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Abstract:

Reliable and robust self-localization is the essential component of intelligent vehicles (IV). Many scholarly works have been focused
on developing accurate multi-modal integrated pose estimation schemes. Such single estimation engine design lacks consideration of
potential individual sensor failures. In this paper, we present a resilient framework that exploits the redundancy of different sensors using
a stack of odometry algorithms. The multiple pose estimation algorithms run in parallel with a general adaptivity and lightweight design.
Specifically, we integrate the vehicle wheel encoder and the vehicle dynamics data to the filter-based LiDAR-inertial odometry. In contrast to most
of the odometry algorithms which may fail entirely against temporary failures, the redundant system enables self-recovery of individual odometry
through reinitialization. The most promising odometry is selected at each timestamp through weighting metric evaluation. In this way, our
method can exploit the robustness and advantages of individual estimating engines. We evaluate our method on both research purpose IVs
and mass-produced IVs. The experimental results suggest that our approach is resilient to various failure cases and achieves better

performance than individual methods.

1. INTRODUCTION

Companies involved in the automotive industry and research
laboratories have been aiming at developing more and more
intelligent vehicles (IV). The ultimate goal is to enable fully
autonomous vehicles driving worldwide. One of the essential
functions for this dream is the accurate and robust self-
localization. The most commonly known and adopted method
is based on the global navigation satellite (GNSS). However,
this system is not bulletproof, and suffers from multipath effect,
electromagnetic interference, and signal blockages. Although
such drawbacks can be partially solved through integration with
inertial measurement unit (IMU) or wheel encoder, it still
suffers from a significant drift in long-during operation.
Therefore, intelligent vehicles nowadays are equipped with
multiple sensors, such as radars, cameras, or light detection and
ranging (LiDAR).

In the last decade, the visual or LIDAR based pose estimation
systems have achieved remarkable results in different datasets
[1], [2]. However, such frameworks may not operate stably
under all conditions and application domains. The visual
cameras are widely used for vehicle localization due to its low
expenditure [3]-[5]. However, this sensor is limited to poorly
illuminated conditions. To localize in such environments,
LiDAR-based odometry [2], [6] is a promising solution due to
its high-fidelity range measurements. In spite of this, these
approaches are prone to fail in structure-less and repetitive
environments such as planar long tunnels. Besides, the adverse
weather conditions (fog, smoke, or dust) may hinder reliable
LiDAR detections. Since these sensors are environment
dependent, it is challenging to achieve robust performance if
they are used as primary sensors to build a localization system.
Therefore, a multi-modal fusion framework should be explored,
which exploits the individual strengths of each sensor, and
compensates for the drawbacks of the other.

In most cases, scholarly works focus on achieving better pose
estimation results through designing a complex multi-sensor
fusion framework. Such integration can be generally classified
into either loosely coupled or tightly coupled methods. Loosely
coupled odometry [7], [8] have been preferred more because of
their simplicity and extendibility, where the pose estimations
from individual measurements are fused separately. In contrast,
tightly coupled frameworks [9], [10] directly fuse isolated
sensor measurements in a joint manner and are usually difficult
to extend to other sensors. Although having advantageous in
accuracy, they may be vulnerable to cope with potential sensor
failures since no redundancy method is considered. Besides, no
recovery process is included in most schemes. On the other
hand, loosely coupled methods distribute these risks into
several subsystems and should have higher robustness.

This tricky conundrum about accuracy and robustness have
been addressed by few studies in the literature [11]-[13]. The
redundancy is realized with parallel running odometry methods,
and the final state estimation can be selected from the average
of parallel odometry [11] or the best results from sanity check
[13]. However, these solutions are only designed for robots or
typical datasets, the challenges regarding mass-produced IVs
are not taken into consideration.

Limited computation resource: most multi-modal schemes
are evaluated on laptops or high-performance workstations (e.g.
Reinke et al. [13] used a 16 cores @ 3.6 GHz, i9-9900k CPU).
In comparison, most IVs are equipped with automotive grade
platforms (eg. 4 cores up to 2.1 GHz Qualcomm Snapdragon
SA820A). Since the CPU is also in charge of complexed tasks
such as controller area network (CAN) bus input/output, human
interaction and display. The remained computation resource is
highly limited for state estimation. Therefore, the commonly
used iterative computation [2] is not suitable here.

A great variety of sensor setups: many multi-modal systems
are designed for typical sensors, and difficult to extend to other
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setups. Besides, as an indispensable sensor for most works,
IMU is not included in many IVs. They utilize the wheel speed
information from anti-lock braking system (ABS) and yaw rate
data from electronic stability program (ESP) instead. In this
phase, most widely applied algorithms cannot work for IVs.
Addressing the aforementioned problems, we seek to design
a lightweight odometry framework for general I'Vs in this paper,
that is, the IVs for research purpose and for mass-production.
Instead of sticking to a specific method, our approach is built
with redundancy, where various lightweight algorithms run in
parallel and the most promising pose estimation is selected. Our
proposed system presents the following contributions:

1) We propose to use redundant odometry to provide better
pose estimation results instead of a single estimator. This
scheme is lightweight and can reach real-time performance
for IVs with limited computation resource. Besides, the
robustness also benefits from the redundancy design.

2) We integrate the wheel odometer information to the iterated
Kalman filter-based LiDAR-inertial system when IMU is
available. On the other hand, the vehicle dynamics model is
introduced when IMU is not available.

3) We add the self-recovery characteristic to both the LiDAR-
inertial and Visual-inertial system. Unlike most of the
algorithms which may fail entirely against temporary errors,
our redundancy design can detect such errors and recover
the individual systems.

4) We open source the datasets to benefit the community.

The rest of the paper is organized as follows: Section II
illustrates the related works and comparisons. Section III
presents the system overview along with some preliminary
works, followed by detailed lightweight and general framework
in Section IV. Then Section V shows experimental results on
different platforms as well as some applications. Finally,
Section VI concludes this paper and demonstrates some future
research directions.

2. RELATED WORK

Vehicle pose estimation is a widely investigated topic in
previous works. A great diversity of sensors and digital data
have been utilized in this field, including inertial, wheel encoder
[14], radars [15], GNSS [16], ultrasonic [17], LIDARs [6], and
cameras [18]. However, most of them are merely focused on
multi-modal fusion instead of a robust and redundant system to
deal with sensor failures. In this section, we briefly review
works on multi-modal SLAM and redundant odometry.

2.1 Multi-modal SLAM

The multi-modal SLAM can be generally classified into either
loosely coupled or tightly coupled schemes. There are
numerous works on loosely coupled odometry in the literature
[2], [19], [20], where the pose estimations from individual
measurements are fused separately. Since this scheme only
performs frame-to-frame motion estimation, the global
consistency is not guaranteed. In many of the recent works [1],
[14], [21], [22], tight integration of multi-modal sensing

capabilities are explored for both accuracy and robustness
improvement. The tight coupled manner can be classified into
filter based or optimization-based frameworks. The filter based
approaches employs a Kalman filter for joint state estimation,
such as the multi-state constraint Kalman filter (MSCKF)
applied in [26]. Although operating with high efficiency, the
filter-based methods are usually less extendible to other sensors
and may be vulnerable to potential sensor failures. Since the
iterated Kalman filter based LiDAR-inertial scheme [21] only
includes LiDAR and IMU for state estimation, we hereby
extend this scheme with vehicle wheel odometer and vehicle
dynamics for I'V application. On the contrary, the optimization
based approaches [10], [25] have proved advantageous for their
expandability, where each sensor input can be viewed as a
factor in the graph. Therefore, we construct a factor graph at the
back-end of [21], where extra global measurements, such as the
GNSS, can be added conveniently.

The aforementioned algorithms all have a single estimator
design. Although achieving promising accuracy, they are prone
to fail against either single sensor failures or estimation failures.
The sensor failures include transitory loss of data stream, large
outliers, or environment related problems (low illumination).
The common estimation errors comprise of non-convergence,
degeneracy, and high dynamic scenes [26]. Besides, most of
them cannot recover from the temporary failures. Once certain
failures are met, e.g., LIDAR degeneracy, they will fail entirely
and generate meaningless pose estimation results. In this paper,
we seek to add the self-recovery characteristic to the multi-
modal SLAM algorithms.

2.2 Redundant Odometry

Previous works show that the multi vehicle design can cope
with the single failures and improve the system robustness [27],
[28]. Xu et al. [29] show that the cooperation of redundant
multiple autonomous underwater vehicles can detect abnormal
acoustic distance and retain the accurate information, ensuring
a stable operation of the entire system. Besides, they also point
out that the redundant system can estimate unknown parameters
and reduce the influence of outliers to the estimation results
[30]. Shan et al. [10] propose to use a health monitor system for
each odometry, and they can easily switch to each other. The
consequence of redundant odometry has also been emphasized
by the Mars Exploration Rovers (MER) [31]. The MER system
has successfully exhibited a switching behavior between the
wheel, inertial, and visual odometry. The former two can
compensate for the visual tracking failures, whereas the latter
one can detect the unforeseen slips of the former two.

Our work follows the idea of [12] and [13]. They all share a
same redundancy design, where various odometries are running
in parallel, with the best estimation used as the output of the
system. Specifically, the former work is targeted for the
unmanned aerospace vehicles (UAVs), and the heterogenous
redundant odometry evaluates a stack of estimation algorithms
through resiliency logic. It switches to an alternative method
when the main estimation engine fails, along waiting for the
main engine re-initialization. With a wide adaptability
principle, this framework can be easily extended to a great
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Fig. 1. The proposed system architecture.

variety of sensors, such as sonar, radar, LIDAR, camera, IMU
and thermal. Since it is typically designed for UAVs, the
vehicle dynamics and kinematics are not considered. On the
contrary, the latter work focuses on the IV application, where
multiple visual-LiDAR odometry run in parallel. The vehicle
dynamics and kinematics is utilized to filter out failures, and a
point cloud Chamfer distance-based criterion is used to find the
most promising result for each timestamp. This scheme requires
at least one LiDAR on the IV for computing weighting metric,
which is not realistic for many mass-produced vehicles. Besides,
it requires a high-performance laptop (19-9900k CPU) for real-
time operation, lacking efficiency for general IVs.

In this paper, we integrate the advantages of the above two
schemes, with a general sensor adaptivity to both research
purpose and mass-produced [Vs. Besides, the parallel odometry
all have a lightweight design for the resource limited IVs.

3. PRELIMINARY

The system diagram is visualized in Fig. 1. Since we seek to
develop a generalized odometry scheme for IVs, the input
information includes heterogeneous sensors and the high-
definition (HD) maps. Such measurements have a diversity of
physical phenomena to cope with the various possible failure cases.
These inputs first undergo a hardware-level data test, including
data stream existence, frequency, and individual verification. They
are sent to parallel sub modules for individual pose estimation. The
software-level test is then performed for separate results to remove
clearly wrong results. Finally, the remaining odometry are
evaluated with the best chosen as the output.

We first define the coordinates and notations used throughout
this paper in Fig. 2 and TABLE I. In addition, we denote (-)E
as the transformation from LiDAR frame to IMU frame.

We employ two mass produced ['Vs and two research purpose
I'Vs throughout this paper. The general configurations of the IV
(weight, CAD design model) are provided by the manufacturer.
We use a calibration room to re-compute all the sensor extrinsic
and the camera intrinsic. The GNSS antenna is treated as the
primary sensor, which is set as the reference for all the sensor

extrinsic. When GNSS is available at vehicle start point, all
the results will be transferred into the global frame configured
by GNSS. Once GNSS is temporarily unavailable, the pose
estimation is only performed in the local coordinates, and wait

Fig. 2. Visualization of frame definitions. The red-green-blue color indicates
the x-y-z coordinates, respectively. The original V frame is mounted at the
vehicle mass center, and we shift it to the center of the rear axles. The B frame
shares the same definition of IMU frame.

TABLE I
NOTATIONS THROUGHOUT THE PAPER
Notations Explanations
Coordinates
(OL4 The global frame used for vehicle navigation.
Ol The vehicle frame used for vehicle dynamics and kinematics.
(B The body frame which is also the IMU frame.
)° The odometer frame, which is often expressed in B frame
()E The LiDAR frame, defined by the manufacturer.
)¢ The camera frame, also defined by different manufacturer.
Expression
® Noisy measurement or estimation of ().
® Multiplication between two quaternions.
p The position or translation vector.
R, q Two forms of rotation expression, R € SO(3) is the rotation
vector, q represents quaternions.
p The linear velocity vector.
X The vehicle full state vector.
Z The full set of measurements.

n The Gaussian noise.

for the GNSS initialization. We utilize either the network
protocol or CAN bus to synchronize all the measurements.
4. MULTI-MODAL FRONT-END AND CANDIDATE
ODOMETRY SELECTION

In this section, we employ six odometry methods to exploit
the redundancy of multiple odometries for improving overall
robustness and performance.

4.1 Vehicle Kinematics
The raw accelerometer and gyroscope measurements, a and
®, are given by:

ﬁk—ak+R g +bak+na,
“)k = Wy + bwk + Nw, (1)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-1-W5-2025-13-2025 | © Author(s) 2025. CC BY 4.0 License. 15



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

where 1, and n,, are the zero-mean white Gaussian noise, with
Mg ~ N(0,02), n, ~ NM(0,62). The gravity vector in the
world frame is denoted as g% = [0,0, g]7. Besides, the model
of wheel odometer sensor is given by:

c%9% =v° + o, ()

where ¢k denotes the scale factor of the odometer modeled as
random walk, with n o ~ N (0,6%).

When an IMU is included in the vehicle, the vehicle state
vector can then be denoted as:
1 3)

x;=[ay, pg, Vs, ba by

where pg’ € R3, vi/ € R?, and qy, € SO(3) are the position,
linear velocity, and orientation vector, respectively. b, and b,
are the IMU gyroscope and accelerometer biases. Finally, ¢©
the scale factor of the odometer. According to the preintegration
principle [1] and our previous work [6], the IMU and odometer
increment between frame & and k+1 as:

k+1
RZ
jj 5 (8 = bg, —ma)de?
T
Br(a
[)’Bk+1 = j R, (4, —bg, —M,)dt,
t=k
k+11
B ~ B
Voo, = J F0(® — by, —Mo)ysdt,
t=k
k+1
0 0 N
= [ R —ne, )
t=k
where,
—[wl]y w
Q(w =[ [wlx ]
(w) w0
0 —w, w,
[w]x = | w, 0 Wy . )
—w, Wy 0
Using the calibration parameter, we can also transform a0k+1
into IMU frame ¢ Bris with:
k+1
Bk B N
¢Bk+1 = j RB’:RO‘t(cokvo—nso)dt (6)
t=k

Thus, the discrete form of preintegrated IMU/odometer
~Bk

B ’yB

Bit1’ P Biy1 i+1’

~B .
measurements [a q)B’,‘H] can be given by:
L

agkﬂ = @,  + Byeot+ IR (75F) (a; - bg )7,

ok —[i’B"+R( B")(a

i+1 l

ol e

b,,)st,

Bk

Vi, = yB

Bpk = $p° + R(755) Roieowist,  (7)

Finally, the residual of preintegrated IMU/odometer
measurements can be expressed as:

Ty (ZBk+1, x)

= [sa5k,, 5B5%,, 565, 5b, 6b, 5y 5c0]T
- Brt1 Bi+1 Brt1 a="g Brt1
1
o (Pl b+ 597 aek - Vi) -l
RBk(Vg;H + g% At — ka) ﬂBk+1
<Br \ !
= 2 [(q ) ® (qu+1) ® (YB:H) ]2-4 (8)
bak+1 - bak
b.9k+1 - bgk

Bk w Bi+1
(ka+1 ka +R Bk+1p0k+1 ¢Bk+1

L C0k+1 — COk |

B
We use 66
k+1

[']2.4 to take out the last three elements from a quaternion.

We use the factor graph [32] to solve this problem, where the
optimal vehicle state estimation is a least square minimization
problem using vehicle kinematics and the GNSS positioning
from Section IV-E. Besides, we establish sliding windows to
ensure the real-time performance of the optimization scheme.
For a sliding window of Ny keyframes, the optimal states are
obtained through minimizing:

to represent the error state of a quaternion, and

Nig Ngg

minflr, |+ ) sl + Y ey ©
x i=1 i=1

where 1, is the prior factor marginalized by Schur-complement
[1], 75, is the residual of vehicle kinematics preintegration
result, and the residual of global positioning system is rg,. Ny,
and Ng, denotes the number of preintegration and GNSS
factors, respectively.

Ty L

Fig. 3. The 2-DoF vehicle dynamics model. [r and [, are the distances from the
center of mass to the vehicle front and rear axles. ay and a,. indicate the front
and rear wheel tire slip angles. @ denote the front wheel angle and f is the slip
angle. v is the vehicle velocity at the center of mass, with v, and vy representing
the lateral and longitudinal part. w,. denotes the vehicle yaw velocity. Finally,

F, s and F,,. describes the lateral force on the front and rear axles.

4.2 Vehicle Dynamics

The kinematics model assumes that no tire slip exists between
wheels and ground which is only reasonable for low-speed and
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small steering motion. In comparison, this assumption breaks
down for higher speeds or with sharp turnings. Therefore, if no
IMU is included, the dynamic vehicle model should be taken
into consideration in this situation.

The vehicle dynamics model can be simplified as a two
degree-of-freedom (2-DoF) bicycle model [33], describing the
lateral and yaw motions as visualized in Fig. 3. Summing the
forces and moments about the vehicle center of mass, the lateral
dynamics of the bicycle model can be expressed as [34]:

ZFy = Fyr + F,r = m(9y + v,0,),
Z M, = I,F,; — 1,Fyy = Lio,, (10)

where m describes the vehicle mass and I, is the yaw moment
of inertia. Assume that the lateral force acting on tire is
proportional to the tire slip angle, we can get the basic equation
of motion for the bicycle model as:

1
(G +C)B+ - (¢ — 1,C)w, — Cra = m(Dy, + vew,),
X

(ircr - 1,.C,) +i(lzc+lzc) - ;Cra = Lo, (11
f“f rrﬁ Uxff r Cr )Wy ffa_z(‘)r'()

where Cr and C, are the lateral stiffness of front and rear wheels.

When the vehicle is mainly moving straight, v, and w, can be
assumed to be zero, then for a given timestamp £, § and w, can
be computed through:

1+g%%2%2b
Br = 1_—C,ﬁszak;
_ 1 9
oy = 1—76‘1”7,(270(’0 (12)
with:
C=M, L=l +1, (13)

12C,C,

Here 7), and aj, are the linear velocity measurements from
vehicle chassis and steering angle transmitted to front wheel.
Then the measurements of vehicle dynamics model ¥, and @,
are expressed as:

Uy = [DrcosPr  Desinf 0T,
@, =[0 0 @&"

(14)

Then the pre-integrated kinematics within the vehicle frame can
be expressed as:

k+1
v Vikra
av:_H = j va(vt - ‘]v)dt.
t=k
k+1 1
Vv ~ Vv
sz+1 = j Eﬂ(wt - nw)thkdt' (15)
t=k

and the related residual is:

7Bk — By Bk qT
Tp (ZBk+1’X) - [6a3k+1 693k+1:|

Br(..w _ WY_nB Brpw B _ ~Bk
Rw(ka+1 ka) pv + Ry Rp, . Py — @,

2 I:(qv/k)_l ® (qvi"&l) ® (7“;:“)_1]2:4

The vehicle dynamics and GNSS information are also jointly
optimized atop a factor graph, with:

. (16)

Npg Ngg
min{lr, "+ Dl l* + ) g,
i=1 i=1

where g, is the residual of vehicle dynamics preintegration

result. Note that for IVs without an IMU, only the vehicle
dynamics is utilized, whereas both states are optimized when
IMU is available.

a7)

4.3 LiDAR-inertial Odometry

Nowadays, many [Vs are equipped with LiDARs, and some
of them even have a multiple-LiDAR setup. Considering the
diversity of both LiDAR brands and placements on IVs, we
seek to design a general LiDAR-inertial odometry.

The preprocessing process include outlier and distortion
removal, as well as multiple scan synchronization. The noisy
and outlier points are first removed with statistical outlier
removal filter. Then we apply the vehicle dynamics increment
model to de-skew the point cloud with linear interpolation. For
the multi-LiDAR setup as visualized in Fig. 4, we leverage the
procedure in our previous work [6], [35] to synchronize them
in the algorithm.

We choose an efficient filter-based method Fast-lio2 [21] as
our backbone. When the IMU is included, we also add wheel
odometer information into the iterated Kalman filter. Following
the HH definition in [21], the continuous kinematic model at the
IMU sampling period At can be discretized as:

X1 = X; H (Atf(Xi, u;, WL))

where the state x;, input u;, process noise w; and the function
f are defined as:

(18)

Xi=

w w w w
[qBi pBi VBi bg ba g’
u; =[®; &

B B B 01T
qLi pLi pOi c ] )
50 1T
V7]

’

w; = [lel- Nq; N0, bwi bai]T:
[ ®— ba) —MNo
Vi 4 (RY B~ b, —n,) + g
R‘g(ﬁ - ba - na) + g’W
b,
f(x,u,w) = b, (19)
0351
0351
03><1
RE(c%9° —1n,0)
c® :

We also implement the measurement model defined in [21],
and the forward propagation is performed upon received IMU
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input. Based on the HH operator in [22] The covariance is
propagated using the error state dynamic model as:

Xiy1 = X1 HXipq

f(ii + Fle'. (20)

Here the term X;,, expresses the error in the estimation of a
quantity, such that, X;,; = X;,; — X;4+1.The matrix F; and F,
is computed following (21). The Exp(r) denotes the exponential
map in [36] and A(u)~?! follows the definition in [37]:

2

Exp(r) = I+ —sin([lrl]) + ——
T T M T 2
1 2
AW™ =12 [ul, + (1 (||u||>)%,
_ucos(u/Z)
OC(U)—EW. (22)

The notation |u], indicates the skew-symmetric matrix of a
vector u € R3 that maps the cross product operation. Then the
propagated covariance P; can be calculated following:

P, = KRPF, + F,QF,";P, =P,_,, (23)

where Q; is the covariance of the noise w;. Note that (24) is an
iterative process, and the residual zf at the x — th iterate
update is defined following [21] as:

(a)
Fig. 4. Examples of some LiDAR setups on IV. (a) is a single scan from our
four-LiDAR setup on HQ-1 IV, the green and cyan indicate two front view
LiDARs, the orange and purple denote two side blind spot LIDAR. (b) is a scan
from our 300-channel LiDAR setup on HQ-2 IV.

(b)

= K= K
zf =] (T T p, — qa?), (24)

where p;, is the measured LiDAR point in its own coordinate,

and q" is the centroid of the fitted local small plane patch
defined in [21]. Then (20) can be computed as:

x, BR = R B X BRe = R B + 1%
where J¥ is the partial differentiation of (X H X}) H &), w.r.t.
X evaluated at zero:

(25)

Jr =
~11r K —~ =T
lfA(R%Vk BRY) 035 0353 030 |
| 015><3 I15><15 015><3 015><9 |( 26)
—~p K —~ =T
[ 053 0315 A(RY " BRE, 0359
09><3 09><15 O9><3 I9><9

here ﬁg’kk HRY, and ﬁ’zkx H R}, is the error states of IMU’s
attitude and rotational extrinsic.

Then the combination of (24) and (25) yields the posteriori
distribution of the state X;, which is a maximum-a-posteriori
(MAP) problem, and can be solved by the iterated Kalman filter:

m
min (I B Rellp, + ) 128 +365%00%,) @)
k =

where HY is the Jacobin matrix and R; is the measurement
noise defined in [22]. The iteration process is solved following
[18], where for the first iteration, R = &, and J* = I. We also
use the ikd-tree [38] for efficient point cloud organization.

Similarly, when the IMU is not available for some IVs, the
system is changed to:

W 4B B B BT
X; = [qg/l pgvl vBi qu— pLi qVi pVi] . (28)
Besides, the J* also changes accordingly,
Je =
— _T .
A(s6%,) 0356 0353 0353 0353 0353
06><3 I6><6 06><3 06><3 06><3 06><3
=T
03,3 0343 A((?Ofk) 0343 03,3 03,3 (29)
03><3 03><3 03><3 I3><3 03><3 03><3
-T
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where 60, , 607, and 567, is the expression of ﬁg’kk HRY,.
=p K =~ ~p K —~
R}, BR} andR7,“HRY,.

When GNSS information is available, we also use the factor

graph at the back end to obtain a GNSS constrained pose
estimation result,

Nyg Ngg

. 2 2
min{lr[*+ )l l* + )" v,
i=1 i=1

where 1z, is the residual of the iterated Kalman filter and N,

(30)

indicates the number of this item.
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b
Fig. 5. Visualization of the failures caused by degeneragy). (a) is the irregular
trajectory. (b) shows the ‘stopped’ trajectory.

Since our LiDAR-inertial system is designed with no
degeneracy-aware module, it may fail at feature-poor areas,
such as the planar tunnels, structure repeated noise barriers, or
the featureless bridge. Once failure is encountered, many state-
of-the-art (SOTA) LiDAR SLAM will die completely and are
always non-recoverable. Therefore, we seek to develop a self-
recoverable LIDAR SLAM with redundant odometries.

As visualized in Fig. 5, the pose estimation in degenerated
areas have two common failures: one is the spinning trajectory,
the other is the ‘stopped’ or slow-moving trajectory. Both of
them will generate large errors compared with the absolute
GNSS information. We hereby set a failure detection thread to
compare the pose estimation result of LiDAR-inertial system
and GNSS every three minutes. Once the difference is above a
given threshold, the LiDAR-inertial system will reinitialize
using the current GNSS information, and the Kalman filter will
also restart. Note that if the GNSS measurement is currently
unavailable or has large outliers, the system will turn to next
period for comparison automatically.

4.4 Visual-inertial Odometry

SLAM algorithms have a high CPU dependence, but most of
the IVs are merely equipped with powerful GPU. Therefore, we
seek to leverage the GPU parallelization to improve the Visual-
inertial efficiency.

Our Visual-inertial odometry follows the lightweight design
of Vins-mono [1] and Vins-Fusion'. In comparison, we adopt a
GPU-accelerated feature detector [39] at the visual front-end.
Besides, we also add the self-recovery characteristic as shown
in Section IV-C, when the long-during failure is detected, the
Visual-inertial system will re-initialize and restart.

4.5 GNSS and Map-matching Odometry

Many research I'Vs integrate the real-time kinematic (RTK)
measurement into pose estimation to ensure high precision
localization. However, the RTK information is not available for
the massive produced IVs, and we merely use single point
positioning (SPP) for all the IVs instead. Since the factor graph
based GNSS optimization can simultaneously explore the time-
correlation among historical measurements and effectively
explore the time-correlation of pseudorange, carrier-phase, as
well as doppler measurements. We leverage an open source
GraphGNSSLib proposed in [40].

When the IVs enter districts with prior HD maps, the map-
matching subsystem is awakened to match the real-time scan to
the previous constructed map. To enable the real-time

! https://github.com/HKUST-Aerial-Robotics/VINS-Fusion

performance, we employ a multi-threaded normal distribution
transform (NDT) method [41] for map-based localization. NDT
divides the 3D space into small cells, and calculate the local
probability density function (PDF) in each cell. Then the point-
to-distribution correspondences are computed within a scan pair
to find the optimal transformation.

In addition, our system is also capable of matching Bird-eye-
view (BEV) image’s semantic segmentation with the vector
map constructed in Section V-F when the LiDAR sensor is not
installed on the IV. As visualized in Fig. 6, we utilize the
surround view and front view fisheye cameras to generate a
BEV image through inverse perspective mapping (IPM). We
train a convolutional network [42] that segments the BEV
images into various road markings, e.g., road lines, text, zebra

Fig. 6. The registration of BEV semantic segmentation with vector map. The
left six insets are the recertified surround view images. The middle inset is the
real-time BEV semantic road lines (blue dotted lines) matched with the vector
map (white lines), the small red, yellow, and purple rectangles are the detected
vehicles projected onto BEV image. The right above inset shows the real-time
road lines and markings segmentation result. The right bottom inset visualizes
the surround vehicles (small white rectangles) in BEV.

stripes, and dynamic objects, e.g., vehicles, pedestrians. By
doing so, the semantic features detected on the BEV image are
lifted into the vehicle coordinate. Then the current pose of the
IV is estimated by matching current feature points with the
vector map using the iterative closest point (ICP) [43].

4.6 Hardware and Software Level Verification

The hardware-level verification is conducted at the data
preprocessing stage, including data stream existence, frequency,
and individual verification. The data stream existence test aims to
find out whether the required data input exist or not. Since the
vehicle dynamics, kinematics, and Visual-inertial odometry have a
factor graph design, they can still work for a short period when one
of the input stream is lost temporarily. However, the LiDAR-
inertial odometry has a filter-based structure, and it will fail
immediately when no input is from either IMU or LiDAR [44].
Therefore, our LiDAR-inertial odometry will reinitialize and
restart following Section IV-C when either IMU or LiDAR stream
is lost for one second. For the other three odometries, this period is
extended to thirty seconds. The data frequency test also follows this
idea. The system set the stream with the lowest frequency as the
primary input, and monitor the counts of other data within two
consecutive frames continuously, e.g., the LiDAR is set as the
primary input (10 Hz), and approximately ten frames of IMU
input (100 Hz) should be found within two successive LIDAR
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scans [45]. Once this criterion is not hold for ten minutes, the
system will send a warning to the user interface for a manual
check, e.g., a yellow warning sign on the central control screen.

The individual verification is mainly for the perception
sensors. Since the LIDAR sensors are often equipped at a low
height of the vehicle, once the IV is in a busy district with
vehicles all around, the LiDAR-inertial odometry may fail to
the dynamic objects. Therefore, we monitor the Euclidian
distance of the point clouds within each scan, if 70 % of the
points are below ten meters to the LIDAR, the current frame is
discarded for pose estimation. Since the Visual-inertial
odometry may fail against the sudden illuminance variations,
we first transform the gamma-compressed RGB values to linear
RGB, and compute the relative luminance of each image. The
image with either too high or too low value is discarded for pose
estimation due to insufficient contrast.

The software-level test is performed for parallel pose estimation
modules to remove clearly wrong results. We set the maximum
speed of the vehicle as 250 km/h, and verify whether the
displacement of each odometry is beyond this limit or not, e.g.,
once the displacements of two successive vehicle dynamics
odometry (100 Hz) is beyond 0.7 m, it will be discarded in the next
section, since it is clearly wrong pose estimation results. Similarly,
we use the steering angle information to monitor the individual
yaw estimation results.

4.7 Switching Logic and Candidate Selection

After the software-level verification, the remaining odometry
candidates will pass through a proposal evaluation process to
select the best odometry candidate.

(a) (b)
Fig. 7. The two employed IVs. (a) is the Voyah Free without any adaptations.
(b) is the Hongqi H9 with deep modifications for autonomous driving purpose.

Di+1

Jk+1
> pDk

L1 Cr+1
We denote the Py, > P, 5 Pey
Mie+1

Py, as the respective position variations of different

Gk+1
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odometries (kinematics, dynamics, LiDAR-inertial, Visual-
inertial, GNSS and map matching) within two frames k and k+1.
The best odometry is selected through weight comparison as
described in (32). Since the vehicle dynamics odometry is the
most robust (robust to wheel slip, degeneracy, bad illumination

condition and satellite signal quality), we set the pg’;“ as the

short-term reference to compute the weighting metric of others.

Given that the vehicle kinematics odometry accuracy may be
higher when moving in straight line with low acceleration, we
define M,;j and M, ,3/ in (32) to describe the acceleration and

angular variations. Specifically, when the wheel slip happens at
Jke+1 < || pDk+1

turnings (”p ), the squaring position factor

MY, acceleration factor ]\/[,;7 and angular factor ]\/[,;g will

amplify this influence. Then the kinematics weight W,;j is small
and vice versa.

As mentioned in Section IV-C, the pose estimation results of
LiDAR-inertial will be either too small or too big at the
degraded districts, and the weighting metric W} is also small.

This also works for Visual-inertial system with bad lighting
conditions or high dynamics (many vehicles around), GNSS
and map matching odometry with large outliers.

||p<7k+1
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where Vg, and 0,,,,, denote the empirical threshold of the
velocity and angle variation. The V,,,, is set as the product of
the maximum acceleration and time duration within the & and
k+1, e.g., the maximum acceleration of an IV is 0.55 g, and the
time duration is 0.1 s, then V,p, should be 0.055 m/s?.
Besides, 0., is set as the product of 10 degree and the given

period. The symbol R in M;X and WX can be £, €, G, and M,
representing the odometry factor and weighting metrics of
diverse odometries. The odometry with the highest weighting
metric will be selected as the final pose output.

5. EXPERIMENTS

This section first presents odometry performance on various
IVs, then shows the great adaptivity of our system to other
functionalities, such as controlling and mapping.

5.1 IV Setups

We employ two massive produced IVs, Voyah Free, a high
configuration one with Snapdragon SA8155P processor and a
low configuration one with NXP-.LMAS processor. Besides,
two research I'Vs are also utilized, the detailed sensor setups are
visualized in Fig. 7 and listed in TABLE II. Note that unlike
many other research purpose IVs having a backpack-like sensor
platform on the roof, the HO-/ and HQ-2 are all designed with
mass production purpose. Therefore, the LIDARs and cameras
are all pre-installed in the vehicle (e.g. two Leishen CH32 are
installed below the head light, two RS Bpearl are installed on
each side of the front door).

The algorithms are implemented in C++ and perform under
Linux. Since the CPU and GPU usage is strictly limited for each
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vehicle (e.g. 20% computation resource of a single core is left
for Free-2 to perform our algorithm), our algorithm is modified
for each CPU and GPU setups. Our algorithm benefit from the
GPU acceleration, where many CPU heavy computation is
accelerated by GPU parallelization. Such modification includes
many code refactoring, cross compiling, and logic simplifying.
For instance, we use libtbb for parallel computation instead of
the omp in Fast-lio2 and NDT-omp. Besides, the voxelization
is also accelerated by GPU.

5.2 Odometry Performance

This section aims to verify the accuracy of the proposed
system. The ground truth is kept by the post processing result
of a near navigation grade IMU and a Trimble GNSS receiver,
with the RTK corrections sent from Qianxun SI. The post
processing software jointly optimizes the IMU and GNSS data
in a tightly coupled manner. The output positioning result can

TABLE I
DETAILED SENSOR SETUPS OF DIFFERENT IVS

Mass production IVs Research purpose IVs
Name Free-l | Free2 HO-1 |  HO-2
Model Voyah Free Honggi H9
Power Range Electrical Gas
extended
Processor L.MAS SA8155P TITAN4C
CPU Cortex-A72 Kryo 485 NXP MPC77XX
GPU Included Adreno 640 2 x NVIDIA AGX Xavier
Cameras 4 surround, 3 front 6 surround, 2 front (stereo)
4

i 2 RS Bpearl L
LiDARs 0 2 LeisshenpéaI-BZ Tnnovusion

IMU No CHCNAV | ASENSING

GNSS Included CGI-220 P-Box
Encoder 2 | 4 2

reach centimeter-level accuracy. For each experiment, we set
the start point sharing the same coordinates of the post
processed results. Besides, we assign each LiDAR/camera
frame with GPS timestamp, allowing frame-to-frame pose
evaluation with post processed results.

We employ the pure odometry from the IMU/yaw rate and
wheel encoder (odom-pure), as well as our self-modified ORB-
SLAM?2 [46], Vins-mono [1], and Fast-lio2 [15] with vehicle
dynamics information for comparison. Note that for Vins-mono,
our modification also supports stereo camera. In addition, the
accuracy of in-vehicle GNSS is also compared. This GNSS
information is also added to the four odometry when available
using the GTSAM [32]. Besides, the scan context [47] based
loop detection module is also added to the back end of Fast-lio2.
For the multi-LiDAR setup on HQ-1, the input is the merged
scan of four LiDARs.

We choose 15 sequences for evaluation, covering highly
dynamic, feature-poor, degenerated, fast changing illumination,
and bad weathers. Two criteria, the maximum error (MAX) and
root mean square error (RMSE), are computed and reported in
TABLE III. 1t is clear that our method is superior to all other
approaches in 10 out of 15 sequences and a comparable result
with the best odometry for the remaining sequences. The most
notable characteristics of the redundant odometry is the effect
suppression of maximum errors. It is seen that our method
always maintains a high precision accuracy no matter how bad

the worst individual odometry candidate is. Besides, the
maximum errors of our system are always among the lowest
ones for all sequences. This support the claim that the redundant
odometry system yields better overall results.

For the individual odometry, we can infer that the vehicle
dynamics aided LiDAR-inertial odometry has the best accuracy.
This is mainly due to the accurate and direct range measurement.
However, since the LIDARs are all installed at a low height, the
odometry is more prone to fail at textureless scenarios, such as
a long bridge in City-day-busyl and a tunnel in Tunnell. For
the visual approaches, it is clear the stereo camera outperforms
the monocular camera with less scale drift and tracking loss.
With the increased travelling distance, the monocular camera
based method is merely dependent on GNSS for scale
correction, and the Free-1 and Free-2 all have a similar accuracy
with in-vehicle GNSS. For the vehicle dynamics and kinematics,
they work perfectly at constant velocity and less turning
scenarios, such as the two sequence on the highways, Highway1
and Highway?2. On the contrary, they are less reliable for the
parking sequences, where turnings and wheel slipping are
inevitable.

To further visualize how our system picks different odometry,
we demonstrate when and which method have been selected on
City-night-busy since all solutions are available along the path.

To further visualize how our system picks different odometry,
we demonstrate when and which method have been selected on
City-night-busy since all solutions are available along the path.

MM
GNSSpe e Woe

VKM
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Fig. 8. Visualization of picked odometry at different time sequences for City-
night-busy. The three insets below show the visual view of LIO failure scenes.
The first is a noise barrier, where the laser scans cannot pass through, leading
to degeneracy. The second is on a long bridge, which is a feature-less scene.
The third is in a narrow lane, where many pedestrians block the LiDAR views.
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Fig. 9. The robustness evaluation against GNSS outliers. The green and red dots
are the position output from in-vehicle GNSS and our system, respectively.
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TABLE 111
SHORT DESCRIPTION AND ACCURACY EVALUATION FOR ALL THE SEQUENCES

RMSE [m]/ MAX [m], with — and bold number indicates meaningless and best result, respectively.

Length [km] =y 1 ggom-pure  ORB-SLAM2  Vins-mono  FAST-LIO2 GNSS Ours
/ duration [s]
Pure-campus1 1.1/198 HQ-1 1.64/3.16 0.94/1.99 1.18/2.85 0.54/1.45 6.09/18.51 0.37/0.72
Pure-campus?2 1.2/196 Free-1 4.18/22.36 6.08/15.86 4.21/17.43 -/- 8.23/19.60 3.94/12.17
Campus-to-cityl 1.5/215 HQ-2 1.67/2.88 1.89/3.92 1.07/2.10 1.17/2.26 6.11/13.42 0.94/1.73
Campus-to-city2 3.6/589 Free-2 2.95/1.92 4.87/7.56 5.69/10.24 -/- 4.48/8.84 4.78/9.73
Ground-parking 0.8/187 HQ-2 3.74/13.97 1.25/2.68 1.56/1.22 0.14/0.38 3.66/6.57 0.16/0.32
U-parkingl 0.6/143 Free-2 9.79/36.12 0.56/0.87 0.83/1.28 -/- -/- 0.65/1.01
U-parking? 0.9/194 HQ-1 12.62/47.35 -/- -/- 1.75/5.38 -/- 1.19/3.35
City-day-busyl 23.7/2142 HQ-1 2.75/16.93 3.12/10.53 1.88/9.62 -/- 5.29/32.38 1.42/4.73
City-day-busy2 19.6/1985 Free-2 4.28/11.62 5.33/11.28 5.59/12.54 -/- 7.94/71.12 4.21/9.58
City-night-busy 25.3/2438 Free-1 5.75/27.25 5.72/10.94 5.83/11.01 -/- 6.32/66.53 3.37/9.55
City-night-free 9.8/581 HQ-1 5.82/8.87 3.25/6.33 2.98/9.15 2.17/7.23 5.26/73.98 2.47/5.68
Highwayl 33.5/1113 Free-1 3.55/16.73 4.06/24.78 3.82/17.98 -/- 4.18/33.75 3.52/14.27
Highway?2 40.6/1314 HQ-2 2.96/14.72 2.65/12.15 2.83/11.79 2.27/6.19 4.37/25.80 2.13/6.72
Tunnell 0.8/51 HQ-1 1.97/3.89 2.98/9.92 3.28/13.77 -/- -/- 1.75/4.34
Tunnel2 1.7/99 Free-2 2.52/4.70 9.63/33.68 10.34/38.77 -/- -/- 2.79/5.3
TABLE IV VIO, VDM, and VKM is at 100 Hz, whereas the MM and in-
PICKING TIMES OF DIFFERENT ODOMETRY FOR CITY-DAY-BUSY1 Vehicle GNSS iS at 50 HZ. We hSt the plcklng times Of each
Method | LIO VIO vbM | vkm | GNss MM odometry in TABLE IV, where LIO is the dominant selection.
As shown in Fig. §, the LIO has three long-during failures along
Pick the path. In contrast with Fast-lio2 which has a total paralysis
. 180938 58627 1570 18 148 54 . C e e
times towards the first failure, our LIO can reinitialize and recover
from the failure.
5.3 Robustness
This module presents our system’s robustness and supports
— the claim that the proposed system is redundant and robust to
— different sensor failure cases.
(@ The first failure cases are about loss of data streams. Since a

()
Fig. 10. The robustness evaluation against inertial sensor outliers. (a) is the
attitude outputs from IMU, where the yaw direction is not consistent. (b)
presents the linear acceleration output, where an outlier exists. (¢) compares the
horizontal error of Odom-pure and our system w.r.t. ground truth.
Uy

(d) (e) ()

Fig. 11. Six typical visual camera failure examples. (a) is the low lighting in
City-night-free. (b) shows the gleaming head lights in City-night-busy. (c)
presents the fast-changing lighting conditions when entering the underground
parking lot of U-parkingl. (d) presents the grievous blurred image due to low
lighting conditions of U-parkingl. (¢) shows the reelections on the ground of
U-parking?2. (f) demonstrates the snowy weather of Highway2, which will cast
many reflections on the ground, or even blind the sensor.

We denote LIO, VIO, VDM, VKM and MM as the LiDAR-
inertial, Visual-inertial, vehicle dynamics and kinematics, as
well as map matching odometry. The output frequency of LIO,

large volume of data is transmitted in the vehicle, some sensor
information is inevitable to suffer from transmission loss. As a
filter-based system without failure detection, Fast-lio2 has a
high dependence of sensor data quality. The IMU has a five-
second data lost in Tunnell, and the real-time odometry of Fast-
lio2 has a large vertical divergence within this period (more
than 100 m). Besides, this error is non-reversible when no
global correction is available. Since our modified version of
ORB-SLAM?2 and Vins-mono still relies on the preintegration
result of vehicle dynamics, they provide no results when no
IMU data is sent. In comparison, our system switch to vehicle
dynamics or vehicle kinematics for pose estimation when both
LiDAR-inertial and Visual-inertial system is not working. The
maximum error happens at the switching point, where our
system is verifying and deciding which system to change to.
The left camera of the stereo camera has no output for one-
minute while traversing inside the campus for Campus-to-cityl.
As a visual-centric solution, both the ORB-SLAM2 and Vins-
mono generate no odometry output within this period. On the
contrary, our system is robust to this failure with redundant
odometry and has the best performance among the others.

The second focuses on sensor outliers. This situation mainly
happens for the inertial sensors and GNSS. For the sequence
Pure-campusl, the well-grown trees fully cover the lanes,
leading to many GNSS outliers as shown in Fig. 9. We can infer
that the switch manner of our system can effectually choose the

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-1-W5-2025-13-2025 | © Author(s) 2025. CC BY 4.0 License. 22



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

best odometry candidate at the right time, where our trajectory
is smooth and follows the straight driving line. Since the inertial
measurements from CAN bus and IMU all suffer from outliers,

Fig. 12. Visual illustration of the pose estimation failures caused by changing
lighting conditions (red dashed circle) and blurred image (black dashed circle).
The blue trajectory is from the ORB-SLAM2, whereas the green trajectory is
ours. It is seen many tiny jumps exist on the curve of ORB-SLAM?2.

3
\

(2 (b)

Fig. 13. Visual illustration of the Leishen CH32 LiDAR failures in the rainy
days. (a) shows the irregular scan lines against heavy rains, where the circular
scan rings are not smooth even no obstacles are detected. (b) presents the large
scan noise against wet vegetations. It is seen no circular scan lines can be found
in the red rectangle.

Fig. 14. Visualization of Fast-lio2 failure due to blockage of nearby vehicles.
The white line is the real-time trajectory of Fast-lio2, it has a large curve at this
degenerated district (drive straight forward).

such as large accelerations and inconsistent gyro outputs, the
Odom-pure will generate many outliers even with GNSS
assistance. Take a near-straight driving segment of Highwayl
for example, the raw input has some clearly wrong data as
plotted in Fig. 10(a) and Fig. 10(b), leading to some outliers for
Odom-pure. In comparison, our system can choose the proper
candidate odometry, and provide a smooth error curve.

The third is about environment dependent sensor failures. As
shown in Fig. 11, visual cameras are prone to fail at bad
illumination scenarios. Some of these failures is detectable,
such as the low lighting scenario presented in Fig. 11(a), where
insufficient amount of feature points is extracted. However, the
sudden change of illumination condition, Fig. 11(b) and Fig.
11(c), is usually hard to detect, and may cause pose estimation
errors. Besides, the heavily blurred image in Fig. 11(d),
reflections on ground in Fig. 11(e) and Fig. 11(f) will also lead
to inconsistent odometry results as visualized in Fig. 12. In
contrary, our system can detect such errors and generate a
smooth trajectory. We also find the LiDAR generates
inaccurate range measurement in bad weather. As visualized in
Fig. 13, many noises exist on the scan lines in rainy days,
leading to less-reliable correspondence tracking. Listed in
TABLE 111, Fast-lio2 has a large maximum error for City-night-
free due to the LIDAR sensor noise. In comparison, our system
can detect and discard this outlier with redundant odometry.
The fourth is about individual pose estimation failures. Since
the vehicles and pedestrians in visual image are all detected and

excluded for pose estimation, our system is robust to highly
dynamic scenes. However, our system may fail at the feature-
poor districts without degeneracy analysis. Since the sensor
mounting height is limited, the four LiDARs can be easily
disturbed by nearby vehicles. As shown in Fig. 14, Fast-lio2
fails at a crossing of City-day-busyl, where many vehicles are
stopping around. Our LiDAR-inertial system also fails at this
scene, but the global state estimation is not influenced with
redundant odometry. Besides, our system is also self-recovery,
where the LiDAR-inertial system is reinitialized when long-

time large errors are detected. On the contrary, this temporary
error is non-reversible for Fast-lio2, and the whole system died.

5.4 Time Complexity

The efficiency of our system is evaluated by collecting the
average processing time of each frame. Unlike many other
works which compute the time consumption for each step, we
merely care about the final odometry output. Fig. 15 presents
the average time cost of generating each odometry result for all
the sequences.

It is seen our system does not become slower with increased
travel distance. For the redundant odometry, we can infer that
LIO highly increases the system burden. For similar scenes (e.g.
Pure-campusl and Pure-campus?) the average time usage has
a 20% growth when LIO is added to the system. The dominant
computation part of LIO is the residual computation and nearest
neighbor searching.

5.5 Application in Motion Controlling

This module is designed to show that our system can be used
with perception results, allowing a better motion controlling.
We use Free-2 to develop an auto parking assist system (APA).
APA utilizes the parking line detection results from 4 surround
view cameras, the occupancy avoidance from 5 radars and 12
ultrasonic sensors, and chassis information from CAN bus to
realize an automated parking system. We first get the BEV
image from the IPM results. Then we utilize CenterNet [48] to
detect the four key points of a parking area, the network

architecture and detection results are visualized in Fig. 16.
TABLE V
THE PARKING BOUNDARY DISTANCE COMPARISON

| Left boundary | Right boundary

Max [cm] | Mean [cm] | Max [cm] | Mean [cm]

Original | 9.78 3.47 6.26 335
|

Ours 4.63 1.94 437 1.98

Fig. 15. The average computing time of our system for each sequence, the
number on x-axis indicates the related sequence in TABLE II (top to bottom).
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(2 (b)
Fig. 16. The applied network structure in (a) and the detected key points from

the BEV image in (b).

=
Fig. 17. The workflow of APA. When the user selects a parking area on the
human interface (the yellow one), the APA system will setup a local coordinate
based on the detected key points (two red points). Then the IV pose (x,y,0)

w.r.t the given parking area will be continuously sent to the control module until
the IV is fully inside the parking area.

il .

(b)

Fig. 18. The visual recognition and semantic mapping process. (a) shows the
real-time recognition, segmentation, and local mapping process. (b) presents a
segment of generated visual semantic map (1 km long).

Fig. 19. The real-time constructed semantic high precision point cloud map of
an underground parking lot. The color green indicates the lanes, parking lines,
or road markings detected by LiDAR and surround view cameras. The red line
is the real-time vehicle trajectory generated by our system.

The detection only approach is not robust for this task [49]
due to potential false positive or false negative detections. We
hereby leverage the Kalman filter to solve this problem, where
the detected key points are treated as noisy observations and the
pose estimation results from above are viewed as states. Since
the key points cannot be detected all the time, the observations
are only updated intermittently. The workflow is visualized in
Fig. 17. We care about the vehicle’s center to the parking spot
boundary in the APA process. Therefore, we select the same
parking spot on the user interface, and let the APA system
automatically parking into the given spot 10 times.

We follow the metric evaluation method in [18] to
quantitatively assess the system performance, where the
difference between the vehicle’s center to the parking spot
boundary in the real world and on the human interface are
measured. Listed in TABLE V, we compare the difference of
original APA in Free-2 and our version. It is seen that our
method has a 40% improvement over the original APA.

5.6 Application in Map Construction

In this module, we seek to present that our system can be
integrated into reconstructing both visual semantic maps and
high precision point cloud maps.

We use the forward camera of HQ-2 to perform segmentation
of lanes, road markings, and drivable areas as visualized in Fig.
18(a). The 2D lanes and markings are lifted into 3D space in the
body frame using IPM. Based on the pose estimation results
from our system, these features can be directly transferred into
global coordinates as shown in Fig. 18(b).

Similarly, we can leverage the cooperative detection results
from LiDAR and cameras of HQO-/ to generate high precision
semantic point cloud maps as shown in Fig. 19. In addition, we
employ the detected loop closure to correct the accumulated
drift. We maintain local maps for every 20 meters along the path.
For each latest local map, we compare it with maintained local
maps. Two local maps are registered by the ICP method. They
are treated as a match if the transformation fails into a threshold.

Then we get the relative pose between these two local maps,

which will be used to correct the accumulated drift.
6. CONCLUSION

In this paper, we presented a robust and resilient odometry
framework for IVs. Our framework first tests the confidence
and monitors the health of each input data stream. The
temporary sensor outliers or data loss will be discarded for pose
estimation, in case of long during failures, our system will warn
the drivers in the user interface. Then the multiple streams are
sent to parallel running odometry including vehicle kinematics
and dynamics preintegration, LiDAR-inertial, Visual-inertial,
GNSS, as well as map matching. All the algorithms share the
general sensor setup as well as the lightweight design. The
individual results then undergo a quality verification, with the
clearly wrong odometry removed. Besides, the redundant pose
estimation can detect the temporary errors of certain estimation
engines, and triggers the re-initialization process.

We evaluated our system on both research purpose and mass-
produced IVs and supported all claims made in this paper. The
experimental results suggest that the proposed system is
resilient and robust to individual sensor and odometry failures,
e.g., loss of data streams, measurement noises, illumination
variations, LiDAR degeneracy, and highly dynamic scenes.
Besides, our approach achieves better performance than all the
baselines in most scenarios, especially for the large suppression
of the maximum errors.

The current candidate selection assumes the vehicle dynamic
can provide reliable reference for short period, which may be
inaccurate for some applications. Therefore, we plan to use
reinforcement learning to design better odometry proposal
selection criteria in the future work.
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