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Abstract

The True Digital Orthophoto Map (TDOM) possesses both map geometric accuracy and image characteristics, serving as an essen-
tial product for digital twins and Geographic Information Systems (GIS). Traditional TDOM generation methods typically involve
a series of intricate geometric processing steps, which often result in computational inefficiency, high costs, and error accumulation.
More recently, 3DGS-based methods were developed to generate TDOM in more efficient manner, yet they show some degenerated
rendering performance on sparse view scenarios, which is naturally common when dealing with boundary area of photogrammetric
UAV images. To address the above issues, we introduce a hybrid method that integrates 3DGS with Few-Shot Gaussian Splatting
(FSGS, Zhu et al. (2024)). Specifically, our method first partitions the UAV images into dense and sparse view scenarios based on
image overlapping degree. Then, two specific 3DGS training solutions are employed: in dense-view scenarios, the standard 3DGS
optimization is applied, in sparse-view scenarios, the FSGS framework is adopted, which incorporates a proximity-guided Gaussian
unpooling strategy and monocular depth supervision, thereby enhancing adaptive density control and geometric guidance through
improved constraints on Gaussians. Third, two trained Gaussians are merged. Finally, by substituting the perspective projection
with the orthogonal projection, our method directly generates TDOM while eliminating the requirement for explicit Digital Surface
Model (DSM) and occlusion detection. Extensive experimental results demonstrate that our method outperforms existing commer-
cial software in several aspects while achieving superior orthophoto quality compared to 3DGS in sparse-view scenarios. Project

Web: https://walterwang2024.github.io/HyGS-TDOM/

1. Introduction

True Digital Orthophoto Map (TDOM) has been a pivotal topic
in the field of photogrammtery and remote sensing, which are
widely applied in geometric quality assessment (Wang et al.,
2017), land management(Szostak et al., 2014), building monit-
oring (Qin et al., 2016), environmental conservation (Akbari et
al., 2003). The main step of conventional methods for TDOM
generation is occlusion detection and compensation. Hereto-
fore, many impressive methods have been proposed, including
Z-Buffer-based, angles, heights, vector polygons, texture syn-
thesis and object-oriented methods (Shin and Lee, 2021). How-
ever, in the field of photogrammetry, these methods typically in-
volves multiple complex computational stages: feature extrac-
tion and matching, image orientation with sparse point cloud
generation, dense matching, mesh model construction, digital
surface model (DSM) generation, occlusion detection and com-
pensation (Schonberger and Frahm, 2016a). Although deep
learning-based TDOM generation methods simplify the intric-
ate geometric processing pipeline and achieve superior results
in most scenarios, they struggle to handle complex environ-
ments (e.g., vegetation) and have weak generalization (Shin and
Lee, 2021). In recent years, Neural Radiance Fields (NeRF)
(Mildenhall et al., 2021), which use implicit 3D representation
to encode intricate scene geometry and lighting with high fi-
delity, have made impressive strides in 3D scene reconstruction
and new view synthesis. Although NeRF has been successfully
applied in TDOM generation (Lv et al., 2024), their adoption
remains constrained by computationally intensive training pro-
cesses and stringent real-time rendering requirements.

As a recent advancement, 3D Gaussian Splatting (3DGS)
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(Kerbl et al., 2023) shares the objective of high-fidelity 3D re-
construction with NeRF, but replaces NeRF’s implicit neural
representations with explicit Gaussians. This innovation en-
dows 3DGS with both efficient training capabilities and real-
time rendering performance exceeding 100 frames per second
(FPS), establishing it as a highly promising alternative solu-
tion. PG-SAG (Wang et al., 2025b) further enhances 3DGS
by introducing semantic-aware grouping and parallel optimiza-
tion for large-scale urban reconstruction, enabling fine-grained
results without sacrificing image resolution. Tortho-Gaussian
(Wang et al., 2024) successfully applies 3DGS to the genera-
tion of TDOM, significantly improving production efficiency.
Moreover, this method achieves high-quality orthophoto results
in complex environments. However, their method exhibits geo-
metric distortions and texture blurring in sparse-view scenarios,
which is naturally common when dealing with boundary area of
photogrammetric UAV images.

In response to the degradation issues in sparse-view scenarios,
3DGS-derived methods have spawned another noteworthy re-
search focus: few-shot reconstruction. To address the in-
adequate Gaussian optimization caused by insufficient image
coverage, FSGS (Zhu et al., 2024) introduces a proximity-
guided gaussian unpooling strategy for densification, coupled
with monocular depth supervision to enforce geometric con-
straints on newly generated gaussians. This framework ulti-
mately achieves high-fidelity reconstruction under extremely
sparse view conditions.

To address the degenerated rendering performance of 3DGS-
based methods in sparse view scenarios, we present a novel
TDOM generation method, named HyGS-TDOM, a Hybrid
Gaussian Splatting Famework for generating TDOMs from
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both dense and sparse views. It integrates 3DGS and FSGS
through a unified pipeline, achieving efficient TDOM genera-
tion while maintaining high orthophoto quality in both dense-
view and sparse-view scenarios. Similar to the original 3DGS
pipeline, HyGS-TDOM likewise follows the three-stage work-
flow of sparse point cloud input, Gaussian optimization, and
differentiable rendering, but adopts a partitioning optimization
mechanism. More specifically, the proposed method is mainly
composed of five steps: image coverage dentification, 3DGS
optimization in dense-view scenarios, FSGS optimization in
sparse-view scenarios, 3D Gaussian field fusion, and ortho-
photo rendering. In the first step, We determine dense-view and
sparse-view scenarios based on overlapping degree, then as-
sign corresponding 3D sparse images and points. In the second
step, Gaussians in dense-view scenarios are optimized by 3DGS
method. In the third step, Gaussians in sparse-view scenarios
are optimized by FSGS method to enhance reconstruction qual-
ity in boundary area. In the fourth step, the Gaussians trained
by both methods are merged within the same coordinate system.
The final step replaces the perspective matrix in 3DGS with an
orthogonal projection matrix to generate orthophoto rendering
results. Our main contributions can be summarized as twofold:

1. To address the boundary degradation issues in 3DGS-
based TDOM methods, we present the first integration of
few-shot reconstruction (FSGS) into TDOM generation.

2. We propose a hybrid TDOM generation framework that
implements region-specific optimization. By differentially
processing dense-view scenarios with standard 3DGS and
sparse-view scenarios with FSGS, our method achieves
comprehensive high-quality reconstruction across full
scenes.

2. Related Work

A brief overview of TDOM generation methods in existing
studies is given in this section, including occlusion detection-
based methods, deep learning-based methods, differentiable
rendering-based methods. In addition, three innovative meth-
ods on 3DGS for sparse reconstruction are introduced.

2.1 Occlusion Detection-Based TDOM

To detect occlusion, various strategies have been developed, in-
cluding Z-buffer, angles, heights, vector polygons, texture syn-
thesis, and object-oriented methods.

The Z-buffer technique, initially adapted from computer graph-
ics, becomes foundational for TDOM occlusion handling. Am-
har et al. (1998) pioneered its photogrammetric use by raster-
izing 3D building models against a DTM, but artifacts near
building edges were attributed to rasterization and model sim-
plification. Zhou et al. (2005) introduced a multi-level Z-buffer
with adaptive DSM smoothing to reduce urban artifacts, though
their per-pixel depth sorting incurred high computational cost
in complex scenes. However, these methods are sensitive to the
DSM sampling interval, which may lead to incorrect occlusion
and visibility assessments.

Habib et al. (2007) introduced an occlusion detection technique
that calculates off-nadir angles between the lines of the per-
spective centers and the DSM pixels. However, this approach
necessitates repeated scanning of object points and angle com-
parisons, thereby decreasing efficiency. The height-based ap-
proach is an alternative methodology for true orthophoto gen-
eration using satellite imagery, which determines whether the

vision of a camera is occluded according to the elevation (Bang
et al., 2007). Oliveira and Galo (2013) proposed a height-
gradient-based occlusion detection method, in which Radial
height gradients are computed to identify occlusion starting
points, which are then projected onto the DSM for final occlu-
sion detection.

Vector polygons-based methods, exemplified by Sheng (2007),
employ a novel strategy of processing image pixels as vector
blocks instead of discrete points to mitigate artifacts inherent in
conventional Z-buffer techniques. Wang et al. (2018) matched
line segments across multi-view images to determine seamlines
and reconstructed a high-precision TIN (Triangulated Irregular
Network) that reduce facade misalignments in the true ortho-
photo mosaicking process. Li et al. (2019) proposed a fusion
algorithm based on the pulse-coupled neural network (PCNN)
model. Zhou and Wang (2016) proposed a object-oriented oc-
clusion detection method that uses a seed growth algorithm
to identify ghosting artefacts caused by building occlusions in
urban scenes.

2.2 Deep Learning-Based TDOM

Deep learning has increasingly been employed to mitigate oc-
clusions and improve geometric fidelity in TDOM generation.
Shin et al. (2020); Shin and Lee (2021) proposed true ortho-
photo generation based on a generative adversarial network
(GAN) with a Pix2Pix model using DSM and LiDAR data,
but their performance is highly dependent on the quality of the
LiDAR data. Ebrahimikia and Hosseininaveh (2022) focused
on geometric correction using reconstructed edge points from
UAV stereo images, aligning building outlines through edge-
guided mesh resampling. Most recently, Ebrahimikia et al.
(2024) developed urban-SnowflakeNet, a specialized CNN that
incorporates structural priors and edge saliency cues to enhance
facade integrity and spatial coherence. However, these methods
face challenges in generalizing to unseen urban geometries and
often require task-specific training data.

2.3 Neural Rendering-based TDOM

Implicit Reconstruction: The rapid advancements in NeRF
have profoundly transformed the 2D image reconstruction
methods. Lv et al. (2024) are the first to employ implicit neural
representations for the rapid generation of digital orthophotos,
exploring the potential of implicit reconstruction techniques.
Wei et al. (2024) extended NeRF to large-scale urban scenes by
integrating scene-block training strategy and multiview consist-
ency. Chen et al. (2024) proposed Ortho-NeRF, a UAV-oriented
pipeline that introduces orthogonal rendering constraints and
hierarchical sampling to better preserve structural integrity dur-
ing orthophoto projection. Qu et al. (2024) generated more
large area TDOM by inputting satellites images. Despite these
advances, current NeRF-based pipelines face limitations in ef-
ficiency and generalization.

Explicit Reconstruction: Recently, 3DGS, as a differentiable
rendering method that incorporates explicit spatial structural in-
formation, has started to supplant NeRF. Wang et al. (2024)
introduced Tortho-Gaussian, the first framework to leverage
3DGS for TDOM generation. The method introduces an ortho-
gonal splatting technique designed for rendering scale-uniform
images and enhances the 3D Gaussian representation through
a fully anisotropic Gaussian. Wang et al. (2025a) proposed
a 2D Gaussian splatting approach for efficient spatial recon-
struction without requiring full 3D modeling. Yang et al.
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(2025) introduced Ortho-3DGS, in which Gaussians are op-
timized with depth supervision and gradient-based refinement.
While achieving real-time rendering and high geometric preci-
sion, these methods remain sensitive to sparse view conditions.

2.4 Sparse View Reconstruction

Zhang et al. (2024) proposed CoR-GS to address overfitting and
inconsistency in sparse-view by co-training two Gaussian fields
and using their disagreement for regularization and pruning,
significantly improving reconstruction quality. Xiong (2024)
introduced SparseGS, which integrates depth priors and a novel
Unseen Viewpoint Regularization (UVR) to mitigate floaters
and background collapse, enabling real-time rendering from as
few as 3 images. Zhu et al. (2024) developed FSGS, which
grows Gaussians via a proximity-guided unpooling strategy,
aided by synthetic views and monocular depth priors to ensure
high-quality reconstruction. Therefore, the derivative methods
of sparse view 3DGS make it feasible to address the TDOM
quality degradation issue in boundary areas encountered in this
work.

3. Methodology

This section provides detailed explanations of our HyGS-
TDOM on generating TDOM, which contains three technical
parts: preliminaries of 3DGS and FSGS, the framework of our
hybrid optimization method, and orthophoto rendering.

3.1 preliminary

To make this paper more self-contained, we next outline basics
of 3DGS and FSGS.

3.1.1 3DGS The 3DGS pipeline reconstructs a radiance
field from multi-view images by representing the scene as a dy-
namic set of anisotropic 3D Gaussian ellipsoids which are ini-
tialized by sparse points using the SfM Schonberger and Frahm,
2016b algorithm. Each ellipsoid is defined by a set of attributes,
including position, covariance, opacity, and color. During the
training step, the screen is divided into 16x16 pixel tiles, with
each tile exclusively processing ellipsoids located within the
view frustum. Each ellipsoid’s position and covariance matrix
are projected onto the image plane and assigned unique identifi-
ers, followed by GPU-accelerated radix sorting. For each pixel,
contributions are computed in depth order and composited us-
ing alpha blending to ensure coherent rendering. The rendered
2D image is then compared with the original input images to
compute the loss function, which drives gradient-based optim-
ization of Gaussian ellipsoid parameters.

A Gaussian ellipsoid G, centered at u, with a covariance mat-
rix given by ¥ is represented by a 3D anisotropic Gaussian dis-
tribution.

Gi(x) = exp (—%(x— o) TS o m-)) M

where x and p are 3x1 vectors, while 3 is a 3x3 covariance
matrix. To guarantee the positive semi-definiteness of 3, it is
further parameterized by a rotation matrix R and a scaling mat-
rix S:

T =RSS'R' )

where, the scaling matrix and rotation matrix are represented by
a scaling factor and a quaternion, respectively, allowing them

to be updated during the training process. According to the
affine transformation propagation theorem, the Jacobian matrix
is introduced:

Y =Jgwsw'J" 3)

where W represents the viewpoint transformation matrix, while
J represents the Jacobian matrix associated with the projective
transformation whin its affine approximation. After depth sort-
ing, the radiance field employs an alpha blending algorithm for
pixel rendering which progressively accumulates colors based
on the opacity of Gaussian ellipsoids:
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c; represents the predicted color. The final splatting opacity o,
is obtained by multiplying the predicted opacity «, with the
splatted 2D Gaussian distribution. z* and pl, are coordinates
splatted in 2D images plane.

3.1.2 FSGS To address degenerated reconstruction in
sparse view scenarios, FSGS introduces two enhancements that
extend the original 3DGS framework to operate robustly with
2-5 input views. The core idea of FSGS is to improve both the
density control and geometry supervision of Gaussian ellips-
oids in scenarios where multi-view consistency is not available.
This is achieved through two key mechanisms: (1) a proximity-
guided unpooling strategy, which enhances the adaptive density
control mechanism in 3DGS; (2) monocular depth supervision
from pseudo-novel views, which supplements the photometric
loss in 3DGS with geometry guidance, thereby improving re-
construction fidelity in sparse-view scenarios.

Proximity-guided Gaussian Unpooling: 3DGS is initialized
from SfM points, and its performance is strongly dependent
on quality of the initialized points. FSGS constructs a direc-
ted graph, referred to as the proximity graph, to connect each
existing ellipsoid with its nearest K neighbors by computing the
proximity

D = K — min(d;;) (7

where, d;j is calculated via d;; = ||u: — pj]|, representing
the Euclidean distance among the centers of ellipsoid G; and
ellipsoid G;. The assigned proximity score P; to Gaussian G
is calculated as the average distance to its K nearest neighbors:

1 K
ji=

If the proximity score of a Gaussian exceeds the threshold ¢,
new ellipsoids will grow at the center of each edge, connecting
the “source” and “destination” ellipsoids.

Geometry Guidance with Pseudo Views and Depth Supervi-
sion: In contrast to 3DGS that employs only original input im-
ages, FSGS employs pseudo views from unobserved perspect-
ives for augmentation. Specifically, it synthesizes novel views
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Figure 1. Overview of our HyGS-TDOM. Through two specific training solutions, our method can generate TDOM that maintain high
quality in both dense-view and sparse-view scnearios.

by sampling between the two nearest cameras: first computing
the average orientation of these cameras, then interpolating a
pseudo view with intermediate viewing direction. Compared to
the loss function in 3DGS, the FSGS framework incorporates an
additional monocular depth loss to strengthen geometric con-
straints, which is implemented using a pre-trained depth estim-
ator. For each input view, the system generates pseudo-depth
maps (Dest) using the pre-trained monocular depth model,
while the rendered depth (D,as) of the Gaussian field is com-
puted via z-buffer accumulation. Depth loss function is as fol-
lows:

Corr(Dys, Degt) = Cov(Dras, Dest) ©)

\/Var(ﬁms)\/ar(ﬁcst)

Combing all together, the training loss :

L(G,C) =X, HC —¢| +rop-ssmm(c, ¢y
1 ————
L psim
£1 (10

+ A3 HCOIT(DraSa Dcst)Hl
—_—

L regularization

where Li, and Lgsim stands for the photometric loss term
between predicted images and input images.

3.2 Overview of the Proposed Framework

Our HyGS-TDOM aims to generate high-fidelity TDOM by in-
tegrating 3DGS and FSGS under a region-specific optimization
framework.

As illustrated in Fig. 1, upon receiving the sparse point cloud
input, we divide it into two subsets: one subset retains a com-
plete copy of the point cloud and undergoes standard 3DGS
pipeline processing to optimize Gaussian ellipsoids in dense-
view regions; the other subset undergoes view transformation
to extract point clouds from boundary areas, which are then
processed using the FSGS framework incorporating proximity-
guided unpooling and monocular depth supervision to address
boundary degenerated issues. Following separate optimization
procedures, our method then merges the resulting Gaussian
sets to construct a unified 3D scene representation. For or-
thophoto generation, we replace the default perspective projec-
tion with an orthographic projection during the rendering stage.
Our work enables pixel-level rendering that maintains vertical-
view geometric consistency, ultimately producing TDOM res-

ults with images of various overlapping degree and occlusion-
aware capabilities.

3.2.1 3D Gassuian optimzation To address the prevalent
issue of uneven spatial view coverage in UAV images, espe-
cially in edge flight strips, where features often have only 2-4
image coverages, we employ a manual partitioning strategy to
separately process dense and sparse regions.

Specifically, we first train the 3DGS pipeline using the complete
sparse point cloud to obtain well-reconstructed central areas.
For the sparse-view region, we manually select a subset of input
images that correspond to edge-covering views. Then, during
the “create-from-cloud” function of 3D Gaussian initialization,
we filter the sparse point cloud using the image-to-point asso-
ciations recorded in point3D document, extracting only those
3D points observed by the selected edge-view images. These
filtered points are then instantiated as Gaussian ellipsoids and
passed exclusively to the FSGS pipeline for training.

3.2.2 Fusion of ellipsoids from original 3DGS and FSGS
To integrate the results of the partitioning optimization, a spa-
tial fusion of the Gaussian ellipsoids generated independently
by the 3DGS and FSGS pipelines is conducted. Due to the fact
that both ellipsoids originate from the same SfM point cloud
and share a unified global coordinate system, they can be dir-
ectly aligned. After the two sets of ellipsoids are independently
optimized, they are directly merged by concatenation, without
requiring any spatial registration.

The process begins by identifying a central camera, selected as
the one closest to the centroid of all camera centers. Its view-
point transformation matrix is used to define the canonical ori-
entation for merging. Using this reference, the optimized ellips-
oids produced by both pipelines are loaded and rotated into the
same coordinate system. With the ellipsoids aligned, a rectan-
gular cropping box is defined around the central view, repres-
enting the dense-view region confidently handled by the 3DGS
branch. We then apply spatial filtering: remove 3DGS ellips-
oids outside the box and FSGS ellipsoids inside it. This com-
plementary partitioning avoids overlap and guarantees a smooth
transition between dense and sparse regions. Once filtered, the
remaining ellipsoids are merged into a unified point cloud. The
result is a spatially coherent representation that retains high-
fidelity detail in the central area and effectively extends recon-
struction to edge regions with sparse coverage.
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3.3 Orthographic Projection for TDOM Rendering

To produce a geometrically accurate TDOM, the final Gaussian
ellipsoids is rendered using orthogonal projection, replacing the
default perspective projection in the 3DGS pipeline in Fig. 2.
This type of projection accurately eliminates building facades,
fulfilling the fundamental requirements for TDOM.

6666
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Perspective projection (P) : :E”;NN Orthographic projection (O)
Figure 2. perspective projection and orthogonal projection
(Shirley et al., 2009)

In orthophoto rendering, both the mean and the covariance of
each ellipsoid need to be projected appropriately. For the mean,
the standard perspective transformation is replaced with an or-
thogonal projection matrix P, defined as:

= 0 0 =
0 2’ 0 _t+b
p=| 0 o 9 i an
Zl—Z2n Zl—Z2n
0 0 1

This matrix maps 3D world coordinates into an orthogonal clip
space bounded by the parameters [, r, b, ¢, 2, 25, corresponding
to the left, right, bottom, top, near, and far planes of the view-
ing box. Unlike perspective projection, this mapping maintains
parallel lines and constant scale regardless of depth. Since the
orthogonal projection is affine, we can linearly approximate its
effect on the covariance using the Jacobian matrix. The 2D pro-
jected covariance becomes:

Y =JnJ? (12)

Under orthogonal conditions, J becomes much simpler than in
the perspective case and remains constant for all points in view,
simplifying computation. Differentiating projected coordinates,
we can obtain:

0 0
=2 0 (13)
0 0

With both mean and covariance correctly transformed, the ren-
derer can blend overlapping ellipsoids on the 2D plane. This
orthogonal rendering strategy enables the accurate generation
of TDOM outputs from the fused 3D representation.

4. Experiments

In this section, comprehensive experimental results are repor-
ted to demonstrate the efficacy of the proposed HyGS-TDOM.
We conduct qualitative and quantitative evaluations along with
ablation studies on multiple datasets.

4.1 Experiment settings

Experimental Data: In this study, we conduct experiments
using the NPU DroneMap dataset(Bu et al., 2016), contain-

ing 1920x1080 resolution aerial videos (30Hz) captured across
diverse regions in China (Shaanxi/Henan/Hubei) with varying
land cover types and terrain characteristics.

To better simulate the sparse view, We manually conducted
edge-image sparsification on the npu dataset, ensuring that peri-
pheral objects were covered by only 2—4 views.

Experiments protocols: The experimental evaluation in this
paper is conducted from three perspectives: qualitative as-
sessment, quantitative assessment, and ablation study. First,
for qualitative assessment, comprehensive visual comparis-
ons are conducted between several traditional photogram-
metric software, including ContextCapture, MetaShape, and
Pix4DMapper. The comparison focuses on multiple aspects, in-
cluding building edges, building facades, weak textures, slender
structures, and vegetation areas. Second, for the quantitative
assessment, we evaluate the relative accuracy using MetaShape
and Pix4DMapper as reference. Finally, we conduct ablation
studies to analyze the effect of critical parameters in our frame-
work. (1) Sampling resolution: Experiments are conducted un-
der varying spatial resolutions to examine their influence on the
level of detail in the generated TDOM. (2) Overlap: By incre-
mentally reducing the number of input images, we evaluate the
reconstruction performance of 3DGS and FSGS under varying
overlap conditions.

Experimental Detail: In the 3DGS training stage, the number
of iterations was set to 30,000. For FSGS training, 10,000 it-
erations were used. For hyperparameters in the FSGS pipeline,
depth-pseudo-weight was set to 0.03, and the sample-pseudo-
interval was configured to 50 steps. During fusion, for the NPU
dataset, a rectangular bounding box was applied with the range
of (-4, 2) along the x-axis and (—4, 4) along the y-axis. All ex-
periments were conducted on four NVIDIA GeForce RTX 4090
GPUs.

4.2 Qualitative Evaluation

As shown in Fig. 3, detailed TDOM patches generated by the
four methods are presented.

Building Edges: Building edges are expected to conform to
the actual geometric structure of buildings, without irregular
distortions, and the seams between adjacent buildings should
be accurately aligned. As illustrated in Fig. 3 (columns (a) and
(b)), the TDOMs generated by ContextCapture, Metashape, and
Pix4DMapper exhibit varying degrees of structural distortion
and misalignment at building boundaries (highlighted by red
boxes). In contrast, our HyGS-TDOM method maintains more
complete structures in the same regions, with sharper edges and
higher overall geometric consistency.

Building facades: The extent to which building facades can be
fully resolved reflects the effectiveness of occlusion detection
in the true orthophoto generation process. As shown in Fig. 3
(columns (c) and (d)), ContextCapture and MetaShape fail to
completely eliminate the fagades in the orthophoto generation
process, resulting in varying degrees of facade visibility in the
final images. In contrast, our HyGS-TDOM method effectively
remove building fagades. The results strictly preserve the top-
down view, closely aligning with the intended characteristics of
TDOM representations.

Weak Textures: In weak-texture regions such as water sur-
faces, as illustrated in column (e), ContextCapture suffer from
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Figure 3. Qualitative comparison of TDOMs generated by commercial softwares and our method on NPU DroneMap dataset.

texture blurring and geometric drift resulting in visible holes.
In contrast, our method demonstrates greater stability in weak-
texture regions. The resulting TDOM show no significant geo-
metric distortion or drift, thereby ensuring improved visual co-
herence and representational quality.

Slender Structures: Slender structures, such as railings and
stair edges, are typically difficult to represent accurately in
TDOM due to their narrow geometry. As shown in columns
(f) and (g), distortions appear in the railings in ContextCapture
output. Both Metashape and Pix4DMapper struggle to preserve
the original architectural curvature and continuity in the statue
sections of the statue. In contrast, our method maintains the
geometric continuity and boundary clarity of these fine-scale
structures during the training process.

Vegetation Area: In vegetation areas, the non-rigid nature of-
ten leads to displacement and deformation during UAV flights.
As illustrated in columns (h) and (i), ContextCapture pro-
duce noticeable color discontinuities along the edges of trees.
The other two methods demonstrate blurring effects of vary-
ing severity. Our method produces more natural imagery. The
transitions to surrounding regions are smooth, especially at the
boundaries between the edge of the tree and the surface of the
ground.

Figure 4. The final TDOM by HyGS-TDOM

4.3 Quantitative Evaluation

Due to the absence of 3D ground control points, we eval-
uated the relative accuracy of the TDOMs using Metashape

and Pix4DMapper as reference baselines. On the generated
TDOMs, we randomly selected eight sets of line segments for
measurement. The first six sets were located in dense-view re-
gions, while the last two were selected from boundary regions.
Each set contains a pair of line segments defined by building
corners, and the ratio of their lengths is used as an indicator
of TDOM consistency. Ideally, this ratio should remain stable
across all TDOMs.

We then calculated the absolute and relative errors of these
length ratios, as summarized in Table 1. The average relat-
ive and absolute errors were 0.418% and 0.003113 between
HyGS-TDOM and Metashape, and 0.570% and 0.005152
between HyGS-TDOM and Pix4DMapper. It is noteworthy that
Metashape exhibited significant geometric distortions in edgel
and edge2, resulting in notably larger relative and absolute er-
rors. Therefore, the corresponding measurements in these re-
gions were excluded. These findings demonstrate that the pro-
posed HyGS-TDOM framework achieves a level of geometric
accuracy comparable to commercial software, confirming its re-
liability for precise reconstruction tasks.

4.4 Ablation Studies

This section conducts ablation studies from two perspectives:
spatial resolution and overlap.

r=1 =2 =4 =8

Figure 5. Results of TDOM using different Spatial Resolutions.
From left to right, the spatial resolution decreases.

4.4.1 spatial resolution: Varying the spatial resolution in-
fluences both the final resolution of the generated TDOM and
the number of ellipsoids present within each tile. To assess this
effect, experiments were conducted at four different spatial res-
olution scales: 1, 1/2, 1/4, and 1/8.
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Table 1. Accuracy Evaluation Based on MetaShape and Pix4DMapper

ID | Ours | MetaShape ‘ Pix4DMapper
‘ Ratio ‘ Ratio Relative Error(%)  Absolute Error ‘ Ratio Relative Error(%)  Absolute Error
1 0.99500 | 1.00000 0.50000 0.005000 1.00297 0.79438 0.007968
2 0.81868 | 0.82255 0.47080 0.003873 0.82120 0.30701 0.002521
3 0.29167 | 0.29296 0.44071 0.001291 0.29268 0.34722 0.001016
4 1.48958 | 1.49051 0.06192 0.000923 1.48640 0.21384 0.003178
5 0.77083 | 0.77750 0.85745 0.006667 0.77647 0.72601 0.005637
6 0.51623 | 0.50531 0.18002 0.000928 0.52153 1.01573 0.005297
Edgel | 1.79302 | 4821456 +07490 0:049483 1.80147 0.46924 0.008453
Edge2 | 1.04437 | +64777 261377 8:026602 1.03722 0.68913 0.007148
Mean ‘ - ‘ - 0.41848 0.003113 ‘ - 0.57032 0.005152

As shown in Fig. 5, the proposed method successfully captures
ground objects at all tested resolution levels, indicating its cap-
ability to produce TDOM products at multiple levels of detail.
A clear improvement in image fidelity and structural detail is
observed as the spatial resolution increases toward the original
image resolution. This improvement can be attributed to the
behavior of ellipsoids during the alpha-blending process.

4.4.2 overlap: The number of views is used to express the
percentage of forward overlap. To investigate the performance
of 3DGS and FSGS in boundary areas, a specific area was se-
lected from the dataset. All 16 images containing this region
were identified, and eight subsets were constructed, containing
2,4, 6,8, 10, 12, 14, and 16 images, respectively. Each sub-
set was used to train and render with both the 3DGS and FSGS
methods. Visual and quantitative comparisons were performed.

PSNR

2 4 6 8 10 12 14 16
number of Views

Figure 6. Comparison under different numbers of views.

ours

3DGS-based

Figure 7. Visualization effects for different number of views.

As shown in Fig. 6, under extremely sparse conditions (num-
ber of views < 6), the PSNR of the FSGS reaches approxim-
ately 35, whereas that of the 3DGS remains around 20, indicat-
ing that FSGS significantly outperforms 3DGS in sparse view

scenarios. Under moderately sparse conditions (6 < number
of views < 10), both methods achieve comparable PSNR val-
ues around 35, suggesting similarly high reconstruction quality.
When sufficient views are available (more than 10), 3DGS sur-
passes FSGS. This observation suggests that the pseudo-depth
self-supervised framework positively contributes to scene re-
construction in sparse. However, in dense view, the input views
already offer sufficient structural cues, incorporating pseudo-
depth may introduce cumulative errors stemming from depth
estimation noise, ultimately leading to a decline in reconstruc-
tion accuracy. In addition, Fig. 7 demonstrates the visualization
effects.

5. Conclusion

This paper proposes a hybrid training framework, HyGS-
TDOM, that integrates 3D Gaussian Splatting (3DGS) and
Few-Shot Gaussian Splatting (FSGS) for the generation of True
Digital Orthophoto Map (TDOM). By leveraging the superior
performance of FSGS in extremely sparse-view scenarios,our
hybrid method can address the quality degradation that often
occur in boundary area with limited views using conventional
3DGS-based methods. Experimental results demonstrate that
HyGS-TDOM achieves accuracy and visual quality comparable
to commercial software. In the future, two promising directions
may be explored. First, the selection of edge-strip images in
this study was performed manually. Automated identification
of edge regions could improve the overall processing efficiency.
Then, while all experiments in this paper are conducted in an
offline setting, 3DGS possesses the potential for real-time ren-
dering. Therefore, enabling real-time TDOM generation rep-
resents a valuable and practical extension of this work.
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