoothing 
algorithm is used for this optimization. Finally, the color 
information from the images is mapped onto the mesh model to 

create realistic textures. 

 
3.2.2 UAV Oblique Photogrammetry Reconstruction. 
UAV oblique photogrammetry reconstruction is an important 

method for generating detailed and accurate 3D models of 
buildings. This technology uses images captured by UAVs from 

multiple angles to create a comprehensive 3D representation, 

which is particularly suitable for complex and irregularly shaped 
buildings (Verykokou and Ioannidis, 2018). Compared to 
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traditional orthophotography, oblique photogrammetry offers 
significant advantages in handling large scenes, providing richer 

details and greater geometric accuracy (Zhang et al., 2020). In 
this step, the same processing procedure as that for the 

photography data is applied to the oblique photogrammetry data. 
Since oblique photogrammetry captures images from multiple 

different angles, the dense point cloud it generates retains more 
building facade information, resulting in a more realistic model 
after triangulation. 
 

3.2.3 Multi-source Data Fusion Reconstruction. Models 

reconstructed through imagery often suffer from poor accuracy 
in fine details and areas not covered by the camera, it is necessary 
to fuse other data for reconstruction. In this study, BLS was 

chosen to supplement the photogrammetry data. 
Firstly, data registration is performed. The BLS data and the 
photogrammetry point cloud are dimensionally reduced to obtain 
their corresponding DSM. After dimensional reduction, 

normalization and binarization are carried out to highlight areas 
with significant elevation changes. Then, the KAZE operator is 
used for feature extraction on the binarized image (Alcantarilla 
et al., 2012). Subsequently, the transformation matrix is 

calculated based on the extracted features to match the images. 
Further, the transformation matrix obtained from image 

registration is used to guide point cloud registration, ultimately 
obtaining point clouds under the same coordinate system. 

Next, the BLS point cloud is colored using the nearest-neighbor 
interpolation algorithm, based on the color of the 
photogrammetry point cloud. This results in two point clouds 
with RGB information. 

Finally, the registered point cloud is down-sampled to reduce the 

data volume. After down-sampling, Delaunay triangulation 
algorithm is performed on the point cloud to obtain the final 3D 
model. 

 
3.3 System Development 

The development of the 3D virtual system involves the 

integration of high-resolution imagery and 3D models to create 

an interactive and immersive environment. This section outlines 
the key components of the system development, including the 
high-resolution imagery viewer and the 3D virtual reality 
interactive system. 

 
3.3.1 High-resolution Imagery Viewer. Due to the high 

resolution of the DOM generated in section 3.1.1, it loads slowly 
in common image viewers. This section aims to develop a high-

performance high-resolution imagery viewer and implement 
some interactive features. 
In this study, high-resolution, large-scale imagery is compressed 
and divided into different levels using map tiling technology, 

thereby optimizing image access speed and memory usage 
(Clouston and Peterson, 2014; Lin et al., 2019). This enables 
rapid zooming in and out, panning, and high-detail viewing of 
imagery. Furthermore, based on viewing, building location and 

introduction functions are also provided. 
 
3.3.2 3D virtual Reality Interactive System. This section, 

based on the models in Section 3.2, has developed a 3D virtual 

reality interactive system using Unreal Engine 5 (UE 5) (Li et al., 
2023; Wang et al., 2024). The system allows character 
movements such as walking, jumping, and flying within the 
scene, offering an immersive user experience. Leveraging the 

capabilities of UE5, such as high-fidelity rendering and physics 
simulation, the system can respond to user interactions in real-
time and view buildings and structures from different angles. 
 

4. Results 

4.1 Data Products 

During the processing of UAV imagery, three types of data 

products were generated: the DOM, the DSM, and the point cloud 
for the entire area. These products were then used to generate the 
3D model of the area The DOM, DSM, and 3D model are shown 

in Figure 3 (a), (b), and (c), respectively. Among them, the 
resolution of both DOM and DSM is 0.02m. In the point cloud, 
there are a total of 545,197,552 points, with an average point 

cloud density is about 154.32 pts/m3.  

 

 

Figure 3. Data product result. (a), (b) and (c) is DOM, DSM and 

3D model, respectively. (c_1) is local view of the model 

 
Figure 4. Oblique Photogrammetry reconstructed results. (a) and 

(b) represent irregular buildings, and (c) represents regular 
building. (a_1), (b_1), and (c_1) are the corresponding detail 
views. 
 

4.2 3D Model 

4.2.1 UAV Photography Model. The results of the generated 
3D model are shown in Figure 3(c), with a detailed view in (c_1). 
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The model size is approximately 2193.79×2464.76×93.27 m (x

× y × z), consisting of about 1,000,000 faces. This model 

effectively represents the distribution of buildings, vegetation, 
and other land features across the entire study area. However, 

when it comes to individual buildings or land features, the level 

of detail is relatively poor, and there are noticeable deformations 
and other issues. 

 

 
Box Dimensions (m) 

Faces 
X Y Z 

A 389.04 520.09 40.69 6,268,575 

B 521.77 463.34 56.72 7,466,351 

C 666.51 639.82 61.63 17,880,741 

Average 525.77 541.08 53.01 10,538,556 

Table 1. Oblique photogrammetry model parameter. 

 

Figure 5. Point cloud registration result. RGB is shown for the 

photogrammetric point cloud and height information is shown 

for the BLS point cloud. (a_1) and (a_2) are overall views. 

(b_1) and (b_1) are top zoom views. (c_1) and (c_2) are side 

zoom views. 

 
Figure 6. Multi-source Data Fusion reconstructed results. 

 
4.2.2 UAV Oblique Photogrammetry Model. The results of 

oblique photogrammetry modeling are shown in Figure 4. This 
model provides clearer details of various buildings, as illustrated 

in the detail view on the right. Compared to the photogrammetry 

model, although this model has a smaller scale, it has more faces. 
The parameters of the three models are presented in Table 1, 
which correspond to the serial numbers in Figure 4. The average 

size of the three models is 525.77*541.08*53.01 m, and on 
average, they have 10,538,556 faces. In this model, it is possible 

to accurately measure parameters such as the length and size of 
land features. Moreover, this model can also be utilized for the 

development of a 3D virtual system. 
 

4.2.3 Multi-source Data Fusion Model. 3D reconstruction 
through the fusion of multi - source data involves the registration 
of different point clouds. The registration results for point clouds 
of two different buildings are shown in Figure 5. As seen, both 

buildings have achieved good registration effects. The model 

constructed using the registered point clouds is shown in Figure 
6. Compared to the oblique photogrammetry model, this model 
preserves more details. Additionally, the deformation issues 

present in the UAV photography blind spots have been largely 
addressed. The final model, constructed by fusing multi - source 
data, is approximately 607.35*1133.71*92.25 m in size and 
consists of 56,926,748 faces. 

 
4.3 System Development 

The high-resolution image viewer results are shown in Figure 7, 
where (a), (b), and (c) represent different zoom levels. In this 

system, users can quickly zoom in and out of the map. They can 
also search and locate buildings by selecting building’s names 

and view the corresponding building introductions. 
The 3D virtual interaction system is shown in Figure 8. It allows 

users to perform actions such as walking, jumping and flying in 
the virtual scene. This system has strong interactivity. 
 

 
Figure 7. High resolution image viewer interface screenshot. 

(a), (b) and (c) represent different zoom levels. 

 

 
Figure 8. 3D virtual Reality Interactive System interface 

screenshot. 
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5. Discussion 

5.1 Research Framework 

The primary objective of this study is to reconstruct and apply 
3D virtual scenes. To obtain comprehensive and precise data, this 
research employed a variety of data acquisition methods, 

including UAV photography, UAV oblique photogrammetry, 
and BLS. UAV photography provided extensive image data, 
while UAV oblique photogrammetry captured images of specific 

buildings from multiple angles. BLS was utilized to supplement 

the deficiencies in detail and accuracy of the photogrammetric 
data. This multi-source data acquisition approach not only 
ensured the comprehensiveness of the data but also enhanced its 
accuracy and reliability. 

During the data processing stage, several data products were 
generated, including the DOM, DSM, and point cloud. The 

generation of DOM involved geometric correction and image 
mosaicking, ensuring precise measurement and analysis of the 

imagery. The DSM was produced through stereo matching and 
triangulation, utilizing camera parameters to generate a sparse 
point cloud, which was then filtered and subjected to surface 
reconstruction. The point cloud was generated using the SGM 

algorithm, producing a dense point cloud that accurately 

represented the geometric shape and spatial position of objects or 
environments. 
In the 3D reconstruction phase, this study adopted three main 

methods: UAV photography reconstruction, UAV oblique 
photogrammetry reconstruction, and multi-source data fusion 
reconstruction. These methods complemented each other, 

providing 3D model reconstruction within different frameworks. 

UAV photography reconstruction involved converting the dense 
point cloud into a triangular mesh model, followed by 
optimization and texture mapping, to generate large-scale 3D 
models. UAV oblique photogrammetry reconstruction utilized 

images captured from multiple angles to produce detailed and 
accurate 3D models, particularly suitable for complex and 

irregularly shaped buildings. Multi-source data fusion 
reconstruction involved registering BLS data with 

photogrammetric point clouds to generate more precise 3D 
models, addressing the shortcomings of photogrammetric data in 
terms of detail and blind spots. 
In the system development stage, this study integrated the 

generated data products and 3D models into user-friendly 

systems, including a high-resolution imagery viewer and a 3D 
virtual reality interactive system. 
 

5.2 3D Model Reconstruction 

While the system generally achieves satisfactory outcomes, 
certain errors and shortcomings still exist, which are primarily 
reflected in the model's inaccuracies. 

 
Figure 9. The area of the photogrammetry model that is 

obviously deformed 

 
5.2.1 UAV photogrammetry model. Regarding the UAV 
photogrammetry model, despite its extensive coverage, it only 
provides nadir imagery. This type of data offers relatively good 

representations of building rooftops, tree canopies, and 
prominent land features. However, it is less effective at capturing 

building facades and the understory structure of forests. These 
areas often exhibit poor or even absent data. As a result, 

noticeable deformations can be observed in the reconstructed 
models, as shown in Figure 9. 

 
5.2.2 UAV oblique photogrammetry model. To address the 
limitations of the photogrammetry model, the oblique 
photogrammetry approach was employed to model certain land 

objects. The models constructed using this method have 

demonstrated relatively good performance in representing 
building facades, enabling accurate measurement of parameters 
such as object length and area. However, due to the limitations of 

UAV photography, significant errors remain in some blind spots. 
For instance, in areas like building passages, deformations or 
even voids can be observed, as shown in Figure 10(a), (b), and 
(c). Additionally, at the model's edges, insufficient photography 

coverage results in further deformations and voids, as shown in 
Figure 10(d). 
 

 
Figure 10. Examples of the main errors in the oblique 

photogrammetry model 
 

5.2.3 Multi-source Data Fusion Model. For models 

generated through multi-source data fusion, the issues of model 
deformation and insufficient detail have been significantly 
mitigated. This method has compensated for the shortcomings of 

single-source modeling approaches. The main errors stem from 

the registrant process. However, this method has efficiency-
related issues, such as high memory consumption and low 
generation efficiency. Future research should focus on 

developing more efficient algorithms to enhance the modeling 
process with multi-source data. 
 

6. Conclusions 

This study demonstrates the effectiveness of multi-source data 
fusion in 3D virtual campus reconstruction, addressing the 

limitations of single-source methods. By integrating UAV 
imagery, oblique photogrammetry, and BLS data, the framework 

achieves a balance between large-scale coverage and high-detail 
modeling. The developed systems-a high-performance imagery 
viewer and a UE5-based virtual reality platform-enhance 
usability and interactivity for urban management applications. 

Despite these advancements, challenges such as computational 
inefficiencies and registration inaccuracies underscore the need 
for optimized algorithms in future work. The research 
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underscores the importance of hybrid methodologies in 
geospatial modeling and provides a foundation for scalable smart 

city solutions.  
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