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ABSTRACT:

Accurate and robust odometry is critical for mobile mapping and autonomous navigation, particularly in complex environments where
single-sensor approaches struggle. While LiDAR and visual odometry each provide valuable motion estimation, they are susceptible
to failures in conditions unfavorable for the specific odometry type. Fusing multiple modalities enhances robustness, yet effective
integration remains challenging due to differences in heterogenous sensor data representation. This study presents STELVIO, a flexible
factor graph-based framework for Stereo LiDAR-Visual-Inertial Odometry. By combining LiDAR-inertial odometry with stereo visual
odometry, STELVIO improves trajectory estimation by leveraging the strengths of each modality. The system introduces adaptive
fusion strategies, ranging from loose, odometry-only pose graph coupling to an extensive factor graph approach, utilizing visual features
and LiDAR-derived range factors. This modular structure allows for balancing computational efficiency with robustness, making it
suitable for real-time applications and accuracy-oriented mapping applications. Evaluation is conducted using an in-house mobile
mapping system in a challenging indoor environment. Initial results highlight the effectiveness of the fusion approach in reducing drift
and improving localization consistency compared to single-sensor methods. The findings demonstrate the potential of multi-sensor

integration for robust and scalable mobile mapping solutions.

1. INTRODUCTION

In the last decade, lightweight mobile mapping systems have
gained popularity in the geomatics community, driven by the
democratization of hardware access and continuous
improvements in the quality of generated 3D data. These
advancements are progressively approaching survey-grade
accuracy achieved by well-established methods: static
photogrammetry or terrestrial laser scanning. In many fields of
applications, such as construction monitoring and Scan-to-BIM
(Roman et al., 2023, Vassena et al., 2023), open-pit and
underground mining (Wajs et al., 2021; Trybata et al., 2024),
forestry (Muhojoki et al., 2024) and vehicle positioning in
autonomous navigation (Dai et al., 2023), modern mobile
mapping solutions often meet the required accuracy standards
and provide useful and trustworthy 3D data.

Alongside commercially available solutions, such as handheld
scanners, backpack-mounted systems, and drone-based mapping
kits developed by surveying equipment manufacturers, the open-
source community has contributed significantly to the evolution
of Simultaneous Localization and Mapping (SLAM) algorithms.
In particular, both visual- and LiDAR-centric odometry
approaches have seen continuous refinements, improving the
accuracy of trajectory estimation in real-world conditions. Since
mapping quality is highly dependent on hardware-related sensor
characteristics (e.g., resolution, physical pixel size, range
measurement precision, sampling frequency), as well as
environmental conditions (e.g., distance to scanned objects,
achieved ground sampling distance (GSD), surface albedo, and
texture richness), significant research efforts have been dedicated
to enhancing sensor trajectory estimation robustness and
accuracy. In this aspect, numerous studies indicated the strengths
and weaknesses of different sensor modalities employed in
SLAM, including LiDAR, radar, cameras, and inertial
measurement units (IMUs). A clear consensus in the scientific
community is that sensor fusion can bring substantial benefits to
mobile mapping frameworks, increasing their robustness,
accuracy and richness of the generated 3D data. For instance,
comparisons of LiDAR-only versus LiDAR-inertial SLAM

consistently demonstrate the benefits of multi-sensor integration
(Fasiolo et al., 2023).

While coupling inertial measurements with a primary sensor can
enhance motion estimation, it does not significantly improve
environmental perception, as only one sensor actively captures
information about the surroundings. In contrast, fusing visual and
LiDAR data offers greater potential for enhancing SLAM
performance, while enhancing data for the environment
reconstruction, both in terms of geometry and colorimetry. Yet,
this integration introduces notable challenges due to the
fundamentally different nature of the data each sensor provides
(2D vs 3D), necessitating advanced processing techniques for
effective fusion.

1.1 Aim of the study

In this work, we propose a fusion framework for flexible
coupling of LiDAR-inertial (or pure LiDAR) and stereo visual
odometry solutions, built on top of existing odometry
approaches. Due to the distinct list of supported input data types,
we call it STELVIO: Stereo-LiDAR-Visual-Inertial Odometry.
It easily adapts to different components, especially utilizing
various visual local feature extraction and matching strategies
(Jin et al., 2021). The goal of our method is to enhance the long-
term odometry precision and reliability in cases where one of the
odometry modalities would struggle through inclusion of stable,
high-quality landmarks.

The key contribution of this work is the use of a factor graph-
based fusion approach for LiDAR and visual odometry,
supported by deep learning-based image tie points and LiDAR-
based metric depth measurements. This implementation allows
to adjust the computational effort needed for data processing, so
that the time constraints of specific application can be met, or,
alternatively, greater robustness can be pursued in a more
extensive fusion approach. The modularity of the method enables
inclusion of different odometry frameworks, enhancing its
reusability with the future developments in the field.

We perform evaluation of the proposed method on an indoor
sequence, acquired with our in-house built mobile mapping
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device — the hardware component of STELVIO. We compare the
results of multiple STELVIO configurations to single-mode
solutions (i.e., stereo visual odometry, LiDAR-inertial odometry)
and a state-of-the-art fusion-based baseline.

2. RELATED WORKS

The topic of a multi-modal LiDAR-Inertial-Visual Odometry
(LIVO) has been explored by various researchers. FAST-LIVO2
(Zheng et al., 2025) fuses LiDAR, Visual and Inertial Odometry
via an Error-State Iterated Kalman Filter (ESIKF), combining
scan registration, image alignment and IMU readings for
performing the state update. The method also maintains a tightly-
coupled 3D voxel-based map structure to fuse the visual and
LiDAR map points. However, FAST-LIVO?2 utilizes only data
coming from amonocular camera and requires a precise
synchronization of all sensors involved.

LVI-SAM (Shan et al., 2021) adopts a factor graph approach for
a tightly coupled SLAM framework. The Visual Inertial
Odometry (VIO) couples LIDAR Inertial Odometry (LI1O). The
former performs visual feature tracking, while the latter extracts
feature depth from the LiDAR data. Furthermore, the LiDAR
scan matching is used to refine loop closures identified by the
visual submodule. Both FAST-LIVO2 and LVI-SAM can retain
pose estimation during a temporal outage of one of the sensors.
R3LIVE++ (Lin and Zhang, 2024) uses the LIO to build the
geometry of the local map in a manner similar to FAST-LI0O2
(Xu et al., 2022). The VIO module perform standard feature
tracking, but instead of minimizing the photometric error, as most
methods, it minimizes the radiance differences of the projected
landmarks. The two systems exploit the IMU data jointly with
visual and LiDAR in the state estimation. The framework
constructs a single 3D point cloud, named radiance map, which
stores the 3D reconstruction of the environment based on points
obtained from both LiDAR and visual modules. R3LIVE++
operates at individual pixel level, relies on an accurate initial state
estimation and employs a dense direct method in the VIO,
resulting in reduced robustness and increased computational
load.

CLIC (Lv et al., 2023) proposes a continuous-time fixed lag
smoothing approach. It enables using both LiDAR-Inertial (LI)
and LiDAR-Inertial-Camera (LIC) systems. CLIC maintains
temporal and key-frame constant-size sliding windows by fusing
asynchronous sensor measurements and marginalizing older
states and features in a factor-graph optimization.

Coco-LIC (Lang et al., 2023) is an extension of CLIC. It provides
a tightly-coupled solution instead of a loosely-coupled one and is
based on non-uniform B-splines for trajectory representation,
instead of the uniform B-splines used by CLIC. The LIC data are
fused without interpolation and the tight coupling is achieved by
formulating frame-to-map reprojection errors for the current
frame, exploiting the Ll-reconstructed point cloud and the
optical-flow tracking of pixels.

SR-LIVO (Yuan et al., 2024) employs a sweep reconstruction
module that aligns the timestamp of a captured image with the
reconstructed sweep from the LiDAR and greatly improve frame
synchronization between the sensors. The LIO component
estimates the state of the system and performs environment
reconstruction in real time. However, the vision module is not
used in pose estimation; it only optimizes the camera parameters
to improve the texturing of the LiDAR-based 3D reconstruction.
In summary, regarding the most influential LIVO methods, the
solutions tend to rely on direct or semi-direct algorithms for the
visual data processing (Yuan et al., 2023; Fan et al., 2025), with
feature-based visual odometry backbones being investigated only
recently (Zhou et al., 2025).

3. METHODOLOGY
3.1 STELVIO mobile mapping system

To test the proposed approach, the open-source and open-
hardware mobile mapping device MandEye (Begdkowski, 2024)
has been extended. Originally, the solution enables data
acquisition with a Livox Mid-360 LiDAR and its internal
6 Degrees-of-Freedom IMU. To this set, a pair of 2MP ELP
cameras with global shutters is added (Figure 1). We employ
a custom kernel patch on a Linux-based system of the controller
device for minimizing image acquisition delays. Nevertheless,
the speed of the stereo image acquisition is limited by the
hardware components of the data storage device (Raspberry Pi
4). The images are acquired synchronously by both cameras and
although these low-cost sensors do not allow performing strict
hardware synchronization, our tests show that the software-side
synchronization allows us to acquire images within the timespan
of a few milliseconds of the nearest point cloud timestamp. To
address this minor discrepancy, we incorporated the so-called
sweep reconstruction method, proposed by Yuan et al. (2024) in
SR-LIVO, in turn synchronizing the LiDAR point clouds with
the actual timestamps of the images. Jointly with the proposed
novel data processing method, the developed hardware creates
a STELVIO mobile mapping system.

Figure 1: The hardware of the STELVIO mobile mapping
system, an extension of MandEye (B¢dkowski, 2024).

3.2 Software system components

3.2.1 LiDAR-inertial odometry

As the core solution utilizing point cloud and inertial data, we use
FAST-LIO2 (Xu et al., 2022), a LiDAR-inertial odometry
framework that achieves real-time performance and high
accuracy in various conditions (Trybata et at., 2023). The method
uses a direct registration approach for associating raw LiDAR
points to an incrementally built local map, managed dynamically
through incremental k-d tree (ikd-Tree) structure. Point cloud
motion distortion is compensated using IMU-driven back-
propagation. The main component of FAST-LIO2 for high-
accuracy state estimation is a tightly-coupled Iterated Kalman
Filters on Manifolds (IKFoM) (Xu and Zhang, 2021), which
fuses the point cloud matching and preintegrated IMU
information into a state estimate. Nonetheless, any frame-based,
direct or indirect, LIDAR odometry approach can be used in
a plug-and-play manner with STELVIO.

3.2.1  Stereo Visual Odometry

For the visual odometry component, we employed COLMAP-
SLAM (Morelli et al., 2023), a software framework that
integrates feature-based odometry with windowed bundle
adjustment, incorporating deep learning-based algorithms for
extracting and matching local features in images. COLMAP-
SLAM supports multi-camera systems in any configuration and
is compatible with both pre-calibrated and non-calibrated camera
setups. In this study, we utilized ALIKED (Zhao et al., 2023) for
local feature extraction, which leverages convolutional neural
networks optimized for real-time applications, along with
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LightGlue (Lindenberger et al., 2023), a matcher based on graph
neural networks that dynamically adjusts matching speed based
on the perceived complexity of the image.

Any feature-based visual odometry method could be directly
used in STELVIO in place of COLMAP-SLAM. Although
a direct visual odometry method could be utilized as a source of
pose estimation in our method, due to the additional role of the
visual features, an additional layer of feature extraction would be
required.

3.22 LiDAR-Visual Fusion Framework: STELVIO

The core idea of STELVIO is the seamless fusion of odometry
data from two independent systems, supported by the selective
tracking of distinct high-quality 3D landmarks, both visible in an
image sequence and identifiable in the LIiDAR point clouds. In
this way, we locally strengthen the trajectory estimation via
factor graph optimization, which acts as a local bundle
adjustment, while retaining lightness of the solution by means of
discarding less informative data for pose estimation in the short
and medium time horizon.

An additional benefit of our approach is the complementariness
of the odometry solutions. As STELVIO is built on top of
independent odometry estimators with equal importance, it can
retain pose estimation when any of the two solution fails. This is
a key advantage in cases of performing mapping based on only
relative positioning techniques (i.e., dead reckoning), which is
common in environments without access to GNSS signals.

The overview of the framework is shown in Figure 2. First,
synchronized image timestamps are used to recut the point cloud
data stream, producing LiDAR point cloud frames at epochs
matching the images. Then, the LiDAR-inertial and stereo
images are processed separately by FAST-LIO2 and COLMAP-
SLAM odometry methods, respectively, generating metric
relative pose factors. Alongside the change in stereo camera
poses, the latter outputs the 2D image feature locations, their 3D
triangulations and characteristics. The features are tracked in
time; if a tie point is seen in a sufficient number or frames, it is
deemed stable enough to be used as a landmark in the factor
graph. To do so, the image projection factors are input into the
graph independently for each camera. The approximation of the

3D position of such landmark is estimated with COLMAP-based
triangulation and refined later in the graph optimization.

For the images in which such a salient feature is present, the
LiDAR 3D points are transformed to the camera reference frame
and projected into the image. If such point lies within a pixel
distance smaller than a set threshold (to accommodate for the
sparsity of the 3D data), its depth is additionally used as a range
factor, from the camera to the 3D landmark.

Finally, as the relative pose, tie point projection and landmark
distance factors are input into the factor graph, the final estimate
of the system’s pose is calculated. A priori covariance values are
used for the odometry values and robust kernels (e.g., Cauchy)
are used for visual features and range factors to limit the
influence of outliers. The optimization problem is solved with
Powell's dog leg method.

3.2.3  Experimental setup

A test survey has been carried out to validate the improvement
brought by the proposed method. A set of indoor corridors of the
office building was traversed in an eight-shaped loop while
holding the STELVIO system by the operator. The cameras were
pointing forward, thus the LiDAR field of view was mostly
limited to the side walls of the narrow corridors. Such a scenario
constitutes a challenging sequence for both the LiDAR-based
odometry, due to the presence of constant geometry of the
surrounding, as well as to the visual component, thanks to the
commonly featureless wall textures. The data collection was
initialized and finished at the same spot (a ground control point),
so that the drift accumulated through the full, approximately 200
m sequence could be assessed. The dataset consisted of
synchronized stereo image sequences at 2 Hz, LiDAR point
clouds at approximately 10 Hz and inertial readings at 200 Hz.
Internal parameters of the cameras, as well as relative orientation
of the LIiDAR, IMU and both cameras, were determined with
kalibr multi-camera and camera-IMU calibration procedures
(Furgale et al., 2013; Rehder et al., 2016) and fixed throughout
all the processing. A pinhole camera model with radial-tangential
distortion was used for both cameras.
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Figure 2: Overview of the STELVIO framework.
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In this work, we investigated different complexity levels of

graph-based approaches in STELVIO for fusing LiDAR and

visual data. Such adjustment can balance computation

complexity to the requirements related to the time constrains, like

real-time applications, or increase robustness achieved through

greater data redundancy. Thus, factor graph-based fusion was

performed at different levels:

e Pose graph — including only two independent odometry
estimates

e Simplified Factor Graph — two independent odometry
estimates aided by sparse high-quality 3D visual-LiDAR and
visual-only landmarks

e Full Factor Graph — two odometry trajectories aided by
numerous visual-LiDAR landmarks and visual-only
landmarks.

This way, we compare how the quality and quantity of landmarks

used in the optimization affects the results. As a proxy of the

factor quality, we selected the track length of tie points used by

the stereo visual odometry frontend.

4. RESULTS AND DISCUSSION

First, the test sequence was processed with separate components
of STELVIO, i.e., LiDAR-inertial and stereo-visual odometry
methods, as well as fusion methods: STELVIO and FAST-
LIVO2. All obtained trajectories are presented in Figure 3.

Both odometry methods produced lacking results. Namely, the
former solution struggled with insufficient distinct geometry of
the plain corridors, multiple times wrongly estimating the
rotation at turns and distances at the straight parts of the corridor
(Figure 3). The latter performed better, but suffered from a
significant vertical drift. As indicated in the Table 1, these
resulted in the total position error at the end of the sequence equal
to 6.44 m and 1.90 m, respectively. Relative errors, i.e., the
position residual divided by the traversed distance, were equal to
3.6% and 1.1%. The baseline fusion method, FAST-LIVO2,
failed to recover the useful trajectory. Despite performing
reasonably well in some parts of the sequence, the solution
drifted substantially at several locations.

Finally, STELVIO was applied to the same dataset in several
configurations. In its best one, it reached the position residuals of
only 89 cm (0.5% of the trajectory length). Moreover, all XYZ
components of the final drift of STELVIO were lower than their
counterparts obtained using FAST-LIO2 and COLMAP-SLAM
— the input odometry to STELVIO. This underlines the

improvement of the trajectory estimation quality brought by the
proposed fusion method.

The ablation study was carried out to examine the effect of visual
feature quality on the STELVIO performance. The dataset was
processed limiting the visual features to those with minimal track
lengths of: 27 (a single, longest-tracked landmark), 25, 20, 15 and
10. Additionally, only stereo visual and LiDAR-inertial
odometry outputs, without any tie point projection factors, were
fused together. The results are shown in Table 1 and the
trajectories are plotted in Figure 4. The lowest drift was achieved
by the setup with a single landmark, i.e., the most rigorous feature
filtering. Then, using more features slowly, but increasingly
degraded the solution. The results of setting the threshold at the
minimal track length of 10 resulted in using actually less features,
than for the previous threshold, since more projections were
filtered out as outliers. Consequently, this run of STELVIO
resulted in the drift minimally worse than the odometry-only
configuration. Notably, all of the results achieved with STELVIO
surpassed the loop closure error of other baseline methods, with
the COLMAP-SLAM stereo solution being the closest one and
reaching 213% of the best STELVIO run error value and 132%
error of the worst result of STELVIO.

The 3D reconstructions of the site, generated through combining
the LiIDAR scans with different sources of the mobile mapping
system ftrajectory, are displayed in Figure 5. For clarity, the
LiDAR range was limited to 5 meters. The coregistered point
cloud of STELVIO shows visibly greater coherence than the
results of FAST-LIO2. Although the COLMAP-SLAM-based
solution demonstrates remarkably good quality, on the parts with
trajectory overlaps, as well as at the start and end area, STELVIO
outperformed vision-only approach in terms of the local point
cloud coherence.

Thanks to the synchronization of the sensors of STELVIO and its
precalibration, the adjusted system trajectory can be used for
coloring the point cloud. A simple direct method was tested:
projecting the RGB colors from the images oriented in the global
reference frame to the coregistered point cloud. For the points
visible in multiple images, only the closest projection was kept.
An example part of the point cloud of the examined indoor
environment is shown in Figure 6. Although the texturing
matches the general shapes visible in the geometry, some
artifacts, most likely related to the sensor scanning pattern, are
visible. Thus, further work on the optimal point cloud coloring
approach, incorporating multiple projections per point, is needed.

Minimal No . of visual No. of Loop closure error [m]
Method visual feature feature distance X Y Z Linear
track factors factors
COLMAP- - - - 0.16 1.52 1.68 1.90
SLAM
FAST-LIO? - - - 6.23 1.56 0.39 6.44
FAST- - - - 2.59 45.42 13.17 47.36
LIVO2
- 0 0 0.67 1.13 0.11 1.32
27 27 5 0.05 0.88 0.15 0.89
25 77 5 0.04 1.00 0.12 1.00
STELVIO 20 249 29 0.29 1.06 0.23 1.12
15 744 99 0.04 1.15 0.40 1.22
10 426 59 0.67 1.26 0.00 1.43

Table 1. Results of all tested approaches on the closed-loop indoor sequence.
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Figure 3: Estimated mobile mapping system trajectories: stereo COLMAP-SLAM (grey), LiDAR-inertial FAST-L102 (orange), LiDAR-
inertial-visual FAST-LIVO2 (brown) and STELVIO (blue).
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Figure 4: Estimated mobile mapping system trajectories with different STELVIO configurations.
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Figure 5: Orthographic views from the top of the 3D reconstructions using LiDAR scans and a trajectory obtained with: LiDAR-inertial
odometry (left), stereo visual odometry (middle) and fused stereo visual-LiDAR-inertial data (right). Points colored by the time of acquisition,
from blue to red.
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Figure 6: An image captured with one of the STELVIO
cameras (top) and a zoom-in into the corresponding area of
the colored point cloud obtained with STELVIO output
(bottom).

5. CONCLUSIONS

This study presents STELVI10O, a novel low-cost mobile mapping
system which uses a set of sensors consisting of a stereo camera
pair, a 360-degree LiDAR and its internal IMU. Along the
dedicated in-house built hardware, the paper has introduced the
software framework to perform joint trajectory adjustment,
leveraging the strengths of the included active and passive
sensors. Our approach, based on factor graphs, is designed as a
plug-and-play framework for easier extendibility by future novel
odometry approaches. In this study, we utilized some state-of-
the-art LiDAR- and vision-oriented methods, FAST-LIO2 and
COLMAP-SLAM, as backbones of STELVIO. The first field
tests of mapping an indoor, office environment demonstrated
promising capabilities of STELVIO. In the closed-loop test of a
challenging indoor scenario, STELVIO outperformed all other
tested odometry methods. Due to such good performance in the
narrow, textureless corridors, we believe the system can
generalize well to environments with similar characteristics, like
underground mining tunnels or cave systems.

Tests of different configurations of our method were carried out,
exploring different complexity levels of the definition of the
factor graph. The results highlighted the importance of the
reliable assessment of the quality of visual features, as it can
greatly affect the benefit of incorporating more factors in the
graph-based adjustment. To this end, we will explore a higher
range of visual landmark characteristics for selecting the most
salient observations.

Apart from the improvement in the trajectory estimation
accuracy, applying our fusion framework allows to directly
texture the 3D point clouds from the LiDAR with the image data.
As in this study only an initial insight into the quality of the
trajectory estimation of the method is investigated, future works
will focus also on the time-wise performance of the odometry for
real-time applications in longer sequences. Moreover we will
extend STELVIO with loop closure capabilities to form a well-
rounded, robust and universal fusion-based SLAM system.
Additionally, enhancement in the quality of the point cloud
texturing will be sought after.
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