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ABSTRACT: 

Accurate and robust odometry is critical for mobile mapping and autonomous navigation, particularly in complex environments where 

single-sensor approaches struggle. While LiDAR and visual odometry each provide valuable motion estimation, they are susceptible 

to failures in conditions unfavorable for the specific odometry type. Fusing multiple modalities enhances robustness, yet effective 

integration remains challenging due to differences in heterogenous sensor data representation. This study presents STELVIO, a flexible 

factor graph-based framework for Stereo LiDAR-Visual-Inertial Odometry. By combining LiDAR-inertial odometry with stereo visual 

odometry, STELVIO improves trajectory estimation by leveraging the strengths of each modality. The system introduces adaptive 

fusion strategies, ranging from loose, odometry-only pose graph coupling to an extensive factor graph approach, utilizing visual features 

and LiDAR-derived range factors. This modular structure allows for balancing computational efficiency with robustness, making it 

suitable for real-time applications and accuracy-oriented mapping applications. Evaluation is conducted using an in-house mobile 

mapping system in a challenging indoor environment. Initial results highlight the effectiveness of the fusion approach in reducing drift 

and improving localization consistency compared to single-sensor methods. The findings demonstrate the potential of multi-sensor 

integration for robust and scalable mobile mapping solutions. 

1. INTRODUCTION

In the last decade, lightweight mobile mapping systems have 

gained popularity in the geomatics community, driven by the 

democratization of hardware access and continuous 

improvements in the quality of generated 3D data. These 

advancements are progressively approaching survey-grade 

accuracy achieved by well-established methods: static 

photogrammetry or terrestrial laser scanning. In many fields of 

applications, such as construction monitoring and Scan-to-BIM 

(Roman et al., 2023, Vassena et al., 2023), open-pit and 

underground mining (Wajs et al., 2021; Trybała et al., 2024), 

forestry (Muhojoki et al., 2024) and vehicle positioning in 

autonomous navigation (Dai et al., 2023), modern mobile 

mapping solutions often meet the required accuracy standards 

and provide useful and trustworthy 3D data. 

Alongside commercially available solutions, such as handheld 

scanners, backpack-mounted systems, and drone-based mapping 

kits developed by surveying equipment manufacturers, the open-

source community has contributed significantly to the evolution 

of Simultaneous Localization and Mapping (SLAM) algorithms. 

In particular, both visual- and LiDAR-centric odometry 

approaches have seen continuous refinements, improving the 

accuracy of trajectory estimation in real-world conditions. Since 

mapping quality is highly dependent on hardware-related sensor 

characteristics (e.g., resolution, physical pixel size, range 

measurement precision, sampling frequency), as well as 

environmental conditions (e.g., distance to scanned objects, 

achieved ground sampling distance (GSD), surface albedo, and 

texture richness), significant research efforts have been dedicated 

to enhancing sensor trajectory estimation robustness and 

accuracy. In this aspect, numerous studies indicated the strengths 

and weaknesses of different sensor modalities employed in 

SLAM, including LiDAR, radar, cameras, and inertial 

measurement units (IMUs). A clear consensus in the scientific 

community is that sensor fusion can bring substantial benefits to 

mobile mapping frameworks, increasing their robustness, 

accuracy and richness of the generated 3D data. For instance, 

comparisons of LiDAR-only versus LiDAR-inertial SLAM 

consistently demonstrate the benefits of multi-sensor integration 

(Fasiolo et al., 2023). 

While coupling inertial measurements with a primary sensor can 

enhance motion estimation, it does not significantly improve 

environmental perception, as only one sensor actively captures 

information about the surroundings. In contrast, fusing visual and 

LiDAR data offers greater potential for enhancing SLAM 

performance, while enhancing data for the environment 

reconstruction, both in terms of geometry and colorimetry. Yet, 

this integration introduces notable challenges due to the 

fundamentally different nature of the data each sensor provides 

(2D vs 3D), necessitating advanced processing techniques for 

effective fusion. 

1.1 Aim of the study 

In this work, we propose a fusion framework for flexible 

coupling of LiDAR-inertial (or pure LiDAR) and stereo visual 

odometry solutions, built on top of existing odometry 

approaches. Due to the distinct list of supported input data types, 

we call it STELVIO: Stereo-LiDAR-Visual-Inertial Odometry. 

It easily adapts to different components, especially utilizing 

various visual local feature extraction and matching strategies 

(Jin et al., 2021). The goal of our method is to enhance the long-

term odometry precision and reliability in cases where one of the 

odometry modalities would struggle through inclusion of stable, 

high-quality landmarks. 

The key contribution of this work is the use of a factor graph-

based fusion approach for LiDAR and visual odometry, 

supported by deep learning-based image tie points and LiDAR-

based metric depth measurements. This implementation allows 

to adjust the computational effort needed for data processing, so 

that the time constraints of specific application can be met, or, 

alternatively, greater robustness can be pursued in a more 

extensive fusion approach. The modularity of the method enables 

inclusion of different odometry frameworks, enhancing its 

reusability with the future developments in the field. 

We perform evaluation of the proposed method on an indoor 

sequence, acquired with our in-house built mobile mapping 
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device – the hardware component of STELVIO. We compare the 

results of multiple STELVIO configurations to single-mode 

solutions (i.e., stereo visual odometry, LiDAR-inertial odometry) 

and a state-of-the-art fusion-based baseline.  

 

 

2. RELATED WORKS 

The topic of a multi-modal LiDAR-Inertial-Visual Odometry 

(LIVO) has been explored by various researchers. FAST-LIVO2 

(Zheng et al., 2025) fuses LiDAR, Visual and Inertial Odometry 

via an Error-State Iterated Kalman Filter (ESIKF), combining 

scan registration, image alignment and IMU readings for 

performing the state update. The method also maintains a tightly-

coupled 3D voxel-based map structure to fuse the visual and 

LiDAR map points. However, FAST-LIVO2 utilizes only data 

coming from a monocular camera and requires a precise 

synchronization of all sensors involved. 

LVI-SAM (Shan et al., 2021) adopts a factor graph approach for 

a tightly coupled SLAM framework. The Visual Inertial 

Odometry (VIO) couples LiDAR Inertial Odometry (LIO). The 

former performs visual feature tracking, while the latter extracts 

feature depth from the LiDAR data. Furthermore, the LiDAR 

scan matching is used to refine loop closures identified by the 

visual submodule. Both FAST-LIVO2 and LVI-SAM can retain 

pose estimation during a temporal outage of one of the sensors.  

R3LIVE++ (Lin and Zhang, 2024) uses the LIO to build the 

geometry of the local map in a manner similar to FAST-LIO2 

(Xu et al., 2022). The VIO module perform standard feature 

tracking, but instead of minimizing the photometric error, as most 

methods, it minimizes the radiance differences of the projected 

landmarks. The two systems exploit the IMU data jointly with 

visual and LiDAR in the state estimation. The framework 

constructs a single 3D point cloud, named radiance map, which 

stores the 3D reconstruction of the environment based on points 

obtained from both LiDAR and visual modules. R3LIVE++ 

operates at individual pixel level, relies on an accurate initial state 

estimation and employs a dense direct method in the VIO, 

resulting in reduced robustness and increased computational 

load. 

CLIC (Lv et al., 2023) proposes a continuous-time fixed lag 

smoothing approach. It enables using both LiDAR-Inertial (LI) 

and LiDAR-Inertial-Camera (LIC) systems. CLIC maintains 

temporal and key-frame constant-size sliding windows by fusing 

asynchronous sensor measurements and marginalizing older 

states and features in a factor-graph optimization.  

Coco-LIC (Lang et al., 2023) is an extension of CLIC. It provides 

a tightly-coupled solution instead of a loosely-coupled one and is 

based on non-uniform B-splines for trajectory representation, 

instead of the uniform B-splines used by CLIC. The LIC data are 

fused without interpolation and the tight coupling is achieved by 

formulating frame-to-map reprojection errors for the current 

frame, exploiting the LI-reconstructed point cloud and the 

optical-flow tracking of pixels.  

SR-LIVO (Yuan et al., 2024) employs a sweep reconstruction 

module that aligns the timestamp of a captured image with the 

reconstructed sweep from the LiDAR and greatly improve frame 

synchronization between the sensors. The LIO component 

estimates the state of the system and performs environment 

reconstruction in real time. However, the vision module is not 

used in pose estimation; it only optimizes the camera parameters 

to improve the texturing of the LiDAR-based 3D reconstruction.  

In summary, regarding the most influential LIVO methods, the 

solutions tend to rely on direct or semi-direct algorithms for the 

visual data processing (Yuan et al., 2023; Fan et al., 2025), with 

feature-based visual odometry backbones being investigated only 

recently (Zhou et al., 2025). 

3. METHODOLOGY 

3.1 STELVIO mobile mapping system 

To test the proposed approach, the open-source and open-

hardware mobile mapping device MandEye (Będkowski, 2024) 

has been extended. Originally, the solution enables data 

acquisition with a Livox Mid-360 LiDAR and its internal 

6 Degrees-of-Freedom IMU. To this set, a pair of 2MP ELP 

cameras with global shutters is added (Figure 1). We employ 

a custom kernel patch on a Linux-based system of the controller 

device for minimizing image acquisition delays. Nevertheless, 

the speed of the stereo image acquisition is limited by the 

hardware components of the data storage device (Raspberry Pi 

4). The images are acquired synchronously by both cameras and 

although these low-cost sensors do not allow performing strict 

hardware synchronization, our tests show that the software-side 

synchronization allows us to acquire images within the timespan 

of a few milliseconds of the nearest point cloud timestamp. To 

address this minor discrepancy, we incorporated the so-called 

sweep reconstruction method, proposed by Yuan et al. (2024) in 

SR-LIVO, in turn synchronizing the LiDAR point clouds with 

the actual timestamps of the images. Jointly with the proposed 

novel data processing method, the developed hardware creates 

a STELVIO mobile mapping system. 

 

  
Figure 1: The hardware of the STELVIO mobile mapping 

system, an extension of MandEye (Będkowski, 2024). 

 

3.2 Software system components 

3.2.1 LiDAR-inertial odometry 

As the core solution utilizing point cloud and inertial data, we use 

FAST-LIO2 (Xu et al., 2022), a LiDAR–inertial odometry 

framework that achieves real‐time performance and high 

accuracy in various conditions (Trybała et at., 2023). The method 

uses a direct registration approach for associating raw LiDAR 

points to an incrementally built local map, managed dynamically 

through incremental k-d tree (ikd-Tree) structure. Point cloud 

motion distortion is compensated using IMU-driven back-

propagation. The main component of FAST-LIO2 for high-

accuracy state estimation is a tightly-coupled Iterated Kalman 

Filters on Manifolds (IKFoM) (Xu and Zhang, 2021), which 

fuses the point cloud matching and preintegrated IMU 

information into a state estimate. Nonetheless, any frame-based, 

direct or indirect, LiDAR odometry approach can be used in 

a plug-and-play manner with STELVIO. 

 

3.2.1 Stereo Visual Odometry 

For the visual odometry component, we employed COLMAP-

SLAM (Morelli et al., 2023), a software framework that 

integrates feature-based odometry with windowed bundle 

adjustment, incorporating deep learning-based algorithms for 

extracting and matching local features in images. COLMAP-

SLAM supports multi-camera systems in any configuration and 

is compatible with both pre-calibrated and non-calibrated camera 

setups. In this study, we utilized ALIKED (Zhao et al., 2023) for 

local feature extraction, which leverages convolutional neural 

networks optimized for real-time applications, along with 
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LightGlue (Lindenberger et al., 2023), a matcher based on graph 

neural networks that dynamically adjusts matching speed based 

on the perceived complexity of the image. 

Any feature-based visual odometry method could be directly 

used in STELVIO in place of COLMAP-SLAM. Although 

a direct visual odometry method could be utilized as a source of 

pose estimation in our method, due to the additional role of the 

visual features, an additional layer of feature extraction would be 

required.  

 

3.2.2 LiDAR-Visual Fusion Framework: STELVIO 

The core idea of STELVIO is the seamless fusion of odometry 

data from two independent systems, supported by the selective 

tracking of distinct high-quality 3D landmarks, both visible in an 

image sequence and identifiable in the LiDAR point clouds. In 

this way, we locally strengthen the trajectory estimation via 

factor graph optimization, which acts as a local bundle 

adjustment, while retaining lightness of the solution by means of 

discarding less informative data for pose estimation in the short 

and medium time horizon. 

An additional benefit of our approach is the complementariness 

of the odometry solutions. As STELVIO is built on top of 

independent odometry estimators with equal importance, it can 

retain pose estimation when any of the two solution fails. This is 

a key advantage in cases of performing mapping based on only 

relative positioning techniques (i.e., dead reckoning), which is 

common in environments without access to GNSS signals. 

The overview of the framework is shown in Figure 2. First, 

synchronized image timestamps are used to recut the point cloud 

data stream, producing LiDAR point cloud frames at epochs 

matching the images. Then, the LiDAR-inertial and stereo 

images are processed separately by FAST-LIO2 and COLMAP-

SLAM odometry methods, respectively, generating metric 

relative pose factors. Alongside the change in stereo camera 

poses, the latter outputs the 2D image feature locations, their 3D 

triangulations and characteristics. The features are tracked in 

time; if a tie point is seen in a sufficient number or frames, it is 

deemed stable enough to be used as a landmark in the factor 

graph. To do so, the image projection factors are input into the 

graph independently for each camera. The approximation of the 

3D position of such landmark is estimated with COLMAP-based 

triangulation and refined later in the graph optimization. 

For the images in which such a salient feature is present, the 

LiDAR 3D points are transformed to the camera reference frame 

and projected into the image. If such point lies within a pixel 

distance smaller than a set threshold (to accommodate for the 

sparsity of the 3D data), its depth is additionally used as a range 

factor, from the camera to the 3D landmark. 

Finally, as the relative pose, tie point projection and landmark 

distance factors are input into the factor graph, the final estimate 

of the system’s pose is calculated. A priori covariance values are 

used for the odometry values and robust kernels (e.g., Cauchy) 

are used for visual features and range factors to limit the 

influence of outliers. The optimization problem is solved with 

Powell's dog leg method. 

 

3.2.3 Experimental setup  

A test survey has been carried out to validate the improvement 

brought by the proposed method. A set of indoor corridors of the 

office building was traversed in an eight-shaped loop while 

holding the STELVIO system by the operator. The cameras were 

pointing forward, thus the LiDAR field of view was mostly 

limited to the side walls of the narrow corridors. Such a scenario 

constitutes a challenging sequence for both the LiDAR-based 

odometry, due to the presence of constant geometry of the 

surrounding, as well as to the visual component, thanks to the 

commonly featureless wall textures. The data collection was 

initialized and finished at the same spot (a ground control point), 

so that the drift accumulated through the full, approximately 200 

m sequence could be assessed. The dataset consisted of 

synchronized stereo image sequences at 2 Hz, LiDAR point 

clouds at approximately 10 Hz and inertial readings at 200 Hz.  

Internal parameters of the cameras, as well as relative orientation 

of the LiDAR, IMU and both cameras, were determined with 

kalibr multi-camera and camera-IMU calibration procedures 

(Furgale et al., 2013; Rehder et al., 2016) and fixed throughout 

all the processing. A pinhole camera model with radial-tangential 

distortion was used for both cameras. 

 

 

 
Figure 2: Overview of the STELVIO framework. 
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In this work, we investigated different complexity levels of 

graph-based approaches in STELVIO for fusing LiDAR and 

visual data. Such adjustment can balance computation 

complexity to the requirements related to the time constrains, like 

real-time applications, or increase robustness achieved through 

greater data redundancy. Thus, factor graph-based fusion was 

performed at different levels: 

• Pose graph – including only two independent odometry 

estimates 

• Simplified Factor Graph – two independent odometry 

estimates aided by sparse high-quality 3D visual-LiDAR and 

visual-only landmarks 

• Full Factor Graph – two odometry trajectories aided by 

numerous visual-LiDAR landmarks and visual-only 

landmarks. 

This way, we compare how the quality and quantity of landmarks 

used in the optimization affects the results. As a proxy of the 

factor quality, we selected the track length of tie points used by 

the stereo visual odometry frontend.  

 

4. RESULTS AND DISCUSSION 

First, the test sequence was processed with separate components 

of STELVIO, i.e., LiDAR-inertial and stereo-visual odometry 

methods, as well as fusion methods: STELVIO and FAST-

LIVO2. All obtained trajectories are presented in Figure 3. 

Both odometry methods produced lacking results. Namely, the 

former solution struggled with insufficient distinct geometry of 

the plain corridors, multiple times wrongly estimating the 

rotation at turns and distances at the straight parts of the corridor 

(Figure 3). The latter performed better, but suffered from a 

significant vertical drift. As indicated in the Table 1, these 

resulted in the total position error at the end of the sequence equal 

to 6.44 m and 1.90 m, respectively. Relative errors, i.e., the 

position residual divided by the traversed distance, were equal to 

3.6% and 1.1%. The baseline fusion method, FAST-LIVO2, 

failed to recover the useful trajectory. Despite performing 

reasonably well in some parts of the sequence, the solution 

drifted substantially at several locations. 

Finally, STELVIO was applied to the same dataset in several 

configurations. In its best one, it reached the position residuals of 

only 89 cm (0.5% of the trajectory length). Moreover, all XYZ 

components of the final drift of STELVIO were lower than their 

counterparts obtained using FAST-LIO2 and COLMAP-SLAM 

– the input odometry to STELVIO. This underlines the 

improvement of the trajectory estimation quality brought by the 

proposed fusion method. 

The ablation study was carried out to examine the effect of visual 

feature quality on the STELVIO performance. The dataset was 

processed limiting the visual features to those with minimal track 

lengths of: 27 (a single, longest-tracked landmark), 25, 20, 15 and 

10. Additionally, only stereo visual and LiDAR-inertial 

odometry outputs, without any tie point projection factors, were 

fused together. The results are shown in Table 1 and the 

trajectories are plotted in Figure 4. The lowest drift was achieved 

by the setup with a single landmark, i.e., the most rigorous feature 

filtering. Then, using more features slowly, but increasingly 

degraded the solution. The results of setting the threshold at the 

minimal track length of 10 resulted in using actually less features, 

than for the previous threshold, since more projections were 

filtered out as outliers. Consequently, this run of STELVIO 

resulted in the drift minimally worse than the odometry-only 

configuration. Notably, all of the results achieved with STELVIO 

surpassed the loop closure error of other baseline methods, with 

the COLMAP-SLAM stereo solution being the closest one and 

reaching 213% of the best STELVIO run error value and 132% 

error of the worst result of STELVIO.  

The 3D reconstructions of the site, generated through combining 

the LiDAR scans with different sources of the mobile mapping 

system trajectory, are displayed in Figure 5. For clarity, the 

LiDAR range was limited to 5 meters. The coregistered point 

cloud of STELVIO shows visibly greater coherence than the 

results of FAST-LIO2. Although the COLMAP-SLAM-based 

solution demonstrates remarkably good quality, on the parts with 

trajectory overlaps, as well as at the start and end area, STELVIO 

outperformed vision-only approach in terms of the local point 

cloud coherence. 

Thanks to the synchronization of the sensors of STELVIO and its 

precalibration, the adjusted system trajectory can be used for 

coloring the point cloud. A simple direct method was tested: 

projecting the RGB colors from the images oriented in the global 

reference frame to the coregistered point cloud. For the points 

visible in multiple images, only the closest projection was kept. 

An example part of the point cloud of the examined indoor 

environment is shown in Figure 6. Although the texturing 

matches the general shapes visible in the geometry, some 

artifacts, most likely related to the sensor scanning pattern, are 

visible. Thus, further work on the optimal point cloud coloring 

approach, incorporating multiple projections per point, is needed. 

 

 

Method 

Minimal 

visual feature 

track 

No . of visual 

feature 

factors 

No. of 

distance 

factors 

Loop closure error [m] 

X Y Z Linear 

COLMAP-

SLAM 

- - 

 

- 

 

 0.16 1.52 1.68 1.90 

FAST-LIO2 
- - 

 

- 

 

6.23 1.56 0.39 6.44 

FAST-

LIVO2 

- - - 2.59  45.42 13.17 47.36 

STELVIO 

- 0 0 0.67 1.13 0.11 1.32 

27 27 5 0.05 0.88 0.15 0.89 

25 77 5 0.04 1.00 0.12 1.00 

20 249 29 0.29 1.06 0.23 1.12 

15 744 99 0.04 1.15 0.40 1.22 

10 426 59 0.67 1.26 0.00 1.43 

Table 1. Results of all tested approaches on the closed-loop indoor sequence. 
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Figure 3: Estimated mobile mapping system trajectories: stereo COLMAP-SLAM (grey), LiDAR-inertial FAST-LIO2 (orange), LiDAR-

inertial-visual FAST-LIVO2 (brown) and STELVIO (blue). 

 

 
Figure 4: Estimated mobile mapping system trajectories with different STELVIO configurations. 

 

 

  
 

Figure 5: Orthographic views from the top of the 3D reconstructions using LiDAR scans and a trajectory obtained with: LiDAR-inertial 

odometry (left), stereo visual odometry (middle) and fused stereo visual-LiDAR-inertial data (right). Points colored by the time of acquisition, 

from blue to red. 
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Figure 6: An image captured with one of the STELVIO 

cameras (top) and a zoom-in into the corresponding area of 

the colored point cloud obtained with STELVIO output 

(bottom). 

 

 

5. CONCLUSIONS 

This study presents STELVIO, a novel low-cost mobile mapping 

system which uses a set of sensors consisting of a stereo camera 

pair, a 360-degree LiDAR and its internal IMU. Along the 

dedicated in-house built hardware, the paper has introduced the 

software framework to perform joint trajectory adjustment, 

leveraging the strengths of the included active and passive 

sensors. Our approach, based on factor graphs, is designed as a 

plug-and-play framework for easier extendibility by future novel 

odometry approaches. In this study, we utilized some state-of-

the-art LiDAR- and vision-oriented methods, FAST-LIO2 and 

COLMAP-SLAM, as backbones of STELVIO. The first field 

tests of mapping an indoor, office environment demonstrated 

promising capabilities of STELVIO. In the closed-loop test of a 

challenging indoor scenario, STELVIO outperformed all other 

tested odometry methods. Due to such good performance in the 

narrow, textureless corridors, we believe the system can 

generalize well to environments with similar characteristics, like 

underground mining tunnels or cave systems.  

Tests of different configurations of our method were carried out, 

exploring different complexity levels of the definition of the 

factor graph. The results highlighted the importance of the 

reliable assessment of the quality of visual features, as it can 

greatly affect the benefit of incorporating more factors in the 

graph-based adjustment. To this end, we will explore a higher 

range of visual landmark characteristics for selecting the most 

salient observations.  

Apart from the improvement in the trajectory estimation 

accuracy, applying our fusion framework allows to directly 

texture the 3D point clouds from the LiDAR with the image data. 

As in this study only an initial insight into the quality of the 

trajectory estimation of the method is investigated, future works 

will focus also on the time-wise performance of the odometry for 

real-time applications in longer sequences. Moreover we will 

extend STELVIO with loop closure capabilities to form a well-

rounded, robust and universal fusion-based SLAM system. 

Additionally, enhancement in the quality of the point cloud 

texturing will be sought after. 
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