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Abstract

The use of remote sensing images for land cover classification is crucial for environmental monitoring, urban planning, and
sustainable resource management. Despite advances in deep learning, existing methods suffer from blurred boundaries in com-
plex landscapes and perform poorly in identifying small or overlapping land cover categories. This article introduces MultiTrans
LC, a novel multimodal fusion framework that integrates visual language interaction and boundary perception optimization to ad-
dress these challenges. The proposed architecture utilizes a hierarchical Transformer encoder to extract global visual features from
high-resolution images and aligns them with semantic embeddings in text prompts through cross modal attention. The visual lan-
guage decoder further refines the multi-scale feature representation through progressive fusion, while the edge aware loss function
jointly optimizes pixel level classification and boundary localization. Experiments on three benchmark datasets (GID-15, LoveDA,
RSSCN?7) have demonstrated state-of-the-art performance, achieving an overall accuracy of 90.7% and a Kappa coefficient of
0.901 on GID-15, which is 1.6 % higher than the leading method in OA. Visualization confirms that MultiTrans LC performs well
compared to CNN and Transformer baselines. By bridging visual and textual semantics, MultiTrans LC improves the accuracy of
large-scale land cover mapping and provides a powerful solution for geospatial intelligence applications. Discussed the limitations

and future directions of open vocabulary classification and edge device deployment.

1. Introduction

Land cover classification is a technical process that iden-
tifies the surface cover type of each pixel in remote sens-
ing imagery to generate comprehensive thematic maps. As a
critical component of foundational geospatial data, land cover
maps provide essential spatiotemporal change information for
major applications such as urban planning, dynamic monitor-
ing of natural disasters, and ecological vulnerability assess-
ments. With advancements in satellite sensor technology and
the maturation of unmanned aerial vehicle photogrammetry,
high-resolution remote sensing imagery, characterized by rich
spatial and textural features, has emerged as a primary data
source for land cover classification studies.

In recent years, breakthroughs in deep learning have sig-
nificantly advanced the practical implementation of computer
vision tasks, including image classification, object detection,
and semantic segmentation. Unlike traditional methods that
rely on manually engineered features with limited generalizab-
ility, deep learning approaches autonomously extract discrim-
inative hierarchical feature representations through large-scale
annotated datasets. Current research predominantly focuses
on optimizing convolutional neural network (CNN) architec-
tures (O’shea and Nash, 2015) and exploring Transformer-
based models (Kalyan et al., 2021). However, existing method-
ologies primarily concentrate on single-modal image data ana-
lysis, failing to fully exploit the complementary semantic in-
formation embedded in multimodal data (e.g., optical imagery
paired with LiDAR point clouds, multispectral bands, or textual
descriptions). This limitation constitutes a key bottleneck in im-
proving land cover classification accuracy. Consequently, de-
veloping a foundational framework for synergistic multimodal
data fusion has become a vital research direction to overcome

current technical constraints.

In this paper, we introduce the Transformer model into
the semantic segmentation task of remote sensing images and
propose a multi-modal change detection framework, namely
MultiTrans-LC. In the context of multi-modal change detec-
tion tasks, changes are typically identified using a single mod-
ality, primarily remote sensing images. To integrate text-based
cues, we utilize the Transformer model to generate descriptive
prompts for common land cover category classification. During
the image encoding stage, we construct a Transformer network
to extract image features from high-resolution images. During
the text encoding stage, we apply a Transformer network to ex-
tract text features from text prompts. The main contributions of
this paper are as follows:

(1) We designed a multi-modal decoder based on Transformer
to enhance the semantic relationships between image-text
feature pairs.

(2) The proposed MultiTrans-LC achieves state-of-the-art per-
formance on the GID15, LoveDA and RSSCN7 datasets.

The rest of this paper is organized as follows: Section II
describes the related algorithms; In Section III, we introduce
the overall framework of MultiTrans-LC; Section IV compares
MultiTrans-LC with other advanced algorithms through experi-
ments, confirming its effectiveness; and Section V summarizes
the paper.

2. Related Works

2.1 Semantic segmentation of remote sensing images

Compared to traditional manual ground surveys, remote
sensing technology has become the mainstream means of sur-
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face monitoring due to its advantages such as wide coverage,
fast acquisition speed, and rich information. It is extensively
used in soil research , geological engineering , land resources
, and other fields. The quality of remote sensing images has
increased along with the rapid development of the technology.
Remote sensing images can provide a wealth of information
about ground objects, such as ground vegetation cover, ground
temperature, and land use.Semantic segmentation of remote
sensing images is a key step in understanding their content. By
converting pixel level information into interpretable land cover
categories, it provides structured support for subsequent applic-
ations.As a result, the semantic segmentation technique for re-
mote sensing images has significant research implications.

Most traditional machine learning-based remote sensing
image interpretation algorithms adopt feature extraction and
feature analysis, and the interpretation effect is good for spe-
cific scenes and datasets. However, classic machine learning
algorithms have restricted feature extraction and cannot accur-
ately capture the nuances of the input. When the background
level of the remote sensing image to be processed is complic-
ated and the target scale has large fluctuations, the model accur-
acy suffers and under-fitting or over-fitting occurs.(Wang et al.,
2024)

2.2 Multimodal representation learning

Multimodal Representation Learning is an important re-
search direction in the field of machine learning. It aims to
extract and integrate effective information from data of various
modalities, such as text, images, audio, and video, to gener-
ate unified and interpretable representations that support down-
stream tasks like classification, retrieval, and generation. The
core objective is to model the correlations and complementarit-
ies between different modalities, thereby enhancing the model’s
ability to understand complex scenarios.

2.3 Transformer backbones

ViT (Yuan et al., 2021) is the first work to prove that a pure
Transformer can achieve state-of-the-art performance in image
classification. ViT treats each image as a sequence of tokens
and then feeds them to multiple Transformer layers to make the
classification.

DETR (Zheng et al., 2023) is the first to use Trans-
formers for end-to-end object detection framework without
non-maximum suppression (NMS). Other works have also used
Transformers for semantic segmentation in tasks such as track-
ing, super-resolution, re identification, coloring, retrieval, and
multimodal learning.

3. Method
3.1 Overall Architecture

In this study,we introduce MultiTrans-LC is a mul-
timodal Transformer network designed for remote sensing
land cover classification.As illustrated in Figure 1, the frame-
work comprises three core components:Multimodal Feature
Extraction,Cross-modal Fusion Module and Vision-Language-
Driven Decoder.In the first component,it captures visual fea-
tures from remote sensing imagery and semantic embed-
dings from language-text descriptions.For the second compon-
ent, it aligns and fuses heterogeneous features through atten-
tion mechanisms.In the last part, we make full use of the
vision-language features from the encoding stage.We introduce
graphic text joint features in the decoding stage, and fuse the
visual language representation obtained in the encoding stage
with the decoding features to construct a semantic enhanced
decoder, in order to improve the recognition accuracy of the

model for complex terrain or changing areas.
3.2 Multimodal Feature Extraction

Nowadays, the integration of computer vision and natural
language processing is becoming increasingly tight, giving rise
to numerous outstanding projects that combine these two fields.
3.2.1 Visual Feature Encoder: In this study, we adopt a
hierarchical Transformer-based encoder to extract visual rep-
resentations from remote sensing imagery. We adopt a Trans-
former based encoding structure to divide remote sensing im-
ages into image blocks and model their global contextual re-
lationships. At the same time, we perform semantic encoding
on text descriptions to achieve alignment and complementarity
between images and language in the feature space. This design
enables the network to capture global contextual cues, which is
particularly beneficial for land cover classification in complex
and heterogeneous landscapes.

3.2.2 Textual Feature Encoder: For the linguistic modal-
ity, we utilize a Transformer-based text encoder to process
semantic descriptions of land cover categories. Each textual
prompt (e.g., “dense urban area” or “deciduous forest”) is
tokenized and mapped into embedding vectors. These em-
beddings are refined through multi-head self-attention mechan-
isms, allowing the model to capture intra-sentence relationships
and generate semantically rich representations. The resulting
textual features serve as high-level semantic anchors for sub-
sequent cross-modal alignment.

3.3 Multimodal Fusion Module

To achieve collaborative modeling of visual and semantic
information, we have constructed a cross modal fusion mod-
ule that introduces a language guided mechanism to embed se-
mantic priors in image features, thereby enhancing the under-
standing and discriminative ability of key regions.As illustrated
below, the image feature map F,, € R7*W*Pis first projected
to obtain the Query vectors:

Q=F,Wq D
where Wgq € RP*P

Textual Embeddings as Key/Value: The semantic proto-
types are projected to produce Key and Value matrices:

K = SWy 2
V =85W, 3)
where Wi, W, € RP*P

Modality-Specific Enhancements aligns visual and textual
features through dual-path interaction:

. QK"
Attention(Q, K, V) = Softmaz( \% )
Vd
where d= %is the dimension per attention head (h is the

number of heads)

For multi-head extension,h parallel heads are concatenated
and linearly mixed:

MultiHead(Q, K, V) = Concat(headi, heada, . . ., headp)W,
(%)
head; = Attention(QW4, KWic, VIV})) (6)
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Figure 1. MultiTrans-LC.We extract features from images; Visual embedding is an advanced feature mapping used for image
embedding; Visual language information is the combination of image features and text features.
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Figure 2. The overall structure of Visual Transformer.
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Figure 3. The overall structure of Textual Transformer.
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A gating mechanism balances multimodal contributions:

a = o(MLP([F,;S]))(Sigmoidactivation) ™
Ffinal:a‘Fv+(1*O£)’S (8)

Final fusion features:

Frusea = MultiHead(Q, K, V) 9)

The above mechanism enables the network to emphasize re-
gions that are semantically consistent with the given textual
description, yielding discriminative features for subsequent de-
coding.

3.4 Vision-Language-Driven decode

To strengthen MultiTrans-LC’s learning ability in the de-
coding stage, we designed a layer-by-layer multi-level feature
fusion structure based on the Transformer block. We transfer
feature information from high-level to low-level and use Trans-
former block to improve the decoding stage representation in
each feature fusion level. In the encoding stage of MultiTrans-
LC, we fused text semantic information to the image feature
map. In the decoding stage of MultiTrans-LC, we performed
a multimodal decoder with multi-level feature fusion module
on remote sensing images. As a result, we finally obtained the
decoding prediction result.(Dong et al., 2024)

3.5 Edge-Aware Loss

In MultiTrans LC, to solve the problem of boundary blur-
ring, to alleviate the problem of unclear recognition of boundary
regions in traditional methods, we have introduced an optimiz-
ation mechanism specifically designed for edge or changing re-
gions. Through multi strategy feature fusion or joint loss func-
tions, the model can improve its perception of detailed struc-
tures while maintaining semantic accuracy. The mathematical
expression is as follows:

L= Lcls + A Lbounda'ry (10)

L.;5Using standard Cross Entropy Loss, optimize the se-
mantic classification results of the model for each pixel:

N C
Lot = =3 3 i log(pic) ()

n=1 c=1

where N is the total number of pixels, and C is the num-
ber of categories.y;,. is the real label of the i-th pixel (one hot
encoding).p; . is the probability that the i-th pixel predicted by
the model belongs to category c.

M
1 «
Lboundary = M E ||B] - Bj||1 (12)
Jj=1

where M is the number of boundary pixels, B; is the pre-
dicted boundary probability map of the model, and B; is the
true boundary mask (labeled data). The function of the bal-
ance factor ) is to adjust the weights of classification loss and
boundary loss, preventing one from dominating the optimiza-
tion process.In the paper, A is set to 0.5, and experiments show
that this value can balance classification and boundary optimiz-
ation objectives in most scenarios.

In summary, we propose a powerful visual language driven

decoder for land classification tasks. This decoder utilizes
visual language and Transformer module to construct a global
attention mechanism, which can accurately decode multi-level
image information and enhance the feature expression ability in
the decoding stage. In addition, we combine the visual language
features of the encoding stage with the visual features of the de-
coding stage to enrich the semantic information of the decoding
stage and accurately extract key change features from remote
sensing images. Finally, we designed a decoding module ar-
chitecture that integrates features layer by layer. This structure
based on Transformer modules ensures effective transmission
of feature information from high to low layers, fully utilizing
key features in the decoding process, and thereby improving
the performance of remote sensing image change detection.

4. Experiments
4.1 Experimental Settings

Our framework is built using the PyTorch programming
environment and enhanced with the mmsegmentation library.
The experimental setup is hosted on the Ubuntu system and
equipped with NVIDIA GeForce RTX 3090 GPU to accelerate
model training. In terms of model optimization, AdamW op-
timizer is used with a learning rate set to 0.0001 and weight
decay parameter set to 0.01. Our loss function is cross en-
tropy, which only calculates the decoder output during train-
ing. Throughout the entire experimental phase, we continu-
ously monitored the mIoU metric on the validation set to spe-
cify the best performing model for the subsequent final evalu-
ation. This consistent approach makes the evaluation of Multi-
Trans LC on datasets powerful and effective.

4.2 Evaluation metrics

To evaluate the performance of our algorithm, in addition
to overall accuracy (OA), we mainly use F1 score, kappa coef-
ficient, and joint interaction (IoU) to assess change detection
evaluation metrics. In tasks with multiple variables, the higher
the accuracy value, the lower the false positive rate of the pre-
dicted results, and the higher the recall value, the lower the
missed detection rate of the predicted results. F1 score, mF1,
kappa, IoU, mloU, and OA are all comprehensive evaluation
indicators. Larger values indicate better predictions. The calcu-
lation formula is as follows:

P-R
F1=2 1
PTR (13)
1 TP
n
Fl=—13Y 2 14
m Nzlj TPn+ FPn+ FNn a4
kappa = Po — Pe (15)
1—pe
TP
IoU = b T FN T FP (16)
1 © TP
n
ToU = — 1
mlol NZI:TPn+FPn+FNn an
ou TP +TN )

“TP+TN+FN tFP

where TP is the number of true positive predictions, TN
is the number of true negative predictions, FP is the number of
false positive predictions, and FN is the number of false neg-
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ative predictions. p, is the observed consistency ratio, which
is the ratio of the model’s predicted results to the actual classi-
fication results. p. is the expected consistency ratio, which is
the probability of the model’s predicted results being consistent
with the actual classification results in a random situation. These
metrics provide a comprehensive evaluation of the algorithm’s
performance in terms of its ability to detect and classify changes
in remote sensing images.

4.3 Datasets

To verify the generalization ability of the proposed frame-
work, three open-source datasets were selected for the experi-
ment, and the training and testing sets were divided in an 8:2
ratio to ensure objective and reliable evaluation results. we
first selected three datasets, GID15, LoveDA, and RSSCN7, for
land classification. These three datasets all have sub meter res-
olution, and with the advancement of satellite technology, we
believe that these high-resolution remote sensing images are
more representative. Overall, to ensure fair experimental com-
parisons, we chose three public datasets (GID15, LoveDA, and
RSSCN7 datasets) and separated the training and testing sets.
Below is a detailed introduction to these datasets.

GID15:The land cover information is widely distributed,
including 150 high-quality and high-resolution Gaofen-2 satel-
lite remote sensing images, covering a geographic area of over
50000 square kilometers, involving more than 60 different cities
in China, and the images are clear and of high quality without
cloud cover. Has extremely rich diversity in spectrum, texture,
and structure, closely resembling the real distribution charac-
teristics of land features

LoveDA:It contains 5987 high-resolution images and
166768 annotated semantic objects from three different cit-
ies: Nanjing, Changzhou, and Wuhan. The annotated semantic
categories include background, buildings, roads, water bod-
ies, bare soil, forest land, cultivated land, sports fields, etc.
The challenges mainly come from multi-scale objects, complex
background samples, and inconsistent class distributions.

RSSCN7:Contains 2800 remote sensing images, divided
into 7 typical scene categories: grassland, forest, farmland,
parking lot, residential area, industrial area, and river and lake.
Each category contains 400 images, with a pixel size of 400 x
400 per image.

4.4 Analysis and visualize results

As shown in table 1-3,we extensively evaluated on
MultiTrans-LC three datasets-GID15, LoveDA, RSSCN7.
MultiTrans LC achieved the best performance on all datasets.

Our experimental results indicate that on the GID15 data-
set, MultiTrans-LC outperforms recent classical models in all
metrics.MultiTrans-LC leads with 90.7% OA, which is 3.4%
and 1.6% higher than DeepLabV3+ and Swin UNet, respect-
ively, indicating its stronger global classification ability.The
Kappa value of MultiTrans-LC reaches 0.901, which is much
higher than other models, indicating that its classification res-
ults are more consistent with real labels, especially in scen-
arios with uneven class distribution, and it performs more ro-
bustly.MultiTrans LC leads with an IoU of 84.3%, showing a
significant improvement compared to Swin UNet (82.5%) and
DeepLabV3+(80.4%), attributed to its edge aware loss function
directly optimizing the boundary region.The optimal mIoU res-

Model OA (%) Kappa mF1 (%) F1(%) ToU(%) mloU (%)
DeepLabV3+ 87.3 0.832 79.2 86.5 80.4 86.6
Swin-UNet 89.1 0.851 81.5 88.6 82.5 86.8
MultiTrans-LC 90.7 0.901 83.9 90.1 84.3 88.9
Table 1. Quantitative Results on the GID15 dataset.
Model OA (%) | F1(%) | 1oU(%) Model OA (%) | F1(%) | 1oU(%)
DeepLabV3+ 84.7 85.2 84.3 DeepLabV3+ 85.3 84.3 82.4
Swin-UNet 88.2 87.1 86.5 Swin-UNet 87.2 88.1 84.5
MultiTrans-LC 90.5 88.9 87.9 MultiTrans-LC 89.6 89.7 86.9

Table 2. Quantitative Results on the LoveDA dataset.

Image

MultiTrans-LC

Swin-UNet

DeepLabV3+

water mountain area

- residential area

Figure 4. Example of classification result visualization.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-1-W5-2025-133-2025 | © Author(s) 2025. CC BY 4.0 License.

Table 3. Quantitative Results on the RSSCN7 dataset.

137



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

ults demonstrate its comprehensive performance advantage in
multi class scenarios.

MultiTrans LC’s comprehensive leadership on two other
datasets validates the effectiveness of its multimodal fusion,
providing an efficient solution for land cover classification in
complex remote sensing scenarios.

Select three cropped images to visualize the semantic seg-
mentation results of different models on the dataset. As shown
in Figure 4.

In group I, The visualization results show that the compar-
ison method exhibits significant misclassification in the bound-
ary region, while the model proposed in this paper can accur-
ately locate the target contour with smoother and more continu-
ous edges.

In group II, Swin UNet and DeepLabv 3+ were almost un-
able to identify small patch areas in residential areas, but Mul-
tiTrans LC could accurately identify and optimize the category
segmentation range.

In group III, MultiTrans LC recognizes forests and water
bodies, while Swin UNet and DeepLabv 3+can recognize some
of their contours, but the edges are rough and not accurately
recognized. MultiTrans LC is more effective in identifying the
entire area, with smoother and more continuous edges.

Overall, MultiTrans LC outperforms other models in
classification performance, improving phenomena such as in-
complete classification, unclear boundaries, misclassification,
missed classification, and over segmentation, significantly im-
proving recognition accuracy.

5. Conclusion

By integrating visual and textual features, combining cross
modal attention mechanism and edge perception loss function,
it significantly improves the classification accuracy and bound-
ary clarity in complex scenes. This framework uses visual
Transformer to extract global contextual features of remote
sensing images, and guides the model to focus on key regions
through language description. At the same time, a hierarch-
ical multi-level feature fusion decoder is introduced to optimize
multi-scale information expression. Through extensive experi-
mentation on three benchmark datasets (GID-15, LoveDA, and
RSSCN?7), the model demonstrates superior performance over
existing state-of-the-art methods, achieving an overall accur-
acy of 90.7% and a Kappa coefficient of 0.901 on the GID-
15 dataset. Its core innovation lies in the language driven
semantic alignment mechanism and joint boundary optimiz-
ation strategy, effectively solving the problems of small tar-
get missed detection and boundary blurring, providing high-
precision land cover mapping solutions for applications such
as urban planning and disaster assessment. ~However, three
limitations warrant consideration. First, the reliance on pre-
defined text templates restricts adaptability to novel land cover
types outside training vocabularies. Second, while the current
implementation processes 512x512 pixel tiles efficiently, scal-
ing to continental-scale mapping requires further optimization
for ultra-high-resolution imagery (e.g., 30,000x30,000 pixels).
Third, performance variations across seasonal conditions indic-
ate the need for temporal adaptation modules to handle phen-
ological changes in vegetation. Future research will focus on
three directions:

(1) Using large-scale language models such as GPT-4 (LLM)
to generate adaptive text descriptions based on regional
geographic knowledge, achieving open vocabulary classi-
fication.

(2) Real time processing of edge devices installed on drones
through neural structure search and quantification tech-
niques.

(3) By integrating multi temporal Sentinel-2 time series to
capture land cover evolution patterns, robustness to sea-
sonal changes can be improved. In addition, extending the
framework to 3D city modeling using LiDAR text fusion
can open up new applications in smart city planning.

In conclusion, MultiTrans-LC establishes a new paradigm for
geospatial artificial intelligence by bridging the gap between
visual perception and linguistic semantics. Its technical in-
novations not only advance the state of remote sensing ana-
lysis but also lay the groundwork for human-Al collaborat-
ive systems where domain experts can refine results through
natural language interactions. As satellite constellations in-
creasingly deliver petabyte-scale Earth observation data, frame-
works like MultiTrans-LC will be indispensable for transform-
ing raw pixels into actionable environmental intelligence, ulti-
mately supporting global sustainability goals such as the UN’s
2030 Agenda for Sustainable Development.
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