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Abstract:

LiDAR-based simultaneous localization and mapping (SLAM) plays a crucial role in applications such as search and rescue,
infrastructure inspection, and underground exploration. However, conventional LiDAR-based methods often exhibit significantly
reduced accuracy in degenerate environments. To address this challenge, this paper proposes a simple yet effective linear continuous-
time FMCW (Frequency-Modulated Continuous Wave) LiDAR odometry method that tightly integrates Doppler constraints and point-
to-plane constraints within a sliding-window-based factor graph optimization framework. The proposed method is comprehensively
validated using datasets collected from a vehicle equipped with an Aeva | FMCW LiDAR in both typically degenerate scenes and
highway scenarios. Experimental results demonstrate that the proposed method achieves the lowest trajectory root mean square error
(RMSE) among the three sequences out of the total eight sequences, outperforming all compared methods. Notably, on Sequence 7,

which spans an approximately trajectory length of 7,300 m, our method achieves a minimum trajectory RMSE of 10.19 m.
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1. Introduction

As a fundamental technology for unmanned systems, LiDAR
SLAM (Simultaneous Localization and Mapping) enables
precise pose estimation and environmental reconstruction
through sequential point cloud registration, finding essential
applications in search and rescue, infrastructure inspection and
underground space exploration (Zhao et al., 2024; Yang et al.,
2025). The seminal breakthrough in 3D LiDAR odometry was
achieved by LOAM (Zhang and Singh, 2014). As of the time of
writing, LOAM maintains its position as the top-ranked LiDAR-
only method on the KITTI Odometry Benchmark. Subsequent
research has produced various methodological extensions (Zhang
et al., 2024). To address the challenges posed by high-dynamic
motions, CT-ICP (Dellenbach et al., 2022) introduced a linear
continuous-time LiDAR odometry framework considering intra-
scan pose continuity and inter-scan discontinuity. Building on
this, Traj-LO (Zheng and Zhu, 2024) developed a sliding-
window optimization that tightly couples the geometric
constraints from LiDAR points with trajectory smoothness
constraints. Wu et al. (2023a) proposed an adaptive frame length
LiDAR odometry that dynamically adjusts the frame length
through analysis of the motion state and matching features.

Conventional LiDAR odometry frameworks exhibit significantly
reduced accuracy or even failure in feature-sparse scenarios such
as tunnels, long corridors, and open terrains, due to insufficient
stable geometric features for robust scan matching (Chen et al.,
2024). Although degeneracy-aware strategies have been
developed for point cloud registration, such approaches can only
mitigate rather than completely eliminate the effects of geometric
degeneracy (Tuna et al., 2024; Wu et al., 2025). To address this
limitation, the emerging frequency-modulated continuous wave
(FMCW) LIiDAR technology (Zhang et al., 2020) presents a
promising advancement by integrating Doppler velocity
measurements alongside traditional geometric data, thereby
providing complementary motion constraints that could enhance
state estimation reliability under challenging environments.
Hexsel et al. (2022) pioneered Doppler ICP (DICP) algorithm
using FMCW LIiDAR, incorporating radial wvelocity and
geometric constraints into a joint optimization framework to
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enable robust point cloud registration in feature-denied
environments. While their work focused on discrete registration
frameworks, Wu et al. (2023b) introduced the first continuous-
time FMCW LiDAR odometry, named STEAM-DICP, which
uses Gaussian process regression for refined trajectory estimation.
Addressing the computational bottleneck in STEAM-DICP, Pang
et al. (2024) proposed an efficient Doppler LiDAR odometry
based on IESKF (lterative Error State Kalman Filter) framework,
through temporal scan slicing and vehicle kinematic modelling.
Currently, the number of relevant studies is limited.

In this paper, we propose a simple yet effective linear continuous-
time FMCW LiDAR odometry method that tightly integrates
Doppler constraints and point-to-plane geometric constraints,
differing from Wu et al.’s (2023b) approach. To mitigate
approximation errors induced by linear motion assumptions, the
frame duration is sliced below the conventional 100ms. A sliding
window optimization framework is implemented, incorporating
three key constraints: marginalized prior constraints from
historical states, geometric constraints of downsampled LiDAR
points to the map, and Doppler velocity constraints of
downsampled LiDAR points.

The remainder of the paper is structured as follows. Section 2
introduces the proposed doppler-enhanced FCMW LiDAR
odometry. Section 3 details the validation datasets and
experimental results while also delineating the methodological
limitations and prospective research avenues. The conclusion is
outlined in Section 4.

2. Methodology

Our method takes FMCW LiDAR frames as input and estimates
the continuous-time trajectory by employing sliding-window-
based factor graph optimization. Figure 1 illustrates the workflow
of our proposed method. Firstly, a single frame point cloud data
(typically acquired within 100 ms) is segmented and reorganized
into smaller, temporally equal segments based on a predefined
segment duration, in contrast to the work by Lin and Zhang
(2020). Therefore, any remaining data will be segmented with the
subsequent frame. Subsequently, a factor graph incorporating
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geometric constraints, Doppler constraints and marginalization
constraints is constructed and optimized based on Gauss-Newton
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Figure 1. Workflow of the proposed FMCW LiDAR odometry. The system takes the FMCW LiDAR point cloud as input and outputs
the continuous-time local trajectory. Firstly, a single frame point cloud data is segmented into smaller segments to better approximate
the linear motion assumption. Subsequently, a sliding-window-based factor graph incorporating LiDAR point-to-plane factors, Doppler
factors and a marginalization factor is constructed and optimized. Finally, the voxel map is updated using the estimated pose, which is

not depicted in the figure.

2.1 Frame Segmentation Based on Linear Continuous-time
Assumption

Continuous-time trajectory representation, in contrast to discrete-
time representation, enables simultaneous point cloud distortion
correction and motion estimation, offering a more rigorous
approach. A linear motion assumption is employed within each
segment. The duration of these segments At is determined based
on the movement status, typically less than the frame duration,
generally providing a better approximation of the linear motion
assumption.

Suppose the poses at the start and end time of any segment are
T, and T, respectively; then, any pose T(t) within this segment
duration can be computed as:

t —
T(t) = Tsexp<

ts log(T;1T 1
t—t og(Ts'Te) |, €))
e S

where t; and t, are the start and end times of the segment,
respectively, and exp(+) and log(-) denote the exponential and
logarithm maps of the SE(3).

2.2 Sliding-Window-Based Factor Graph Optimization

To balance efficiency and accuracy, a sliding-window-based
factor graph is maintained. The window contains K segments.
The state vector X = {T,, T, ..., Tx,,} consists of the poses
associated to these segments. The start and end pose of each
segment are optimized. For example, if K = 2, then the number
of poses to be optimized is 3. When a new segment is added to
the factor graph, the oldest segment is removed. Subsequently, a

marginalization prior factor is derived to retain information from
the segment removed from the window.

The geometric factor is derived by matching downsampled
LiDAR points to the closest locally fitted plane in the voxel map.
Unlike discrete-time methods, there is no need for motion
distortion correction beforehand. The LiDAR point-to-plane
residual egeometric CaN be computed as:

€geometric = u? ) T(t?)p? + d?' ()
where p? denotes the i-th raw point in the n-th segment. T(t]*)
denotes the pose of the point at its acquisition time ¢]* using
equation (1), and {uf’, d'} represents the coefficient of the
closest plane in the voxel map of p}'. Here, u} is the normal
vector of the plane, and d}' is the distance from the origin to
the plane.

The Doppler factor is derived from the geometric
relationship between the Doppler measurement d and the

system velocity:

d=-v-L 3)

lIpll
where v denotes the system velocity in the coordinate frame
at the time t,,. Therefore, the Doppler factor can be computed
as:
Pe—DPs P

1 L 4
& Tl @
where ps and R are the translation and rotation part of T,
respectively. To accelerate the optimization process, only the
Doppler measurements from the downsampled LiDAR points are
utilized to construct Doppler factors. Owing to the linear motion

doppler = d + Ry
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assumption, the system velocity at the ¢, can be directly derived
from the velocity at the start time of the segment.

The cost function E of the corresponding factor graph can be
represented as:

E(X) = Egeomet‘ric + Edopple‘r + Emarginr (5)
where Egeometric and E gy, denote the sum of the least-
squares form of the residuals egeometric aNd eqoppier
respectively. Epqrgin Can be referred to in Zheng and Zhu (2024).
The cost function is optimized using the Gauss-Newton method.

3. Experiment Results

We evaluated our method's performance on real-world FMCW
LiDAR sequences from Wu et al. (2023b), acquired using an
Aeva Aeries | sensor featuring: 120¥H) %< 30<V) FoV, 300 m
maximum range, 3 cm/s Doppler precision, and 10 Hz sampling
rate. The Aeva dataset, comprising eight sequences that cover

urban tunnels and highway scenarios, was used for a comparative
analysis against state-of-the-art approaches, including CT-ICP
(Dellenbach et al., 2022), Trja-LO (Zheng and Zhu, 2024) and
STEAM-DICP (Wu et al., 2023b). Sequences 0-3 exhibit fewer
geometric features with correspondingly shorter trajectories,
whereas  Sequences 4-7 contain  moderate  geometric
characteristics with longer trajectories. Table 1 shows the dataset
description. Figure 2 presents sample 3D LiDAR data of
representative scenes from the dataset.

Traj-LO and our method were implemented by C++ and tested
on a computer equipped with an Intel i7-14700K CPU and 64G
RAM. The segment duration At was set to 40 ms, and the
segment number K was set to 3. The results for CT-ICP and
STEAM-DICP were calculated using the trajectory provided by
Wau et al. (2023b).

Trajectory length/m

Num. of frames

Characteristics

Seq0 860 837 Tunnel, poor geometric
Seql 907 658 ' features
Seq2 689 301
Seq3 4942 1762
Seq4 8876 6343 Freeway/Highway/
Seq5 7836 4734 Parkway, moderate
Seq6 10310 5083 geometric features
Seq7 7328 4012
Table 1. Dataset description.
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Figure 2. Comparative LiDAR scene representations in the Aeva dataset.
Aeva dataset Seq0 Seqgl Seq2 Seq3 Seq4 Seq5 Seqb Seq7
CT-ICP 4.79 2855 1594 1165 3361 1469 382 33.32
Traj-LO 2.22 1381 36.09 1723 28.0 1072 5429  14.76
STEAM-DICP 3.31 3.14 0.93 24.62 17.16 47.41 23.13 43.03
Our Method 2.53 2.95 1.11 22.27 16.27 21.45 36.85 10.19

Table 2. Trajectory RMSE comparison on test sequences (unit: meters). Bold indicates best results; underline indicates second-best
results.

Table 2 compares the root mean square errors (RMSE) of
absolute trajectory error (ATE) on the test sequences. We
calculated the ATE with the evo tool, performing Umeyama
alignment based on all trajectory points between the evaluated
trajectories with the ground truth. Our method achieves the
lowest RMSE results among the three sequences, which is the
best among all the compared methods. On Sequence 1 and 2, CT-
ICP and Traj-LO demonstrate significantly higher localization
errors compared to Doppler-enhanced methods, quantitatively
validating the effectiveness of Doppler velocity constraints in
degraded scenarios. On Sequence 7 with approximately 7,300 m
trajectory length, our method achieves the minimum trajectory
RMSE of 10.19 m. On Sequence 6, Traj-LO achieves the largest
trajectory RMSE of 54.29 m, as high-dynamic motions in this
sequence violate the trajectory smoothness assumption.
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Figure 3 demonstrates the trajectories estimated by our method
and baseline methods on the Aeva dataset. For better
visualization and comparison, we performed Umeyama
alignment based on the first 200 trajectory points. Quantitative
metrics in Table 2 demonstrate strong alignment with the
trajectory result in Figure 3, whereas discrepancies are observed
specifically in Sequence 4. This phenomenon can be attributed to
the Umeyama alignment before ATE calculation. It is suggested
to integrates ATE metric with qualitative trajectory visualization
to holistically assess algorithm performance.

There still exists room for improvement in our method. In future
work, we plan to adaptively adjust the frame length to handle
more complex motion dynamics with the assisting of Doppler
measurements.

Seq 1l

—100
—200
E
> _300
—400 — Ground Truth
— CT-ICP
— Traj-LO
=500 —— sTEAM-DICP
—— OurMethod

o

100 200 300 400

X/m

(b)

500

600

700

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLVI1I-1-W5-2025-147-2025 | © Author(s) 2025. CC BY 4.0 License.

150



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

400

300

é 200

100

4000
3000

2000

Y/m

1000

—1000

7000

6000

5000

4000

Y/m

3000

2000

1000

0

Seq 2 Seq 3
Ground Truth 3000 = Ground Truth
CT-ICP — CT-ICP
Traj-LO —— Traj-LO
STEAM-DICP 2500 —— STEAM-DICP
OurMethod = OurMethod
2000
£ 1500
>
1000
500
0
100 200 300 400 500 0 500 1000 1500 2000 2500 3000 3500 4000
X/m X/m
(c) (d)
Seq 4 Seq 5
Ground Truth 0
CT-ICP
Traj-LO
STEAM-DICP —1000
OurMethod
—2000
g —-3000
>
-4000
—5000 —— Ground Truth
— CT-ICP
6000 —— Traj-LO
—— STEAM-DICP
—— OurMethod
—=7000
1000 2000 3000 4000 5000 6000 7000 8000 —=2000 o] 2000 4000 6000
X/im X/m
(e) )
Seq 6 Seq 7
Ground Truth 0
CT-ICP
Traj-LO
STEAM-DICP -=1000
OurMethod
—2000
;.E_ —3000
—4000
= Ground Truth
—5000 — CT-ICP
— Traj-LO
= STEAM-DICP
—6000 —— QurMethod
—-2000 0 2000 4000 6000 —2000 -1000 (4] 1000 2000 3000 4000 5000
X/m X/m
() (h)

Figure 3. Trajectories estimated by our method and baseline methods on the Aeva dataset. Subfigures (a)-(h) correspond to Seq0
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4. Conclusion

FMCW LiDAR is a promising perception technology capable of
acquiring dense point clouds along with additional Doppler
measurements. However, due to its higher cost, there have been
relatively few studies on LiDAR odometry utilizing this
technology. This paper proposes a simple yet effective FMCW
LiDAR odometry approach to better handle degenerate scenes
such as tunnels. The core idea is to segment each frame into
smaller segments to better approximate the linear motion
assumption. In the future, it is anticipated that Doppler
measurements will be utilized more effectively.
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