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Abstract: 
Reliable and robust self-localization is the essential component of intelligent vehicles (IV). Many scholarly works have been focused 
on developing accurate multi-modal integrated pose estimation schemes. Such single estimation engine design lacks consideration of 
potential individual sensor failures. In this paper, we present a resilient framework that exploits the redundancy of different sensors using 
a stack of odometry algorithms. The multiple pose estimation algorithms run in parallel with a general adaptivity and lightweight design. 
Specifically, we integrate the vehicle wheel encoder and the vehicle dynamics data to the filter-based LiDAR-inertial odometry. In contrast to most 
of the odometry algorithms which may fail entirely against temporary failures, the redundant system enables self-recovery of individual odometry 
through reinitialization. The most promising odometry is selected at each timestamp through weighting metric evaluation. In this way, our 
method can exploit the robustness and advantages of individual estimating engines. We evaluate our method on both research purpose IVs 
and mass-produced IVs. The experimental results suggest that our approach is resilient to various failure cases and achieves better 
performance than individual methods. 

1. INTRODUCTION

Companies involved in the automotive industry and research 
laboratories have been aiming at developing more and more 
intelligent vehicles (IV). The ultimate goal is to enable fully 
autonomous vehicles driving worldwide. One of the essential 
functions for this dream is the accurate and robust self-
localization. The most commonly known and adopted method 
is based on the global navigation satellite (GNSS). However, 
this system is not bulletproof, and suffers from multipath effect, 
electromagnetic interference, and signal blockages. Although 
such drawbacks can be partially solved through integration with 
inertial measurement unit (IMU) or wheel encoder, it still 
suffers from a significant drift in long-during operation. 
Therefore, intelligent vehicles nowadays are equipped with 
multiple sensors, such as radars, cameras, or light detection and 
ranging (LiDAR).  

In the last decade, the visual or LiDAR based pose estimation 
systems have achieved remarkable results in different datasets 
[1], [2]. However, such frameworks may not operate stably 
under all conditions and application domains. The visual 
cameras are widely used for vehicle localization due to its low 
expenditure [3]–[5]. However, this sensor is limited to poorly 
illuminated conditions. To localize in such environments, 
LiDAR-based odometry [2], [6] is a promising solution due to 
its high-fidelity range measurements. In spite of this, these 
approaches are prone to fail in structure-less and repetitive 
environments such as planar long tunnels. Besides, the adverse 
weather conditions (fog, smoke, or dust) may hinder reliable 
LiDAR detections. Since these sensors are environment 
dependent, it is challenging to achieve robust performance if 
they are used as primary sensors to build a localization system. 
Therefore, a multi-modal fusion framework should be explored, 
which exploits the individual strengths of each sensor, and 
compensates for the drawbacks of the other. 

In most cases, scholarly works focus on achieving better pose 
estimation results through designing a complex multi-sensor 
fusion framework. Such integration can be generally classified 
into either loosely coupled or tightly coupled methods. Loosely 
coupled odometry [7], [8] have been preferred more because of 
their simplicity and extendibility, where the pose estimations 
from individual measurements are fused separately. In contrast, 
tightly coupled frameworks [9], [10] directly fuse isolated 
sensor measurements in a joint manner and are usually difficult 
to extend to other sensors. Although having advantageous in 
accuracy, they may be vulnerable to cope with potential sensor 
failures since no redundancy method is considered. Besides, no 
recovery process is included in most schemes. On the other 
hand, loosely coupled methods distribute these risks into 
several subsystems and should have higher robustness.  

This tricky conundrum about accuracy and robustness have 
been addressed by few studies in the literature [11]–[13]. The 
redundancy is realized with parallel running odometry methods, 
and the final state estimation can be selected from the average 
of parallel odometry [11] or the best results from sanity check 
[13]. However, these solutions are only designed for robots or 
typical datasets, the challenges regarding mass-produced IVs 
are not taken into consideration. 

Limited computation resource: most multi-modal schemes 
are evaluated on laptops or high-performance workstations (e.g. 
Reinke et al. [13] used a 16 cores @ 3.6 GHz, i9-9900k CPU). 
In comparison, most IVs are equipped with automotive grade 
platforms (eg. 4 cores up to 2.1 GHz Qualcomm Snapdragon 
SA820A). Since the CPU is also in charge of complexed tasks 
such as controller area network (CAN) bus input/output, human 
interaction and display. The remained computation resource is 
highly limited for state estimation. Therefore, the commonly 
used iterative computation [2] is not suitable here. 

A great variety of sensor setups: many multi-modal systems 
are designed for typical sensors, and difficult to extend to other 
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setups. Besides, as an indispensable sensor for most works, 
IMU is not included in many IVs. They utilize the wheel speed 
information from anti-lock braking system (ABS) and yaw rate 
data from electronic stability program (ESP) instead. In this 
phase, most widely applied algorithms cannot work for IVs. 

Addressing the aforementioned problems, we seek to design 
a lightweight odometry framework for general IVs in this paper, 
that is, the IVs for research purpose and for mass-production. 
Instead of sticking to a specific method, our approach is built 
with redundancy, where various lightweight algorithms run in 
parallel and the most promising pose estimation is selected. Our 
proposed system presents the following contributions: 

1) We propose to use redundant odometry to provide better 
pose estimation results instead of a single estimator. This 
scheme is lightweight and can reach real-time performance 
for IVs with limited computation resource. Besides, the 
robustness also benefits from the redundancy design. 

2) We integrate the wheel odometer information to the iterated 
Kalman filter-based LiDAR-inertial system when IMU is 
available. On the other hand, the vehicle dynamics model is 
introduced when IMU is not available. 

3) We add the self-recovery characteristic to both the LiDAR-
inertial and Visual-inertial system. Unlike most of the 
algorithms which may fail entirely against temporary errors, 
our redundancy design can detect such errors and recover 
the individual systems. 

4) We open source the datasets to benefit the community.  

The rest of the paper is organized as follows: Section II 
illustrates the related works and comparisons. Section III 
presents the system overview along with some preliminary 
works, followed by detailed lightweight and general framework 
in Section IV. Then Section V shows experimental results on 
different platforms as well as some applications. Finally, 
Section VI concludes this paper and demonstrates some future 
research directions. 
 

2.  RELATED WORK 

Vehicle pose estimation is a widely investigated topic in 
previous works. A great diversity of sensors and digital data 
have been utilized in this field, including inertial, wheel encoder 
[14], radars [15], GNSS [16], ultrasonic [17], LiDARs [6], and 
cameras [18]. However, most of them are merely focused on 
multi-modal fusion instead of a robust and redundant system to 
deal with sensor failures. In this section, we briefly review 
works on multi-modal SLAM and redundant odometry. 

2.1 Multi-modal SLAM 
The multi-modal SLAM can be generally classified into either 

loosely coupled or tightly coupled schemes. There are 
numerous works on loosely coupled odometry in the literature 
[2], [19], [20], where the pose estimations from individual 
measurements are fused separately. Since this scheme only 
performs frame-to-frame motion estimation, the global 
consistency is not guaranteed. In many of the recent works [1], 
[14], [21], [22], tight integration of multi-modal sensing 

capabilities are explored for both accuracy and robustness 
improvement. The tight coupled manner can be classified into 
filter based or optimization-based frameworks. The filter based 
approaches employs a Kalman filter for joint state estimation, 
such as the multi-state constraint Kalman filter (MSCKF) 
applied in [26]. Although operating with high efficiency, the 
filter-based methods are usually less extendible to other sensors 
and may be vulnerable to potential sensor failures. Since the 
iterated Kalman filter based LiDAR-inertial scheme [21] only 
includes LiDAR and IMU for state estimation, we hereby 
extend this scheme with vehicle wheel odometer and vehicle 
dynamics for IV application. On the contrary, the optimization 
based approaches [10], [25] have proved advantageous for their 
expandability, where each sensor input can be viewed as a 
factor in the graph. Therefore, we construct a factor graph at the 
back-end of [21], where extra global measurements, such as the 
GNSS, can be added conveniently. 

The aforementioned algorithms all have a single estimator 
design. Although achieving promising accuracy, they are prone 
to fail against either single sensor failures or estimation failures. 
The sensor failures include transitory loss of data stream, large 
outliers, or environment related problems (low illumination). 
The common estimation errors comprise of non-convergence, 
degeneracy, and high dynamic scenes [26]. Besides, most of 
them cannot recover from the temporary failures. Once certain 
failures are met, e.g., LiDAR degeneracy, they will fail entirely 
and generate meaningless pose estimation results. In this paper, 
we seek to add the self-recovery characteristic to the multi-
modal SLAM algorithms.  

2.2 Redundant Odometry 
Previous works show that the multi vehicle design can cope 
with the single failures and improve the system robustness [27], 
[28]. Xu et al. [29] show that the cooperation of redundant 
multiple autonomous underwater vehicles can detect abnormal 
acoustic distance and retain the accurate information, ensuring 
a stable operation of the entire system. Besides, they also point 
out that the redundant system can estimate unknown parameters 
and reduce the influence of outliers to the estimation results 
[30]. Shan et al. [10] propose to use a health monitor system for 
each odometry, and they can easily switch to each other. The 
consequence of redundant odometry has also been emphasized 
by the Mars Exploration Rovers (MER) [31]. The MER system 
has successfully exhibited a switching behavior between the 
wheel, inertial, and visual odometry. The former two can 
compensate for the visual tracking failures, whereas the latter 
one can detect the unforeseen slips of the former two. 

Our work follows the idea of [12] and [13]. They all share a 
same redundancy design, where various odometries are running 
in parallel, with the best estimation used as the output of the 
system. Specifically, the former work is targeted for the 
unmanned aerospace vehicles (UAVs), and the heterogenous 
redundant odometry evaluates a stack of estimation algorithms 
through resiliency logic. It switches to an alternative method 
when the main estimation engine fails, along waiting for the 
main engine re-initialization. With a wide adaptability 
principle, this framework can be easily extended to a great 
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Fig. 1. The proposed system architecture.

variety of sensors, such as sonar, radar, LiDAR, camera, IMU 
and thermal. Since it is typically designed for UAVs, the 
vehicle dynamics and kinematics are not considered. On the 
contrary, the latter work focuses on the IV application, where 
multiple visual-LiDAR odometry run in parallel. The vehicle 
dynamics and kinematics is utilized to filter out failures, and a 
point cloud Chamfer distance-based criterion is used to find the 
most promising result for each timestamp. This scheme requires 
at least one LiDAR on the IV for computing weighting metric, 
which is not realistic for many mass-produced vehicles. Besides, 
it requires a high-performance laptop (i9-9900k CPU) for real-
time operation, lacking efficiency for general IVs. 

In this paper, we integrate the advantages of the above two 
schemes, with a general sensor adaptivity to both research 
purpose and mass-produced IVs. Besides, the parallel odometry 
all have a lightweight design for the resource limited IVs. 

3. PRELIMINARY  

The system diagram is visualized in Fig. 1. Since we seek to 
develop a generalized odometry scheme for IVs, the input 
information includes heterogeneous sensors and the high-
definition (HD) maps. Such measurements have a diversity of 
physical phenomena to cope with the various possible failure cases. 
These inputs first undergo a hardware-level data test, including 
data stream existence, frequency, and individual verification. They 
are sent to parallel sub modules for individual pose estimation. The 
software-level test is then performed for separate results to remove 
clearly wrong results. Finally, the remaining odometry are 
evaluated with the best chosen as the output. 

We first define the coordinates and notations used throughout 
this paper in Fig. 2 and TABLE I. In addition, we denote (∙)LB 
as the transformation from LiDAR frame to IMU frame. 

We employ two mass produced IVs and two research purpose 
IVs throughout this paper. The general configurations of the IV 
(weight, CAD design model) are provided by the manufacturer. 
We use a calibration room to re-compute all the sensor extrinsic 
and the camera intrinsic. The GNSS antenna is treated as the 
primary sensor, which is set as the reference for all the sensor  

extrinsic. When GNSS is available at vehicle start point, all 
the results will be transferred into the global frame configured 
by GNSS. Once GNSS is temporarily unavailable, the pose 
estimation is only performed in the local coordinates, and wait  

 
Fig. 2. Visualization of frame definitions. The red-green-blue color indicates 
the x-y-z coordinates, respectively. The original V frame is mounted at the 
vehicle mass center, and we shift it to the center of the rear axles. The B frame 
shares the same definition of IMU frame. 

TABLE I 
NOTATIONS THROUGHOUT THE PAPER 

Notations Explanations 
Coordinates 

(∙)𝑊𝑊 The global frame used for vehicle navigation. 
(∙)𝑉𝑉 The vehicle frame used for vehicle dynamics and kinematics. 
(∙)𝐵𝐵 The body frame which is also the IMU frame.  
(∙)𝑂𝑂 The odometer frame, which is often expressed in B frame 
(∙)𝐿𝐿 The LiDAR frame, defined by the manufacturer. 
(∙)𝐶𝐶 The camera frame, also defined by different manufacturer. 

Expression 
(∙̂) Noisy measurement or estimation of (∙). 
⊗ Multiplication between two quaternions. 
p The position or translation vector. 

R, q Two forms of rotation expression, 𝐑𝐑 ∈ 𝑆𝑆𝑆𝑆(3) is the rotation 
vector, q represents quaternions. 

p The linear velocity vector. 
𝐱𝐱 The vehicle full state vector. 
Z The full set of measurements. 
𝛈𝛈 The Gaussian noise. 

for the GNSS initialization. We utilize either the network 
protocol or CAN bus to synchronize all the measurements. 

4. MULTI-MODAL FRONT-END AND CANDIDATE 
ODOMETRY SELECTION 

In this section, we employ six odometry methods to exploit 
the redundancy of multiple odometries for improving overall 
robustness and performance.  

 

4.1 Vehicle Kinematics 
The raw accelerometer and gyroscope measurements, 𝐚𝐚� and 

𝛚𝛚� , are given by: 

𝐚𝐚�𝑘𝑘 = 𝐚𝐚𝑘𝑘 + 𝐑𝐑𝑊𝑊
𝐵𝐵𝑘𝑘𝓰𝓰𝑊𝑊 + 𝐛𝐛𝑎𝑎𝑘𝑘 + 𝛈𝛈𝑎𝑎, 

𝛚𝛚�𝑘𝑘 = 𝛚𝛚𝑘𝑘 + 𝐛𝐛𝜔𝜔𝑘𝑘 + 𝛈𝛈𝜔𝜔 , (1) 

W 

L V B 
C 
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where 𝛈𝛈𝑎𝑎 and 𝛈𝛈𝜔𝜔 are the zero-mean white Gaussian noise, with 
𝛈𝛈𝑎𝑎 ∼ 𝒩𝒩(𝟎𝟎,𝝈𝝈𝑎𝑎2) , 𝛈𝛈𝜔𝜔 ∼ 𝒩𝒩(𝟎𝟎,𝝈𝝈𝜔𝜔2 ) . The gravity vector in the 
world frame is denoted as 𝓰𝓰𝑊𝑊 = [0,0,𝑔𝑔]𝑇𝑇. Besides, the model 
of wheel odometer sensor is given by: 

𝒄𝒄𝑂𝑂𝑘𝑘𝐯𝐯�𝑂𝑂 = 𝐯𝐯𝑂𝑂 + 𝛈𝛈𝑠𝑠𝑂𝑂 , (2) 

where 𝒄𝒄𝑂𝑂𝑘𝑘  denotes the scale factor of the odometer modeled as 
random walk, with 𝛈𝛈𝑠𝑠𝑂𝑂 ∼ 𝒩𝒩�𝟎𝟎,𝝈𝝈𝑠𝑠𝑂𝑂

2 �.  
When an IMU is included in the vehicle, the vehicle state 

vector can then be denoted as: 

𝐱𝐱𝑖𝑖 = [𝐪𝐪𝐵𝐵𝑖𝑖
𝑊𝑊 𝐩𝐩𝐵𝐵𝑖𝑖

𝑊𝑊 𝐯𝐯𝐵𝐵𝑖𝑖
𝑊𝑊 𝐛𝐛𝑎𝑎 𝐛𝐛𝑔𝑔 𝒄𝒄𝑂𝑂]𝑇𝑇 (3) 

where 𝐩𝐩𝐵𝐵𝑖𝑖
𝑊𝑊 ∈ ℝ𝟑𝟑 , 𝐯𝐯𝐵𝐵𝑖𝑖

𝑊𝑊 ∈ ℝ𝟑𝟑 , and 𝐪𝐪𝐵𝐵𝑖𝑖
𝑊𝑊 ∈ 𝑆𝑆𝑆𝑆(3) are the position, 

linear velocity, and orientation vector, respectively. 𝐛𝐛𝑎𝑎 and 𝐛𝐛𝑔𝑔 
are the IMU gyroscope and accelerometer biases. Finally, 𝒄𝒄𝑂𝑂 is 
the scale factor of the odometer. According to the preintegration 
principle [1] and our previous work [6], the IMU and odometer 
increment between frame k and k+1 as: 

𝜶𝜶𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘 = � 𝐑𝐑𝐵𝐵𝑡𝑡

𝐵𝐵𝑘𝑘�𝐚𝐚�𝑡𝑡 − 𝐛𝐛𝑎𝑎𝑡𝑡 − 𝛈𝛈𝑎𝑎�𝑑𝑑𝑡𝑡2
𝑘𝑘+1

𝑡𝑡=𝑘𝑘

, 

𝜷𝜷𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘 = � 𝐑𝐑𝐵𝐵𝑡𝑡

𝐵𝐵𝑘𝑘�𝐚𝐚�𝑡𝑡 − 𝐛𝐛𝑎𝑎𝑡𝑡 − 𝛈𝛈𝑎𝑎�𝑑𝑑𝑑𝑑,
𝑘𝑘+1

𝑡𝑡=𝑘𝑘

 

𝜸𝜸𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘 = �

1
2
Ω�𝛚𝛚�𝑡𝑡 − 𝐛𝐛𝜔𝜔𝑡𝑡 − 𝛈𝛈𝜔𝜔�𝜸𝜸𝐵𝐵𝑡𝑡

𝐵𝐵𝑘𝑘𝑑𝑑𝑑𝑑,
𝑘𝑘+1

𝑡𝑡=𝑘𝑘

 

𝜶𝜶𝑂𝑂𝑘𝑘+1
𝑂𝑂𝑘𝑘 = � 𝐑𝐑𝑂𝑂𝑡𝑡

𝑂𝑂𝑘𝑘�𝒄𝒄𝑂𝑂𝑘𝑘𝐯𝐯�𝑂𝑂 − 𝛈𝛈𝑠𝑠𝑂𝑂�𝑑𝑑𝑑𝑑
𝑘𝑘+1

𝑡𝑡=𝑘𝑘

, (4) 

where, 

Ω(𝔀𝔀) = �−[𝔀𝔀]𝑋𝑋 𝔀𝔀
−𝔀𝔀𝑇𝑇 0

� ,

[𝔀𝔀]𝑋𝑋 = �
0 −𝔀𝔀𝑧𝑧 𝔀𝔀𝑦𝑦
𝔀𝔀𝑧𝑧 0 −𝔀𝔀𝑥𝑥
−𝔀𝔀𝑦𝑦 𝔀𝔀𝑥𝑥 0

� . (5)
 

Using the calibration parameter, we can also transform 𝜶𝜶𝑂𝑂𝑘𝑘+1
𝑂𝑂𝑘𝑘  

into IMU frame 𝝓𝝓𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘  with: 

𝝓𝝓𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘 = � 𝐑𝐑𝐵𝐵𝑡𝑡

𝐵𝐵𝑘𝑘𝐑𝐑𝑂𝑂𝑡𝑡
𝐵𝐵𝑡𝑡 �𝒄𝒄𝑂𝑂𝑘𝑘𝐯𝐯�𝑂𝑂 − 𝛈𝛈𝑠𝑠𝑂𝑂�𝑑𝑑𝑑𝑑

𝑘𝑘+1

𝑡𝑡=𝑘𝑘

(6) 

Thus, the discrete form of preintegrated IMU/odometer 
measurements �𝜶𝜶�𝐵𝐵𝑖𝑖+1

𝐵𝐵𝑘𝑘 ,𝜷𝜷�𝐵𝐵𝑖𝑖+1
𝐵𝐵𝑘𝑘 ,𝜸𝜸�𝐵𝐵𝑖𝑖+1

𝐵𝐵𝑘𝑘 ,𝝓𝝓�𝐵𝐵𝑖𝑖+1
𝐵𝐵𝑘𝑘 � can be given by: 

𝜶𝜶�𝐵𝐵𝑖𝑖+1
𝐵𝐵𝑘𝑘 = 𝜶𝜶�𝐵𝐵𝑖𝑖

𝐵𝐵𝑘𝑘 + 𝜷𝜷�𝐵𝐵𝑖𝑖
𝐵𝐵𝑘𝑘𝛿𝛿𝑡𝑡 +

1
2
𝑹𝑹�𝜸𝜸�𝐵𝐵𝑖𝑖

𝐵𝐵𝑘𝑘� �𝐚𝐚�𝑖𝑖 − 𝐛̂𝐛𝑎𝑎𝑖𝑖�𝛿𝛿𝑡𝑡
2, 

𝜷𝜷�𝐵𝐵𝑖𝑖+1
𝐵𝐵𝑘𝑘 = 𝜷𝜷�𝐵𝐵𝑖𝑖

𝐵𝐵𝑘𝑘 + 𝑹𝑹�𝜸𝜸�𝐵𝐵𝑖𝑖
𝐵𝐵𝑘𝑘� �𝐚𝐚�𝑖𝑖 − 𝐛̂𝐛𝑎𝑎𝑖𝑖�𝛿𝛿𝛿𝛿, 

𝜸𝜸�𝐵𝐵𝑖𝑖+1
𝐵𝐵𝑘𝑘 = 𝜸𝜸�𝐵𝐵𝑖𝑖

𝐵𝐵𝑘𝑘 ⊗ �
1

1
2
�𝛚𝛚�𝑖𝑖 − 𝐛̂𝐛𝜔𝜔𝑖𝑖�𝛿𝛿𝛿𝛿

�, 

𝝓𝝓�𝐵𝐵𝑖𝑖+1
𝐵𝐵𝑘𝑘 = 𝝓𝝓�𝐵𝐵𝑖𝑖

𝐵𝐵𝑘𝑘 + 𝑹𝑹�𝜸𝜸�𝐵𝐵𝑖𝑖
𝐵𝐵𝑘𝑘� 𝑹𝑹�𝑂𝑂𝑖𝑖

𝐵𝐵𝑖𝑖𝒄𝒄�𝑂𝑂𝑖𝑖𝐯𝐯�𝑂𝑂𝑖𝑖𝛿𝛿𝛿𝛿, (7) 

Finally, the residual of preintegrated IMU/odometer 
measurements can be expressed as: 

𝒓𝒓ℐ �𝒁𝒁�𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘 , 𝐱𝐱�

= �𝛿𝛿𝜶𝜶𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘  𝛿𝛿𝜷𝜷𝐵𝐵𝑘𝑘+1

𝐵𝐵𝑘𝑘  𝛿𝛿𝜽𝜽𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘  𝛿𝛿𝐛𝐛𝑎𝑎  𝛿𝛿𝐛𝐛𝑔𝑔 𝛿𝛿𝝓𝝓𝐵𝐵𝑘𝑘+1

𝐵𝐵𝑘𝑘  𝛿𝛿𝒄𝒄𝑂𝑂�
𝑇𝑇
 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐑𝐑𝑊𝑊

𝐵𝐵𝑘𝑘 �𝐩𝐩𝐵𝐵𝑘𝑘+1
𝑊𝑊 − 𝐩𝐩𝐵𝐵𝑘𝑘

𝑊𝑊 +
1
2
𝓰𝓰𝑊𝑊∆𝑡𝑡𝑘𝑘2 −  𝐯𝐯𝐵𝐵𝑘𝑘

𝑊𝑊∆𝑡𝑡𝑘𝑘� − 𝜶𝜶�𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘

𝐑𝐑𝑊𝑊
𝐵𝐵𝑘𝑘� 𝐯𝐯𝐵𝐵𝑘𝑘+1

𝑊𝑊 + 𝓰𝓰𝑊𝑊∆𝑡𝑡𝑘𝑘 −  𝐯𝐯𝐵𝐵𝑘𝑘
𝑊𝑊 � − 𝜷𝜷�𝐵𝐵𝑘𝑘+1

𝐵𝐵𝑘𝑘

2 ��𝐪𝐪𝐵𝐵𝑘𝑘
𝑊𝑊 �−1 ⊗ �𝐪𝐪𝐵𝐵𝑘𝑘+1

𝑊𝑊 � ⊗ �𝜸𝜸�𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘 �

−1
�
2:4

𝐛𝐛𝑎𝑎𝑘𝑘+1  −  𝐛𝐛𝑎𝑎𝑘𝑘  
𝐛𝐛𝑔𝑔𝑘𝑘+1  −  𝐛𝐛𝑔𝑔𝑘𝑘  

𝐑𝐑𝑊𝑊
𝐵𝐵𝑘𝑘 �𝐩𝐩𝐵𝐵𝑘𝑘+1

𝑊𝑊 − 𝐩𝐩𝐵𝐵𝑘𝑘
𝑊𝑊 + 𝐑𝐑𝐵𝐵𝑘𝑘+1

𝑊𝑊 𝐩𝐩𝑂𝑂𝑘𝑘+1
𝐵𝐵𝑘𝑘+1� − 𝝓𝝓�𝐵𝐵𝑘𝑘+1

𝐵𝐵𝑘𝑘

𝒄𝒄𝑂𝑂𝑘𝑘+1  −  𝒄𝒄𝑂𝑂𝑘𝑘 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(8) 

We use 𝛿𝛿𝜽𝜽𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘  to represent the error state of a quaternion, and 

[∙]2:4 to take out the last three elements from a quaternion. 
We use the factor graph [32] to solve this problem, where the 

optimal vehicle state estimation is a least square minimization 
problem using vehicle kinematics and the GNSS positioning 
from Section IV-E. Besides, we establish sliding windows to 
ensure the real-time performance of the optimization scheme. 
For a sliding window of 𝑁𝑁𝐾𝐾 keyframes, the optimal states are 
obtained through minimizing:  

min
𝝌𝝌

{�𝒓𝒓𝓅𝓅�
2 + ��𝒓𝒓ℐ𝑖𝑖�

2 + �𝒓𝒓𝒢𝒢𝑖𝑖}

𝑁𝑁𝒢𝒢𝐾𝐾

𝑖𝑖=1

𝑁𝑁ℐ𝐾𝐾

𝑖𝑖=1

(9) 

where 𝒓𝒓𝓅𝓅 is the prior factor marginalized by Schur-complement 
[1], 𝒓𝒓ℐ𝑖𝑖  is the residual of vehicle kinematics preintegration 
result, and the residual of global positioning system is 𝒓𝒓𝒢𝒢𝑖𝑖 . 𝑁𝑁ℐ𝐾𝐾 
and 𝑁𝑁𝒢𝒢𝐾𝐾  denotes the number of preintegration and GNSS 
factors, respectively. 

 
Fig. 3. The 2-DoF vehicle dynamics model. 𝑙𝑙𝑓𝑓 and 𝑙𝑙𝑟𝑟 are the distances from the 
center of mass to the vehicle front and rear axles. 𝛼𝛼𝑓𝑓 and 𝛼𝛼𝑟𝑟 indicate the front 
and rear wheel tire slip angles. 𝛼𝛼 denote the front wheel angle and 𝛽𝛽 is the slip 
angle. v is the vehicle velocity at the center of mass, with 𝑣𝑣𝑥𝑥 and 𝑣𝑣𝑓𝑓 representing 
the lateral and longitudinal part. ω𝑟𝑟 denotes the vehicle yaw velocity. Finally, 
𝐹𝐹𝑦𝑦𝑦𝑦 and 𝐹𝐹𝑦𝑦𝑦𝑦 describes the lateral force on the front and rear axles. 

4.2 Vehicle Dynamics 
The kinematics model assumes that no tire slip exists between 

wheels and ground which is only reasonable for low-speed and 

v 𝑣𝑣𝑦𝑦 
𝑣𝑣𝑥𝑥 

𝑙𝑙𝑟𝑟 
 

𝑙𝑙𝑓𝑓 

𝛼𝛼𝑟𝑟 
𝛼𝛼𝑓𝑓 
𝛼𝛼 

𝛽𝛽 

𝜔𝜔𝑟𝑟 

𝐹𝐹𝑦𝑦𝑦𝑦 
 

𝐹𝐹𝑦𝑦𝑦𝑦 
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small steering motion. In comparison, this assumption breaks 
down for higher speeds or with sharp turnings. Therefore, if no 
IMU is included, the dynamic vehicle model should be taken 
into consideration in this situation.  

The vehicle dynamics model can be simplified as a two 
degree-of-freedom (2-DoF) bicycle model [33], describing the 
lateral and yaw motions as visualized in Fig. 3. Summing the 
forces and moments about the vehicle center of mass, the lateral 
dynamics of the bicycle model can be expressed as [34]:  

�𝐹𝐹𝑦𝑦 = 𝐹𝐹𝑦𝑦𝑦𝑦 + 𝐹𝐹𝑦𝑦𝑦𝑦 = 𝑚𝑚�𝑣̇𝑣𝑦𝑦 + 𝑣𝑣𝑥𝑥𝜔𝜔𝑟𝑟�, 

�𝑀𝑀𝑧𝑧 = 𝑙𝑙𝑓𝑓𝐹𝐹𝑦𝑦𝑦𝑦 − 𝑙𝑙𝑟𝑟𝐹𝐹𝑦𝑦𝑦𝑦 = 𝐼𝐼𝑧𝑧𝜔̇𝜔𝑟𝑟 , (10) 

where m describes the vehicle mass and 𝐼𝐼𝑧𝑧 is the yaw moment 
of inertia. Assume that the lateral force acting on tire is 
proportional to the tire slip angle, we can get the basic equation 
of motion for the bicycle model as: 

�𝐶𝐶𝑓𝑓 + 𝐶𝐶𝑟𝑟�𝛽𝛽 +
1
𝑣𝑣𝑥𝑥
�𝑙𝑙𝑓𝑓𝐶𝐶𝑓𝑓 − 𝑙𝑙𝑟𝑟𝐶𝐶𝑟𝑟�𝜔𝜔𝑟𝑟 − 𝐶𝐶𝑓𝑓𝛼𝛼 = 𝑚𝑚�𝑣̇𝑣𝑦𝑦 + 𝑣𝑣𝑥𝑥𝜔𝜔𝑟𝑟�, 

�𝑙𝑙𝑓𝑓𝐶𝐶𝑓𝑓 − 𝑙𝑙𝑟𝑟𝐶𝐶𝑟𝑟�𝛽𝛽 +
1
𝑣𝑣𝑥𝑥
�𝑙𝑙𝑓𝑓

2𝐶𝐶𝑓𝑓 + 𝑙𝑙𝑟𝑟
2𝐶𝐶𝑟𝑟�𝜔𝜔𝑟𝑟 − 𝑙𝑙𝑓𝑓𝐶𝐶𝑓𝑓𝛼𝛼 = 𝐼𝐼𝑧𝑧𝜔̇𝜔𝑟𝑟 , (11) 

where 𝐶𝐶𝑓𝑓 and 𝐶𝐶𝑟𝑟 are the lateral stiffness of front and rear wheels. 
When the vehicle is mainly moving straight, 𝑣̇𝑣𝑦𝑦 and 𝜔̇𝜔𝑟𝑟 can be 
assumed to be zero, then for a given timestamp k, 𝛽𝛽 and 𝜔𝜔𝑟𝑟 can 
be computed through: 

𝛽𝛽𝑘𝑘 =
1 + 𝑚𝑚

2𝑙𝑙
𝑙𝑙𝑓𝑓
𝑙𝑙𝑟𝑟𝐶𝐶𝑟𝑟

𝑣𝑣�𝑘𝑘
2

1 − 𝐶𝐶𝑣𝑣�𝑘𝑘
2

𝑙𝑙𝑟𝑟
𝑙𝑙
𝛼𝛼𝑘𝑘, 

𝜔𝜔�𝑘𝑘 =
1

1 − 𝐶𝐶𝑣𝑣�𝑘𝑘
2
𝑣𝑣�𝑘𝑘
𝑙𝑙
𝛼𝛼𝑘𝑘, (12) 

with: 

𝐶𝐶 =
𝑚𝑚�𝑙𝑙𝑓𝑓𝐶𝐶𝑓𝑓 − 𝑙𝑙𝑟𝑟𝐶𝐶𝑟𝑟�

𝑙𝑙2𝐶𝐶𝑓𝑓𝐶𝐶𝑟𝑟
, 𝑙𝑙 = 𝑙𝑙𝑓𝑓 + 𝑙𝑙𝑟𝑟 (13) 

Here 𝑣𝑣�𝑘𝑘  and 𝛼𝛼𝑘𝑘  are the linear velocity measurements from 
vehicle chassis and steering angle transmitted to front wheel. 
Then the measurements of vehicle dynamics model 𝒗𝒗�𝑘𝑘 and 𝝎𝝎�𝑘𝑘 
are expressed as: 

𝒗𝒗�𝑘𝑘 = [𝑣𝑣�𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑘𝑘 𝑣𝑣�𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑘𝑘 0]T, 
𝝎𝝎�𝑘𝑘 = [0 0 𝜔𝜔�𝑘𝑘]T. (14) 

Then the pre-integrated kinematics within the vehicle frame can 
be expressed as: 

𝜶𝜶𝑉𝑉𝑘𝑘+1
𝑉𝑉𝑘𝑘 = � 𝐑𝐑𝑉𝑉𝑡𝑡

𝑉𝑉𝑘𝑘(𝒗𝒗�𝑡𝑡 − 𝛈𝛈𝑣𝑣)𝑑𝑑𝑑𝑑,
𝑘𝑘+1

𝑡𝑡=𝑘𝑘

 

𝜸𝜸𝑉𝑉𝑘𝑘+1
𝑉𝑉𝑘𝑘 = �

1
2
Ω(𝛚𝛚�𝑡𝑡 − 𝛈𝛈𝜔𝜔)𝜸𝜸𝑉𝑉𝑡𝑡

𝑉𝑉𝑘𝑘𝑑𝑑𝑑𝑑,
𝑘𝑘+1

𝑡𝑡=𝑘𝑘

(15) 

and the related residual is: 

𝒓𝒓𝒟𝒟 �𝒁𝒁�𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘 , 𝐱𝐱� = [𝛿𝛿𝜶𝜶𝐵𝐵𝑘𝑘+1

𝐵𝐵𝑘𝑘  𝛿𝛿𝜽𝜽𝐵𝐵𝑘𝑘+1
𝐵𝐵𝑘𝑘 ]T 

= �
𝐑𝐑𝑊𝑊
𝐵𝐵𝑘𝑘�𝐩𝐩𝐵𝐵𝑘𝑘+1

𝑊𝑊 −𝐩𝐩𝐵𝐵𝑘𝑘
𝑊𝑊 �−𝐩𝐩𝑉𝑉𝐵𝐵 + 𝐑𝐑𝑊𝑊

𝐵𝐵𝑘𝑘𝐑𝐑𝐵𝐵𝑘𝑘+1
𝑊𝑊 𝐩𝐩𝑉𝑉𝐵𝐵 − 𝜶𝜶�𝐵𝐵𝑘𝑘+1

𝐵𝐵𝑘𝑘

2 ��𝐪𝐪𝑉𝑉𝑘𝑘
𝑊𝑊 �−1 ⊗ �𝐪𝐪𝑉𝑉𝑘𝑘+1

𝑊𝑊 � ⊗ �𝜸𝜸�𝑉𝑉𝑘𝑘+1
𝑉𝑉𝑘𝑘 �

−1
�
2:4

� . (16) 

The vehicle dynamics and GNSS information are also jointly 
optimized atop a factor graph, with:  

min
𝝌𝝌

{�𝒓𝒓𝓅𝓅�
2 + ��𝒓𝒓𝒟𝒟𝑖𝑖�

2 + �𝒓𝒓𝒢𝒢𝑖𝑖},

𝑁𝑁𝒢𝒢𝐾𝐾

𝑖𝑖=1

𝑁𝑁𝒟𝒟𝐾𝐾

𝑖𝑖=1

(17) 

where 𝒓𝒓𝒟𝒟𝑖𝑖  is the residual of vehicle dynamics preintegration 
result. Note that for IVs without an IMU, only the vehicle 
dynamics is utilized, whereas both states are optimized when 
IMU is available.  
 

4.3 LiDAR-inertial Odometry 
Nowadays, many IVs are equipped with LiDARs, and some 

of them even have a multiple-LiDAR setup. Considering the 
diversity of both LiDAR brands and placements on IVs, we 
seek to design a general LiDAR-inertial odometry. 

The preprocessing process include outlier and distortion 
removal, as well as multiple scan synchronization. The noisy 
and outlier points are first removed with statistical outlier 
removal filter. Then we apply the vehicle dynamics increment 
model to de-skew the point cloud with linear interpolation. For 
the multi-LiDAR setup as visualized in Fig. 4, we leverage the 
procedure in our previous work [6], [35] to synchronize them 
in the algorithm.  

We choose an efficient filter-based method Fast-lio2 [21] as 
our backbone. When the IMU is included, we also add wheel 
odometer information into the iterated Kalman filter. Following 
the ⊞ definition in [21], the continuous kinematic model at the 
IMU sampling period ∆𝑡𝑡 can be discretized as:  

𝐱𝐱𝑖𝑖+1 = 𝐱𝐱𝑖𝑖 ⊞ �∆𝑡𝑡𝐟𝐟(𝐱𝐱𝑖𝑖,𝐮𝐮𝑖𝑖 ,𝐰𝐰𝑖𝑖)� (18) 

where the state 𝐱𝐱𝑖𝑖, input 𝐮𝐮𝑖𝑖, process noise 𝐰𝐰𝑖𝑖 and the function 
𝐟𝐟 are defined as: 

𝐱𝐱𝑖𝑖 = 
�𝐪𝐪𝐵𝐵𝑖𝑖

𝑊𝑊 𝐩𝐩𝐵𝐵𝑖𝑖
𝑊𝑊 𝐯𝐯𝐵𝐵𝑖𝑖

𝑊𝑊 𝐛𝐛𝑔𝑔 𝐛𝐛𝑎𝑎 𝓰𝓰𝑊𝑊 𝐪𝐪𝐿𝐿𝑖𝑖
𝐵𝐵 𝐩𝐩𝐿𝐿𝑖𝑖

𝐵𝐵 𝐩𝐩𝑂𝑂𝑖𝑖
𝐵𝐵 𝒄𝒄𝑂𝑂�

𝑇𝑇
,  

𝐮𝐮𝑖𝑖 = [𝛚𝛚�𝑖𝑖 𝐚𝐚�𝑖𝑖 𝐯𝐯�𝑂𝑂𝑖𝑖]𝑇𝑇 , 
𝐰𝐰𝑖𝑖 = [𝛈𝛈𝜔𝜔𝑖𝑖 𝛈𝛈𝑎𝑎𝑖𝑖 𝛈𝛈𝑠𝑠𝑂𝑂𝑖𝑖 𝐛𝐛𝜔𝜔𝑖𝑖 𝐛𝐛𝑎𝑎𝑖𝑖]𝑇𝑇 , 

𝐟𝐟(𝐱𝐱,𝐮𝐮,𝐰𝐰) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝛚𝛚� − 𝐛𝐛𝜔𝜔 − 𝛈𝛈𝜔𝜔

𝐯𝐯𝐵𝐵𝑊𝑊 +
1
2

(𝐑𝐑𝐵𝐵
𝑊𝑊(𝐚𝐚� − 𝐛𝐛𝑎𝑎 − 𝛈𝛈𝑎𝑎) + 𝓰𝓰𝑊𝑊)∆𝑡𝑡

𝐑𝐑𝐵𝐵
𝑊𝑊(𝐚𝐚� − 𝐛𝐛𝑎𝑎 − 𝛈𝛈𝑎𝑎) + 𝓰𝓰𝑊𝑊

𝐛𝐛𝜔𝜔
𝐛𝐛𝑎𝑎
𝟎𝟎3×1
𝟎𝟎3×1
𝟎𝟎3×1

𝐑𝐑𝑂𝑂
𝐵𝐵�𝒄𝒄𝑂𝑂𝑘𝑘𝐯𝐯�𝑂𝑂 − 𝛈𝛈𝑠𝑠𝑂𝑂�

𝒄𝒄𝑂𝑂 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.（19） 

We also implement the measurement model defined in [21], 
and the forward propagation is performed upon received IMU 
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input. Based on the ⊟  operator in [22] The covariance is 
propagated using the error state dynamic model as: 

𝐱𝐱�𝑖𝑖+1 = 𝐱𝐱𝑖𝑖+1 ⊟ 𝐱𝐱�𝑖𝑖+1 

= 𝐅𝐅𝐱𝐱�𝐱𝐱�𝑖𝑖 + 𝐅𝐅𝐰𝐰𝐰𝐰𝑖𝑖 . (20) 

Here the term 𝐱𝐱�𝑖𝑖+1  expresses the error in the estimation of a 
quantity, such that, 𝐱𝐱�𝑖𝑖+1 = 𝐱𝐱𝑖𝑖+1 − 𝐱𝐱�𝑖𝑖+1 .The matrix 𝐅𝐅𝐱𝐱�  and 𝐅𝐅𝐰𝐰 
is computed following (21). The Exp(r) denotes the exponential 
map in [36] and 𝐀𝐀(𝐮𝐮)−1 follows the definition in [37]: 

Exp(𝐫𝐫) = 𝐈𝐈 +
𝐫𝐫
‖𝐫𝐫‖

sin(‖𝐫𝐫‖) +
𝐫𝐫2

‖𝐫𝐫‖2
, 

𝐀𝐀(𝐮𝐮)−1 = 𝐈𝐈 −
1
2
⌊𝐮𝐮⌋∧ + �1−∝ (‖𝐮𝐮‖)�

⌊𝐮𝐮⌋∧2

‖𝐮𝐮‖2
, 

∝ (𝑢𝑢) =
𝑢𝑢
2

cos(𝑢𝑢 2⁄ )
sin(𝑢𝑢 2⁄ ) . (22) 

The notation ⌊𝐮𝐮⌋∧  indicates the skew-symmetric matrix of a 
vector 𝐮𝐮 ∈ ℝ𝟑𝟑 that maps the cross product operation. Then the 
propagated covariance 𝐏𝐏�𝑖𝑖 can be calculated following: 

𝐏𝐏�𝑖𝑖+1 = 𝐅𝐅𝐱𝐱�𝐏𝐏�𝑖𝑖𝐅𝐅𝐱𝐱�𝑇𝑇 + 𝐅𝐅𝐰𝐰𝐐𝐐𝑖𝑖𝐅𝐅𝐰𝐰𝑇𝑇;𝐏𝐏�0 = 𝐏𝐏�𝑘𝑘−1, (23) 

where 𝐐𝐐𝑖𝑖 is the covariance of the noise 𝐰𝐰𝑖𝑖. Note that (24) is an 
iterative process, and the residual 𝐳𝐳𝑖𝑖𝜅𝜅  at the 𝜅𝜅 − th  iterate 
update is defined following [21] as: 
 

 
(a)                                                           (b) 

Fig. 4. Examples of some LiDAR setups on IV. (a) is a single scan from our 
four-LiDAR setup on HQ-1 IV, the green and cyan indicate two front view 
LiDARs, the orange and purple denote two side blind spot LiDAR. (b) is a scan 
from our 300-channel LiDAR setup on HQ-2 IV. 

𝐳𝐳𝑖𝑖𝜅𝜅 = 𝐮𝐮𝑖𝑖𝑇𝑇�𝐓𝐓�𝐵𝐵𝑖𝑖
𝑊𝑊𝜅𝜅𝐓𝐓�𝐿𝐿𝑖𝑖

𝑊𝑊𝜅𝜅𝐩𝐩𝐿𝐿𝑖𝑖 − 𝐪𝐪𝑖𝑖𝑊𝑊�, (24) 

where 𝐩𝐩𝐿𝐿𝑖𝑖  is the measured LiDAR point in its own coordinate, 
and 𝐪𝐪𝑖𝑖𝑊𝑊  is the centroid of the fitted local small plane patch 
defined in [21]. Then (20) can be computed as: 

𝐱𝐱𝑘𝑘 ⊟ 𝐱𝐱�𝑘𝑘 = (𝐱𝐱�𝑘𝑘𝜅𝜅 ⊞ 𝐱𝐱�𝑘𝑘𝜅𝜅) ⊟ 𝐱𝐱�𝑘𝑘 = 𝐱𝐱�𝑘𝑘𝜅𝜅 ⊟ 𝐱𝐱�𝑘𝑘 + 𝐉𝐉𝜅𝜅𝐱𝐱�𝑘𝑘𝜅𝜅 (25) 

where 𝐉𝐉𝜅𝜅 is the partial differentiation of (𝐱𝐱�𝑘𝑘𝜅𝜅 ⊞ 𝐱𝐱�𝑘𝑘𝜅𝜅) ⊟ 𝐱𝐱�𝑘𝑘 w.r.t. 
𝐱𝐱�𝑘𝑘𝜅𝜅 evaluated at zero: 

𝐉𝐉𝜅𝜅 = 

⎣
⎢
⎢
⎢
⎡𝐀𝐀�𝐑𝐑�𝐵𝐵𝑘𝑘

𝑊𝑊 𝜅𝜅 ⊟ 𝐑𝐑�𝐵𝐵𝑘𝑘
𝑊𝑊 �

−𝑇𝑇
𝟎𝟎3×15 𝟎𝟎3×3 𝟎𝟎3×9

𝟎𝟎15×3 𝐈𝐈15×15 𝟎𝟎15×3 𝟎𝟎15×9

𝟎𝟎3×3 𝟎𝟎3×15 𝐀𝐀�𝐑𝐑�𝐿𝐿𝑘𝑘
𝐵𝐵 𝜅𝜅 ⊟ 𝐑𝐑�𝐿𝐿𝑘𝑘

𝐵𝐵 �
−𝑇𝑇

𝟎𝟎3×9
𝟎𝟎9×3 𝟎𝟎9×15 𝟎𝟎9×3 𝐈𝐈9×9 ⎦

⎥
⎥
⎥
⎤

( 26) 

here 𝐑𝐑�𝐵𝐵𝑘𝑘
𝑊𝑊 𝜅𝜅 ⊟ 𝐑𝐑�𝐵𝐵𝑘𝑘

𝑊𝑊  and 𝐑𝐑�𝐿𝐿𝑘𝑘
𝐵𝐵 𝜅𝜅 ⊟ 𝐑𝐑�𝐿𝐿𝑘𝑘

𝐵𝐵  is the error states of IMU’s 
attitude and rotational extrinsic.  

Then the combination of (24) and (25) yields the posteriori 
distribution of the state 𝐱𝐱𝑘𝑘, which is a maximum-a-posteriori 
(MAP) problem, and can be solved by the iterated Kalman filter: 

min
𝐱𝐱�𝑘𝑘
𝜅𝜅 �‖𝐱𝐱𝑘𝑘 ⊟ 𝐱𝐱�𝑘𝑘‖𝐏𝐏�𝑘𝑘

2 + � ‖𝐳𝐳𝑖𝑖𝜅𝜅 + 𝓗𝓗𝑖𝑖
𝜅𝜅𝐱𝐱�𝑘𝑘𝜅𝜅‖𝓡𝓡𝑖𝑖

2
𝑚𝑚

𝑖𝑖=1
� (27) 

where 𝓗𝓗𝑖𝑖
𝜅𝜅  is the Jacobin matrix and 𝓡𝓡𝑖𝑖  is the measurement 

noise defined in [22]. The iteration process is solved following 
[18], where for the first iteration, 𝐱𝐱�𝑘𝑘𝜅𝜅 = 𝐱𝐱�𝑘𝑘 and 𝐉𝐉𝜅𝜅 = 𝐈𝐈. We also 
use the ikd-tree [38] for efficient point cloud organization. 

Similarly, when the IMU is not available for some IVs, the 
system is changed to: 

𝐱𝐱𝑖𝑖 = �𝐪𝐪𝐵𝐵𝑖𝑖
𝑊𝑊 𝐩𝐩𝐵𝐵𝑖𝑖

𝑊𝑊 𝐯𝐯𝐵𝐵𝑖𝑖
𝑊𝑊 𝐪𝐪𝐿𝐿𝑖𝑖

𝐵𝐵 𝐩𝐩𝐿𝐿𝑖𝑖
𝐵𝐵 𝐪𝐪𝑉𝑉𝑖𝑖

𝐵𝐵 𝐩𝐩𝑉𝑉𝑖𝑖
𝐵𝐵 �

𝑇𝑇
. (28) 

Besides, the 𝐉𝐉𝜅𝜅 also changes accordingly,  

𝐉𝐉𝜅𝜅 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐀𝐀�𝛿𝛿𝜽𝜽𝐵𝐵𝑘𝑘

𝑊𝑊 �−𝑇𝑇 𝟎𝟎3×6 𝟎𝟎3×3 𝟎𝟎3×3 𝟎𝟎3×3 𝟎𝟎3×3
𝟎𝟎6×3 𝐈𝐈6×6 𝟎𝟎6×3 𝟎𝟎6×3 𝟎𝟎6×3 𝟎𝟎6×3

𝟎𝟎3×3 𝟎𝟎3×3 𝐀𝐀�𝛿𝛿𝜽𝜽𝐿𝐿𝑘𝑘
𝐵𝐵 �−𝑇𝑇 𝟎𝟎3×3 𝟎𝟎3×3 𝟎𝟎3×3

𝟎𝟎3×3 𝟎𝟎3×3 𝟎𝟎3×3 𝐈𝐈3×3 𝟎𝟎3×3 𝟎𝟎3×3

𝟎𝟎3×3 𝟎𝟎3×3 𝟎𝟎3×3 𝟎𝟎3×3 𝐀𝐀�𝛿𝛿𝜽𝜽𝑉𝑉𝑘𝑘
𝐵𝐵 �−𝑇𝑇 𝟎𝟎3×3

𝟎𝟎3×3 𝟎𝟎3×3 𝟎𝟎3×3 𝟎𝟎3×3 𝟎𝟎3×3 𝐈𝐈3×3 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(29) 

where 𝛿𝛿𝜽𝜽𝐵𝐵𝑘𝑘
𝑊𝑊 , 𝛿𝛿𝜽𝜽𝐿𝐿𝑘𝑘

𝐵𝐵  and 𝛿𝛿𝜽𝜽𝑉𝑉𝑘𝑘
𝐵𝐵  is the expression of 𝐑𝐑�𝐵𝐵𝑘𝑘

𝑊𝑊 𝜅𝜅 ⊟ 𝐑𝐑�𝐵𝐵𝑘𝑘
𝑊𝑊 , 

𝐑𝐑�𝐿𝐿𝑘𝑘
𝐵𝐵 𝜅𝜅 ⊟ 𝐑𝐑�𝐿𝐿𝑘𝑘

𝐵𝐵  and 𝐑𝐑�𝑉𝑉𝑘𝑘
𝐵𝐵 𝜅𝜅 ⊟ 𝐑𝐑�𝑉𝑉𝑘𝑘

𝐵𝐵 . 
When GNSS information is available, we also use the factor 

graph at the back end to obtain a GNSS constrained pose 
estimation result, 

min
𝝌𝝌

{�𝒓𝒓𝓅𝓅�
2 + ��𝒓𝒓ℱ𝑖𝑖�

2 + �𝒓𝒓𝒢𝒢𝑖𝑖},

𝑁𝑁𝒢𝒢𝐾𝐾

𝑖𝑖=1

𝑁𝑁ℱ𝐾𝐾

𝑖𝑖=1

(30) 

where 𝒓𝒓ℱ𝑖𝑖  is the residual of the iterated Kalman filter and 𝑁𝑁ℱ𝐾𝐾  
indicates the number of this item. 

𝐅𝐅𝐱𝐱� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡Exp(−𝛚𝛚�𝑖𝑖∆𝑡𝑡) 𝟎𝟎 𝟎𝟎 −𝐀𝐀(𝛚𝛚�𝑖𝑖∆𝑡𝑡)𝑇𝑇∆𝑡𝑡 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝐈𝐈 𝐈𝐈∆𝑡𝑡 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
−𝐑𝐑𝐵𝐵

𝑊𝑊⌊𝐚𝐚�𝑖𝑖⌋∧∆𝑡𝑡 𝟎𝟎 𝐈𝐈 𝟎𝟎 −𝐑𝐑𝐵𝐵
𝑊𝑊∆𝑡𝑡 𝐈𝐈∆𝑡𝑡 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

，𝐅𝐅𝐰𝐰 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝐀𝐀(𝛚𝛚�𝑖𝑖∆𝑡𝑡)𝑇𝑇∆𝑡𝑡 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 −𝐑𝐑𝐵𝐵

𝑊𝑊∆𝑡𝑡 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐈𝐈∆𝑡𝑡 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈∆𝑡𝑡 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐈𝐈∆𝑡𝑡⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

（21）
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(a)                                                          (b) 

Fig. 5. Visualization of the failures caused by degeneracy. (a) is the irregular 
trajectory. (b) shows the ‘stopped’ trajectory.  

Since our LiDAR-inertial system is designed with no 
degeneracy-aware module, it may fail at feature-poor areas, 
such as the planar tunnels, structure repeated noise barriers, or 
the featureless bridge. Once failure is encountered, many state-
of-the-art (SOTA) LiDAR SLAM will die completely and are 
always non-recoverable. Therefore, we seek to develop a self-
recoverable LiDAR SLAM with redundant odometries.  

As visualized in Fig. 5, the pose estimation in degenerated 
areas have two common failures: one is the spinning trajectory, 
the other is the ‘stopped’ or slow-moving trajectory. Both of 
them will generate large errors compared with the absolute 
GNSS information. We hereby set a failure detection thread to 
compare the pose estimation result of LiDAR-inertial system 
and GNSS every three minutes. Once the difference is above a 
given threshold, the LiDAR-inertial system will reinitialize 
using the current GNSS information, and the Kalman filter will 
also restart. Note that if the GNSS measurement is currently 
unavailable or has large outliers, the system will turn to next 
period for comparison automatically.  

4.4 Visual-inertial Odometry 
SLAM algorithms have a high CPU dependence, but most of 

the IVs are merely equipped with powerful GPU. Therefore, we 
seek to leverage the GPU parallelization to improve the Visual-
inertial efficiency.  

Our Visual-inertial odometry follows the lightweight design 
of Vins-mono [1] and Vins-Fusion1. In comparison, we adopt a 
GPU-accelerated feature detector [39] at the visual front-end. 
Besides, we also add the self-recovery characteristic as shown 
in Section IV-C, when the long-during failure is detected, the 
Visual-inertial system will re-initialize and restart. 

4.5 GNSS and Map-matching Odometry  
Many research IVs integrate the real-time kinematic (RTK)  

measurement into pose estimation to ensure high precision 
localization. However, the RTK information is not available for 
the massive produced IVs, and we merely use single point 
positioning (SPP) for all the IVs instead. Since the factor graph 
based GNSS optimization can simultaneously explore the time-
correlation among historical measurements and effectively 
explore the time-correlation of pseudorange, carrier-phase, as 
well as doppler measurements. We leverage an open source 
GraphGNSSLib proposed in [40]. 

When the IVs enter districts with prior HD maps, the map-
matching subsystem is awakened to match the real-time scan to 
the previous constructed map. To enable the real-time 
 

1 https://github.com/HKUST-Aerial-Robotics/VINS-Fusion 

performance, we employ a multi-threaded normal distribution 
transform (NDT) method [41] for map-based localization. NDT 
divides the 3D space into small cells, and calculate the local 
probability density function (PDF) in each cell. Then the point-
to-distribution correspondences are computed within a scan pair 
to find the optimal transformation.  

In addition, our system is also capable of matching Bird-eye-
view (BEV) image’s semantic segmentation with the vector 
map constructed in Section V-F when the LiDAR sensor is not 
installed on the IV. As visualized in Fig. 6, we utilize the 
surround view and front view fisheye cameras to generate a 
BEV image through inverse perspective mapping (IPM). We 
train a convolutional network [42] that segments the BEV 
images into various road markings, e.g., road lines, text, zebra  

 

 
Fig. 6. The registration of BEV semantic segmentation with vector map. The 
left six insets are the recertified surround view images. The middle inset is the 
real-time BEV semantic road lines (blue dotted lines) matched with the vector 
map (white lines), the small red, yellow, and purple rectangles are the detected 
vehicles projected onto BEV image. The right above inset shows the real-time 
road lines and markings segmentation result. The right bottom inset visualizes 
the surround vehicles (small white rectangles) in BEV. 
stripes, and dynamic objects, e.g., vehicles, pedestrians. By 
doing so, the semantic features detected on the BEV image are 
lifted into the vehicle coordinate. Then the current pose of the 
IV is estimated by matching current feature points with the 
vector map using the iterative closest point (ICP) [43]. 

4.6 Hardware and Software Level Verification 
The hardware-level verification is conducted at the data 

preprocessing stage, including data stream existence, frequency, 
and individual verification. The data stream existence test aims to 
find out whether the required data input exist or not. Since the 
vehicle dynamics, kinematics, and Visual-inertial odometry have a 
factor graph design, they can still work for a short period when one 
of the input stream is lost temporarily. However, the LiDAR-
inertial odometry has a filter-based structure, and it will fail 
immediately when no input is from either IMU or LiDAR [44]. 
Therefore, our LiDAR-inertial odometry will reinitialize and 
restart following Section IV-C when either IMU or LiDAR stream 
is lost for one second. For the other three odometries, this period is 
extended to thirty seconds. The data frequency test also follows this 
idea. The system set the stream with the lowest frequency as the 
primary input, and monitor the counts of other data within two 
consecutive frames continuously, e.g., the LiDAR is set as the 
primary input (10 Hz), and approximately ten frames of IMU 
input (100 Hz) should be found within two successive LiDAR 
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scans [45]. Once this criterion is not hold for ten minutes, the 
system will send a warning to the user interface for a manual 
check, e.g., a yellow warning sign on the central control screen.  

The individual verification is mainly for the perception 
sensors. Since the LiDAR sensors are often equipped at a low 
height of the vehicle, once the IV is in a busy district with 
vehicles all around, the LiDAR-inertial odometry may fail to 
the dynamic objects. Therefore, we monitor the Euclidian 
distance of the point clouds within each scan, if 70 % of the 
points are below ten meters to the LiDAR, the current frame is 
discarded for pose estimation. Since the Visual-inertial 
odometry may fail against the sudden illuminance variations, 
we first transform the gamma-compressed RGB values to linear 
RGB, and compute the relative luminance of each image. The 
image with either too high or too low value is discarded for pose 
estimation due to insufficient contrast.  

The software-level test is performed for parallel pose estimation 
modules to remove clearly wrong results. We set the maximum 
speed of the vehicle as 250 km/h, and verify whether the 
displacement of each odometry is beyond this limit or not, e.g., 
once the displacements of two successive vehicle dynamics 
odometry (100 Hz) is beyond 0.7 m, it will be discarded in the next 
section, since it is clearly wrong pose estimation results. Similarly, 
we use the steering angle information to monitor the individual 
yaw estimation results. 

4.7 Switching Logic and Candidate Selection 
After the software-level verification, the remaining odometry 

candidates will pass through a proposal evaluation process to 
select the best odometry candidate. 

 
(a)                                                        (b) 

Fig. 7. The two employed IVs. (a) is the Voyah Free without any adaptations. 
(b) is the Hongqi H9 with deep modifications for autonomous driving purpose. 

We denote the 𝐩𝐩𝒥𝒥𝑘𝑘
𝒥𝒥𝑘𝑘+1 , 𝐩𝐩𝒟𝒟𝑘𝑘

𝒟𝒟𝑘𝑘+1 , 𝐩𝐩ℒ𝑘𝑘
ℒ𝑘𝑘+1 , 𝐩𝐩𝒞𝒞𝑘𝑘

𝒞𝒞𝑘𝑘+1 , 𝐩𝐩𝒢𝒢𝑘𝑘
𝒢𝒢𝑘𝑘+1 , and 

𝐩𝐩ℳ𝑘𝑘

ℳ𝑘𝑘+1 as the respective position variations of different 
odometries (kinematics, dynamics, LiDAR-inertial, Visual-
inertial, GNSS and map matching) within two frames k and k+1. 
The best odometry is selected through weight comparison as 
described in (32). Since the vehicle dynamics odometry is the 
most robust (robust to wheel slip, degeneracy, bad illumination 
condition and satellite signal quality), we set the 𝐩𝐩𝒟𝒟𝑘𝑘

𝒟𝒟𝑘𝑘+1  as the 
short-term reference to compute the weighting metric of others. 

Given that the vehicle kinematics odometry accuracy may be 
higher when moving in straight line with low acceleration, we 
define ℳ𝑘𝑘

𝒥𝒥  and ℳ𝑘𝑘
𝒴𝒴  in (32) to describe the acceleration and 

angular variations. Specifically, when the wheel slip happens at 
turnings (�𝐩𝐩𝒥𝒥𝑘𝑘

𝒥𝒥𝑘𝑘+1� < �𝐩𝐩𝒟𝒟𝑘𝑘
𝒟𝒟𝑘𝑘+1�), the squaring position factor 

ℳ𝑘𝑘
𝑉𝑉 , acceleration factor ℳ𝑘𝑘

𝒥𝒥  and angular factor ℳ𝑘𝑘
𝒴𝒴  will 

amplify this influence. Then the kinematics weight 𝒲𝒲𝑘𝑘
𝒥𝒥 is small 

and vice versa.  
As mentioned in Section IV-C, the pose estimation results of 

LiDAR-inertial will be either too small or too big at the 
degraded districts, and the weighting metric 𝒲𝒲𝑘𝑘

ℒ is also small. 
This also works for Visual-inertial system with bad lighting 

conditions or high dynamics (many vehicles around), GNSS 
and map matching odometry with large outliers. 
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(31) 

where 𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒  and 𝛉𝛉𝑒𝑒𝑒𝑒𝑒𝑒  denote the empirical threshold of the 
velocity and angle variation. The 𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒 is set as the product of 
the maximum acceleration and time duration within the k and 
k+1, e.g., the maximum acceleration of an IV is 0.55 g, and the 
time duration is 0.1 s, then 𝐯𝐯𝑒𝑒𝑒𝑒𝑒𝑒  should be 0.055 𝑚𝑚 𝑠𝑠2⁄ . 
Besides, 𝛉𝛉𝑒𝑒𝑒𝑒𝑒𝑒 is set as the product of 10 degree and the given 
period. The symbol ℛ in ℳ𝑘𝑘

ℛ  and 𝒲𝒲𝑘𝑘
ℛ  can be ℒ, 𝒞𝒞, 𝒢𝒢, and ℳ, 

representing the odometry factor and weighting metrics of 
diverse odometries. The odometry with the highest weighting 
metric will be selected as the final pose output. 

5. EXPERIMENTS 

This section first presents odometry performance on various 
IVs, then shows the great adaptivity of our system to other 
functionalities, such as controlling and mapping.  

5.1 IV Setups 
We employ two massive produced IVs, Voyah Free, a high 

configuration one with Snapdragon SA8155P processor and a 
low configuration one with NXP-I.MA8 processor. Besides, 
two research IVs are also utilized, the detailed sensor setups are 
visualized in Fig. 7 and listed in TABLE II. Note that unlike 
many other research purpose IVs having a backpack-like sensor 
platform on the roof, the HQ-1 and HQ-2 are all designed with 
mass production purpose. Therefore, the LiDARs and cameras 
are all pre-installed in the vehicle (e.g. two Leishen CH32 are 
installed below the head light, two RS Bpearl are installed on 
each side of the front door). 

The algorithms are implemented in C++ and perform under 
Linux. Since the CPU and GPU usage is strictly limited for each 
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vehicle (e.g. 20% computation resource of a single core is left 
for Free-2 to perform our algorithm), our algorithm is modified 
for each CPU and GPU setups. Our algorithm benefit from the 
GPU acceleration, where many CPU heavy computation is 
accelerated by GPU parallelization. Such modification includes 
many code refactoring, cross compiling, and logic simplifying. 
For instance, we use libtbb for parallel computation instead of 
the omp in Fast-lio2 and NDT-omp. Besides, the voxelization 
is also accelerated by GPU. 

5.2 Odometry Performance  

This section aims to verify the accuracy of the proposed 
system. The ground truth is kept by the post processing result 
of a near navigation grade IMU and a Trimble GNSS receiver, 
with the RTK corrections sent from Qianxun SI. The post 
processing software jointly optimizes the IMU and GNSS data 
in a tightly coupled manner. The output positioning result can 

TABLE II 
DETAILED SENSOR SETUPS OF DIFFERENT IVS 

 Mass production IVs Research purpose IVs 
Name Free-1 Free-2 HQ-1 HQ-2 
Model  Voyah Free Hongqi H9 
Power Range 

extended Electrical Gas 

Processor I.MA8 SA8155P TITAN4C 
CPU Cortex-A72 Kryo 485 NXP MPC77XX 
GPU Included Adreno 640 2 x NVIDIA AGX Xavier 
Cameras 4 surround, 3 front 6 surround, 2 front (stereo) 
 
LiDARs 

 
0 

4 
2 RS Bpearl 

2 Leishen CH32 
1 

Innovusion 
IMU No CHCNAV 

CGI-220 
ASENSING 

P-Box GNSS Included 
Encoder 2 4 2 

reach centimeter-level accuracy. For each experiment, we set 
the start point sharing the same coordinates of the post 
processed results. Besides, we assign each LiDAR/camera 
frame with GPS timestamp, allowing frame-to-frame pose 
evaluation with post processed results. 

We employ the pure odometry from the IMU/yaw rate and 
wheel encoder (odom-pure), as well as our self-modified ORB-
SLAM2 [46], Vins-mono [1], and Fast-lio2 [15] with vehicle 
dynamics information for comparison. Note that for Vins-mono, 
our modification also supports stereo camera. In addition, the 
accuracy of in-vehicle GNSS is also compared. This GNSS 
information is also added to the four odometry when available 
using the GTSAM [32]. Besides, the scan context [47] based 
loop detection module is also added to the back end of Fast-lio2. 
For the multi-LiDAR setup on HQ-1, the input is the merged 
scan of four LiDARs. 
We choose 15 sequences for evaluation, covering highly 
dynamic, feature-poor, degenerated, fast changing illumination, 
and bad weathers. Two criteria, the maximum error (MAX) and 
root mean square error (RMSE), are computed and reported in 
TABLE III. It is clear that our method is superior to all other 
approaches in 10 out of 15 sequences and a comparable result 
with the best odometry for the remaining sequences. The most 
notable characteristics of the redundant odometry is the effect 
suppression of maximum errors. It is seen that our method 
always maintains a high precision accuracy no matter how bad 

the worst individual odometry candidate is. Besides, the 
maximum errors of our system are always among the lowest 
ones for all sequences. This support the claim that the redundant 
odometry system yields better overall results. 

For the individual odometry, we can infer that the vehicle 
dynamics aided LiDAR-inertial odometry has the best accuracy. 
This is mainly due to the accurate and direct range measurement. 
However, since the LiDARs are all installed at a low height, the 
odometry is more prone to fail at textureless scenarios, such as 
a long bridge in City-day-busy1 and a tunnel in Tunnel1. For 
the visual approaches, it is clear the stereo camera outperforms 
the monocular camera with less scale drift and tracking loss. 
With the increased travelling distance, the monocular camera 
based method is merely dependent on GNSS for scale 
correction, and the Free-1 and Free-2 all have a similar accuracy 
with in-vehicle GNSS. For the vehicle dynamics and kinematics, 
they work perfectly at constant velocity and less turning 
scenarios, such as the two sequence on the highways, Highway1 
and Highway2. On the contrary, they are less reliable for the 
parking sequences, where turnings and wheel slipping are 
inevitable. 

To further visualize how our system picks different odometry, 
we demonstrate when and which method have been selected on 
City-night-busy since all solutions are available along the path. 

To further visualize how our system picks different odometry, 
we demonstrate when and which method have been selected on 
City-night-busy since all solutions are available along the path. 

 

 
Fig. 8. Visualization of picked odometry at different time sequences for City-
night-busy. The three insets below show the visual view of LIO failure scenes. 
The first is a noise barrier, where the laser scans cannot pass through, leading 
to degeneracy. The second is on a long bridge, which is a feature-less scene. 
The third is in a narrow lane, where many pedestrians block the LiDAR views. 

 
Fig. 9. The robustness evaluation against GNSS outliers. The green and red dots 
are the position output from in-vehicle GNSS and our system, respectively. 
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TABLE III 
SHORT DESCRIPTION AND ACCURACY EVALUATION FOR ALL THE SEQUENCES  

  RMSE [m] / MAX [m], with – and bold number indicates meaningless and best result, respectively. 
          Length [km] 

/ duration [s] IV Odom-pure ORB-SLAM2 Vins-mono FAST-LIO2 GNSS Ours 

                  Pure-campus1 1.1/198 HQ-1 1.64/3.16 0.94/1.99 1.18/2.85 0.54/1.45 6.09/18.51 0.37/0.72 
Pure-campus2 1.2/196 Free-1 4.18/22.36 6.08/15.86 4.21/17.43 - / - 8.23/19.60 3.94/12.17 
Campus-to-city1 1.5/215 HQ-2 1.67/2.88 1.89/3.92 1.07/2.10 1.17/2.26 6.11/13.42 0.94/1.73 
Campus-to-city2 3.6/589 Free-2 2.95/1.92 4.87/7.56 5.69/10.24 - / - 4.48/8.84 4.78/9.73 
Ground-parking 0.8/187 HQ-2 3.74/13.97 1.25/2.68 1.56/1.22 0.14/0.38 3.66/6.57 0.16/0.32 
U-parking1 0.6/143 Free-2 9.79/36.12 0.56/0.87 0.83/1.28 - / - - / - 0.65/1.01 
U-parking2 0.9/194 HQ-1 12.62/47.35 - / - - / - 1.75/5.38 - / - 1.19/3.35 
City-day-busy1 23.7/2142 HQ-1 2.75/16.93 3.12/10.53 1.88/9.62 - / - 5.29/32.38 1.42/4.73 
City-day-busy2 19.6/1985 Free-2 4.28/11.62 5.33/11.28 5.59/12.54 - / - 7.94/71.12 4.21/9.58 
City-night-busy 25.3/2438 Free-1 5.75/27.25 5.72/10.94 5.83/11.01 - / - 6.32/66.53 3.37/9.55 
City-night-free 9.8/581 HQ-1 5.82/8.87 3.25/6.33 2.98/9.15 2.17/7.23 5.26/73.98 2.47/5.68 
Highway1 33.5/1113 Free-1 3.55/16.73 4.06/24.78 3.82/17.98 - / - 4.18/33.75 3.52/14.27 
Highway2 40.6/1314 HQ-2 2.96/14.72 2.65/12.15 2.83/11.79 2.27/6.19 4.37/25.80 2.13/6.72 
Tunnel1 0.8/51 HQ-1 1.97/3.89 2.98/9.92 3.28/13.77 - / - - / - 1.75/4.34 
Tunnel2 1.7/99 Free-2 2.52/4.70 9.63/33.68 10.34/38.77 - / - - / - 2.79/5.3 
         

TABLE IV 
PICKING TIMES OF DIFFERENT ODOMETRY FOR CITY-DAY-BUSY1 

       
Method LIO VIO VDM VKM GNSS MM 

              Pick 
times 180938 58627 1570 18 148 54 

       

 
(a)                                                           (b) 

 
(c) 

Fig. 10. The robustness evaluation against inertial sensor outliers. (a) is the 
attitude outputs from IMU, where the yaw direction is not consistent. (b) 
presents the linear acceleration output, where an outlier exists. (c) compares the 
horizontal error of Odom-pure and our system w.r.t. ground truth. 

 
(a)                                   (b)                                      (c) 

 
(d)                                   (e)                                      (f) 

Fig. 11. Six typical visual camera failure examples. (a) is the low lighting in 
City-night-free. (b) shows the gleaming head lights in City-night-busy. (c) 
presents the fast-changing lighting conditions when entering the underground 
parking lot of U-parking1. (d) presents the grievous blurred image due to low 
lighting conditions of U-parking1. (e) shows the reelections on the ground of 
U-parking2. (f) demonstrates the snowy weather of Highway2, which will cast 
many reflections on the ground, or even blind the sensor. 

We denote LIO, VIO, VDM, VKM and MM as the LiDAR-
inertial, Visual-inertial, vehicle dynamics and kinematics, as 
well as map matching odometry. The output frequency of LIO, 

VIO, VDM, and VKM is at 100 Hz, whereas the MM and in-
vehicle GNSS is at 50 Hz. We list the picking times of each 
odometry in TABLE IV, where LIO is the dominant selection. 
As shown in Fig. 8, the LIO has three long-during failures along 
the path. In contrast with Fast-lio2 which has a total paralysis 
towards the first failure, our LIO can reinitialize and recover 
from the failure.  

5.3 Robustness  
This module presents our system’s robustness and supports 

the claim that the proposed system is redundant and robust to 
different sensor failure cases. 

The first failure cases are about loss of data streams. Since a 
large volume of data is transmitted in the vehicle, some sensor 
information is inevitable to suffer from transmission loss. As a 
filter-based system without failure detection, Fast-lio2 has a 
high dependence of sensor data quality. The IMU has a five-
second data lost in Tunnel1, and the real-time odometry of Fast- 
lio2 has a large vertical divergence within this period (more 
than 100 m). Besides, this error is non-reversible when no 
global correction is available. Since our modified version of 
ORB-SLAM2 and Vins-mono still relies on the preintegration 
result of vehicle dynamics, they provide no results when no 
IMU data is sent. In comparison, our system switch to vehicle 
dynamics or vehicle kinematics for pose estimation when both 
LiDAR-inertial and Visual-inertial system is not working. The 
maximum error happens at the switching point, where our 
system is verifying and deciding which system to change to. 
The left camera of the stereo camera has no output for one-
minute while traversing inside the campus for Campus-to-city1. 
As a visual-centric solution, both the ORB-SLAM2 and Vins-
mono generate no odometry output within this period. On the 
contrary, our system is robust to this failure with redundant 
odometry and has the best performance among the others. 

The second focuses on sensor outliers. This situation mainly 
happens for the inertial sensors and GNSS. For the sequence 
Pure-campus1, the well-grown trees fully cover the lanes, 
leading to many GNSS outliers as shown in Fig. 9. We can infer 
that the switch manner of our system can effectually choose the 
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best odometry candidate at the right time, where our trajectory 
is smooth and follows the straight driving line. Since the inertial  
measurements from CAN bus and IMU all suffer from outliers,  

 
Fig. 12. Visual illustration of the pose estimation failures caused by changing 
lighting conditions (red dashed circle) and blurred image (black dashed circle). 
The blue trajectory is from the ORB-SLAM2, whereas the green trajectory is 
ours. It is seen many tiny jumps exist on the curve of ORB-SLAM2. 

 
(a)                                                        (b) 

Fig. 13. Visual illustration of the Leishen CH32 LiDAR failures in the rainy 
days. (a) shows the irregular scan lines against heavy rains, where the circular 
scan rings are not smooth even no obstacles are detected. (b) presents the large 
scan noise against wet vegetations. It is seen no circular scan lines can be found 
in the red rectangle. 

 
Fig. 14. Visualization of Fast-lio2 failure due to blockage of nearby vehicles. 
The white line is the real-time trajectory of Fast-lio2, it has a large curve at this 
degenerated district (drive straight forward).  
such as large accelerations and inconsistent gyro outputs, the 
Odom-pure will generate many outliers even with GNSS 
assistance. Take a near-straight driving segment of Highway1 
for example, the raw input has some clearly wrong data as 
plotted in Fig. 10(a) and Fig. 10(b), leading to some outliers for 
Odom-pure. In comparison, our system can choose the proper 
candidate odometry, and provide a smooth error curve. 

The third is about environment dependent sensor failures. As 
shown in Fig. 11, visual cameras are prone to fail at bad 
illumination scenarios. Some of these failures is detectable, 
such as the low lighting scenario presented in Fig. 11(a), where 
insufficient amount of feature points is extracted. However, the 
sudden change of illumination condition, Fig. 11(b) and Fig. 
11(c), is usually hard to detect, and may cause pose estimation 
errors. Besides, the heavily blurred image in Fig. 11(d), 
reflections on ground in Fig. 11(e) and Fig. 11(f) will also lead 
to inconsistent odometry results as visualized in Fig. 12. In 
contrary, our system can detect such errors and generate a 
smooth trajectory. We also find the LiDAR generates 
inaccurate range measurement in bad weather. As visualized in 
Fig. 13, many noises exist on the scan lines in rainy days, 
leading to less-reliable correspondence tracking. Listed in 
TABLE III, Fast-lio2 has a large maximum error for City-night-
free due to the LiDAR sensor noise. In comparison, our system 
can detect and discard this outlier with redundant odometry. 
The fourth is about individual pose estimation failures. Since 
the vehicles and pedestrians in visual image are all detected and 

excluded for pose estimation, our system is robust to highly 
dynamic scenes. However, our system may fail at the feature-
poor districts without degeneracy analysis. Since the sensor 
mounting height is limited, the four LiDARs can be easily 
disturbed by nearby vehicles. As shown in Fig. 14, Fast-lio2 
fails at a crossing of City-day-busy1, where many vehicles are 
stopping around. Our LiDAR-inertial system also fails at this 
scene, but the global state estimation is not influenced with 
redundant odometry. Besides, our system is also self-recovery, 
where the LiDAR-inertial system is reinitialized when long- 
time large errors are detected. On the contrary, this temporary 
error is non-reversible for Fast-lio2, and the whole system died. 

5.4 Time Complexity 
The efficiency of our system is evaluated by collecting the 

average processing time of each frame. Unlike many other 
works which compute the time consumption for each step, we 
merely care about the final odometry output. Fig. 15 presents 
the average time cost of generating each odometry result for all 
the sequences. 

It is seen our system does not become slower with increased 
travel distance. For the redundant odometry, we can infer that 
LIO highly increases the system burden. For similar scenes (e.g. 
Pure-campus1 and Pure-campus2) the average time usage has 
a 20% growth when LIO is added to the system. The dominant 
computation part of LIO is the residual computation and nearest 
neighbor searching. 

5.5 Application in Motion Controlling 
This module is designed to show that our system can be used 

with perception results, allowing a better motion controlling. 
We use Free-2 to develop an auto parking assist system (APA). 
APA utilizes the parking line detection results from 4 surround 
view cameras, the occupancy avoidance from 5 radars and 12 
ultrasonic sensors, and chassis information from CAN bus to 
realize an automated parking system. We first get the BEV 
image from the IPM results. Then we utilize CenterNet [48] to 
detect the four key points of a parking area, the network 
architecture and detection results are visualized in Fig. 16.  

TABLE V 
THE PARKING BOUNDARY DISTANCE COMPARISON 

      Left boundary Right boundary 
           Max [cm] Mean [cm] Max [cm] Mean [cm] 

      Original  9.78 3.47 6.26 3.35 
          Ours 4.63 1.94 4.37 1.98 

     

 
Fig. 15. The average computing time of our system for each sequence, the 
number on x-axis indicates the related sequence in TABLE II (top to bottom). 
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(a)                                             (b) 

Fig. 16. The applied network structure in (a) and the detected key points from 
the BEV image in (b). 

 
Fig. 17. The workflow of APA. When the user selects a parking area on the 
human interface (the yellow one), the APA system will setup a local coordinate 
based on the detected key points (two red points). Then the IV pose (x, y,θ) 
w.r.t the given parking area will be continuously sent to the control module until 
the IV is fully inside the parking area.  

 
(a)                                                        (b) 

Fig. 18. The visual recognition and semantic mapping process. (a) shows the 
real-time recognition, segmentation, and local mapping process. (b) presents a 
segment of generated visual semantic map (1 km long). 

 
Fig. 19. The real-time constructed semantic high precision point cloud map of 
an underground parking lot. The color green indicates the lanes, parking lines, 
or road markings detected by LiDAR and surround view cameras. The red line 
is the real-time vehicle trajectory generated by our system. 

The detection only approach is not robust for this task [49] 
due to potential false positive or false negative detections. We 
hereby leverage the Kalman filter to solve this problem, where 
the detected key points are treated as noisy observations and the 
pose estimation results from above are viewed as states. Since 
the key points cannot be detected all the time, the observations 
are only updated intermittently. The workflow is visualized in 
Fig. 17. We care about the vehicle’s center to the parking spot 
boundary in the APA process. Therefore, we select the same 
parking spot on the user interface, and let the APA system 
automatically parking into the given spot 10 times.  

We follow the metric evaluation method in [18] to 
quantitatively assess the system performance, where the 
difference between the vehicle’s center to the parking spot 
boundary in the real world and on the human interface are 
measured. Listed in TABLE V, we compare the difference of 
original APA in Free-2 and our version. It is seen that our 
method has a 40% improvement over the original APA. 

5.6 Application in Map Construction 
In this module, we seek to present that our system can be 

integrated into reconstructing both visual semantic maps and 
high precision point cloud maps. 

We use the forward camera of HQ-2 to perform segmentation 
of lanes, road markings, and drivable areas as visualized in Fig. 
18(a). The 2D lanes and markings are lifted into 3D space in the 
body frame using IPM. Based on the pose estimation results 
from our system, these features can be directly transferred into 
global coordinates as shown in Fig. 18(b).  
Similarly, we can leverage the cooperative detection results 
from LiDAR and cameras of HQ-1 to generate high precision 
semantic point cloud maps as shown in Fig. 19. In addition, we 
employ the detected loop closure to correct the accumulated 
drift. We maintain local maps for every 20 meters along the path. 
For each latest local map, we compare it with maintained local 
maps. Two local maps are registered by the ICP method. They 
are treated as a match if the transformation fails into a threshold.  

Then we get the relative pose between these two local maps, 
which will be used to correct the accumulated drift. 

6. CONCLUSION 

In this paper, we presented a robust and resilient odometry 
framework for IVs. Our framework first tests the confidence 
and monitors the health of each input data stream. The 
temporary sensor outliers or data loss will be discarded for pose 
estimation, in case of long during failures, our system will warn 
the drivers in the user interface. Then the multiple streams are 
sent to parallel running odometry including vehicle kinematics 
and dynamics preintegration, LiDAR-inertial, Visual-inertial, 
GNSS, as well as map matching. All the algorithms share the 
general sensor setup as well as the lightweight design. The 
individual results then undergo a quality verification, with the 
clearly wrong odometry removed. Besides, the redundant pose 
estimation can detect the temporary errors of certain estimation 
engines, and triggers the re-initialization process.  

We evaluated our system on both research purpose and mass-
produced IVs and supported all claims made in this paper. The 
experimental results suggest that the proposed system is 
resilient and robust to individual sensor and odometry failures, 
e.g., loss of data streams, measurement noises, illumination 
variations, LiDAR degeneracy, and highly dynamic scenes. 
Besides, our approach achieves better performance than all the 
baselines in most scenarios, especially for the large suppression 
of the maximum errors.  

The current candidate selection assumes the vehicle dynamic 
can provide reliable reference for short period, which may be 
inaccurate for some applications. Therefore, we plan to use 
reinforcement learning to design better odometry proposal 
selection criteria in the future work.  
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