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Abstract:  

LiDAR-based simultaneous localization and mapping (SLAM) plays a crucial role in applications such as search and rescue, 

infrastructure inspection, and underground exploration. However, conventional LiDAR-based methods often exhibit significantly 

reduced accuracy in degenerate environments. To address this challenge, this paper proposes a simple yet effective linear continuous-

time FMCW (Frequency-Modulated Continuous Wave) LiDAR odometry method that tightly integrates Doppler constraints and point-

to-plane constraints within a sliding-window-based factor graph optimization framework. The proposed method is comprehensively 

validated using datasets collected from a vehicle equipped with an Aeva I FMCW LiDAR in both typically degenerate scenes and 

highway scenarios. Experimental results demonstrate that the proposed method achieves the lowest trajectory root mean square error 

(RMSE) among the three sequences out of the total eight sequences, outperforming all compared methods. Notably, on Sequence 7, 

which spans an approximately trajectory length of 7,300 m, our method achieves a minimum trajectory RMSE of 10.19 m. 
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1. Introduction  

As a fundamental technology for unmanned systems, LiDAR 

SLAM (Simultaneous Localization and Mapping) enables 

precise pose estimation and environmental reconstruction 

through sequential point cloud registration, finding essential 

applications in search and rescue, infrastructure inspection and 

underground space exploration (Zhao et al., 2024; Yang et al., 

2025). The seminal breakthrough in 3D LiDAR odometry was 

achieved by LOAM (Zhang and Singh, 2014). As of the time of 

writing, LOAM maintains its position as the top-ranked LiDAR-

only method on the KITTI Odometry Benchmark. Subsequent 

research has produced various methodological extensions (Zhang 

et al., 2024). To address the challenges posed by high-dynamic 

motions, CT-ICP (Dellenbach et al., 2022) introduced a linear 

continuous-time LiDAR odometry framework considering intra-

scan pose continuity and inter-scan discontinuity. Building on 

this, Traj-LO (Zheng and Zhu, 2024) developed a sliding-

window optimization that tightly couples the geometric 

constraints from LiDAR points with trajectory smoothness 

constraints. Wu et al. (2023a) proposed an adaptive frame length 

LiDAR odometry that dynamically adjusts the frame length 

through analysis of the motion state and matching features. 

 

Conventional LiDAR odometry frameworks exhibit significantly 

reduced accuracy or even failure in feature-sparse scenarios such 

as tunnels, long corridors, and open terrains, due to insufficient 

stable geometric features for robust scan matching (Chen et al., 

2024). Although degeneracy-aware strategies have been 

developed for point cloud registration, such approaches can only 

mitigate rather than completely eliminate the effects of geometric 

degeneracy (Tuna et al., 2024; Wu et al., 2025). To address this 

limitation, the emerging frequency-modulated continuous wave 

(FMCW) LiDAR technology (Zhang et al., 2020) presents a 

promising advancement by integrating Doppler velocity 

measurements alongside traditional geometric data, thereby 

providing complementary motion constraints that could enhance 

state estimation reliability under challenging environments. 

Hexsel et al. (2022) pioneered Doppler ICP (DICP) algorithm 

using FMCW LiDAR, incorporating radial velocity and 

geometric constraints into a joint optimization framework to 

enable robust point cloud registration in feature-denied 

environments. While their work focused on discrete registration 

frameworks, Wu et al. (2023b) introduced the first continuous-

time FMCW LiDAR odometry, named STEAM-DICP, which 

uses Gaussian process regression for refined trajectory estimation. 

Addressing the computational bottleneck in STEAM-DICP, Pang 

et al. (2024) proposed an efficient Doppler LiDAR odometry 

based on IESKF (Iterative Error State Kalman Filter) framework, 

through temporal scan slicing and vehicle kinematic modelling. 

Currently, the number of relevant studies is limited. 

 

In this paper, we propose a simple yet effective linear continuous-

time FMCW LiDAR odometry method that tightly integrates 

Doppler constraints and point-to-plane geometric constraints, 

differing from Wu et al.’s (2023b) approach. To mitigate 

approximation errors induced by linear motion assumptions, the 

frame duration is sliced below the conventional 100ms. A sliding 

window optimization framework is implemented, incorporating 

three key constraints: marginalized prior constraints from 

historical states, geometric constraints of downsampled LiDAR 

points to the map, and Doppler velocity constraints of 

downsampled LiDAR points. 

 

The remainder of the paper is structured as follows. Section 2 

introduces the proposed doppler-enhanced FCMW LiDAR 

odometry. Section 3 details the validation datasets and 

experimental results while also delineating the methodological 

limitations and prospective research avenues. The conclusion is 

outlined in Section 4. 

 

2. Methodology 

Our method takes FMCW LiDAR frames as input and estimates 

the continuous-time trajectory by employing sliding-window-

based factor graph optimization. Figure 1 illustrates the workflow 

of our proposed method. Firstly, a single frame point cloud data 

(typically acquired within 100 ms) is segmented and reorganized 

into smaller, temporally equal segments based on a predefined 

segment duration, in contrast to the work by Lin and Zhang 

(2020). Therefore, any remaining data will be segmented with the 

subsequent frame. Subsequently, a factor graph incorporating 
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geometric constraints, Doppler constraints and marginalization 

constraints is constructed and optimized based on Gauss-Newton 

method. Finally, the voxel map employed for point cloud 

matching is updated. 

 

 
Figure 1. Workflow of the proposed FMCW LiDAR odometry. The system takes the FMCW LiDAR point cloud as input and outputs 

the continuous-time local trajectory. Firstly, a single frame point cloud data is segmented into smaller segments to better approximate 

the linear motion assumption. Subsequently, a sliding-window-based factor graph incorporating LiDAR point-to-plane factors, Doppler 

factors and a marginalization factor is constructed and optimized. Finally, the voxel map is updated using the estimated pose, which is 

not depicted in the figure. 

 

2.1 Frame Segmentation Based on Linear Continuous-time 

Assumption 

Continuous-time trajectory representation, in contrast to discrete-

time representation, enables simultaneous point cloud distortion 

correction and motion estimation, offering a more rigorous 

approach. A linear motion assumption is employed within each 

segment. The duration of these segments ∆𝑡 is determined based 

on the movement status, typically less than the frame duration, 

generally providing a better approximation of the linear motion 

assumption.  

 

Suppose the poses at the start and end time of any segment are 

𝑻𝑠 and 𝑻𝑒, respectively; then, any pose 𝑻(t) within this segment 

duration can be computed as: 

𝑻(𝑡) = 𝑻𝑠exp (
𝑡 − 𝑡𝑠

𝑡𝑒 − 𝑡𝑠
log(𝑻𝑠

−1𝑻𝑒)) , (1) 

where 𝑡𝑠  and 𝑡𝑒  are the start and end times of the segment, 

respectively, and exp(∙) and log(∙) denote the exponential and 

logarithm maps of the SE(3). 

 

2.2 Sliding-Window-Based Factor Graph Optimization 

To balance efficiency and accuracy, a sliding-window-based 

factor graph is maintained. The window contains K segments. 

The state vector 𝑿 = {𝑻1, 𝑻2, … , 𝑻𝐾+1} consists of the poses 

associated to these segments. The start and end pose of each 

segment are optimized. For example, if 𝐾 = 2, then the number 

of poses to be optimized is 3. When a new segment is added to 

the factor graph, the oldest segment is removed. Subsequently, a 

marginalization prior factor is derived to retain information from 

the segment removed from the window. 

 

The geometric factor is derived by matching downsampled 

LiDAR points to the closest locally fitted plane in the voxel map. 

Unlike discrete-time methods, there is no need for motion 

distortion correction beforehand. The LiDAR point-to-plane 

residual 𝑒𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐  can be computed as: 

𝑒𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =  𝒖𝑖
𝑛 ∙ 𝑻(𝑡𝑖

𝑛)𝒑𝑖
𝑛 + 𝑑𝑖

𝑛 , (2) 

where 𝒑𝑖
𝑛 denotes the i-th raw point in the n-th segment. 𝑻(𝑡𝑖

𝑛) 
denotes the pose of the point at its acquisition time 𝑡𝑖

𝑛 using 
equation (1), and {𝒖𝑖

𝑛, 𝑑𝑖
𝑛} represents the coefficient of the 

closest plane in the voxel map of 𝒑𝑖
𝑛. Here, 𝒖𝑖

𝑛 is the normal 
vector of the plane, and 𝑑𝑖

𝑛  is the distance from the origin to 
the plane. 
 
The Doppler factor is derived from the geometric 
relationship between the Doppler measurement 𝑑  and the 
system velocity: 

𝑑 = −𝒗 ∙
𝒑

‖𝒑‖
, (3) 

where 𝒗 denotes the system velocity in the coordinate frame 
at the time 𝑡𝒑. Therefore, the Doppler factor can be computed 

as:  

𝑒𝑑𝑜𝑝𝑝𝑙𝑒𝑟 = 𝑑 + 𝑹𝑠
−1

𝒑𝑒 − 𝒑𝑠

∆𝑡
∙

𝒑

‖𝒑‖
, (4) 

where 𝒑𝑠  and 𝑹𝑠  are the translation and rotation part of 𝑻𝑠 , 

respectively. To accelerate the optimization process, only the 

Doppler measurements from the downsampled LiDAR points are 

utilized to construct Doppler factors. Owing to the linear motion 
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assumption, the system velocity at the 𝑡𝒑 can be directly derived 

from the velocity at the start time of the segment. 

 

The cost function E of the corresponding factor graph can be 

represented as: 

𝐸(𝑿) = 𝐸𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 + 𝐸𝑑𝑜𝑝𝑝𝑙𝑒𝑟 + 𝐸𝑚𝑎𝑟𝑔𝑖𝑛, (5) 

where 𝐸𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐  and 𝐸𝑑𝑜𝑝𝑝𝑙𝑒𝑟  denote the sum of the least-

squares form of the residuals 𝑒𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐  and 𝑒𝑑𝑜𝑝𝑝𝑙𝑒𝑟 , 

respectively. 𝐸𝑚𝑎𝑟𝑔𝑖𝑛 can be referred to in Zheng and Zhu (2024). 

The cost function is optimized using the Gauss-Newton method. 

 

3. Experiment Results 

We evaluated our method's performance on real-world FMCW 

LiDAR sequences from Wu et al. (2023b), acquired using an 

Aeva Aeries I sensor featuring: 120°(H) × 30°(V) FoV, 300 m 

maximum range, 3 cm/s Doppler precision, and 10 Hz sampling 

rate. The Aeva dataset, comprising eight sequences that cover 

urban tunnels and highway scenarios, was used for a comparative 

analysis against state-of-the-art approaches, including CT-ICP 

(Dellenbach et al., 2022), Trja-LO (Zheng and Zhu, 2024) and 

STEAM-DICP (Wu et al., 2023b). Sequences 0-3 exhibit fewer 

geometric features with correspondingly shorter trajectories, 

whereas Sequences 4-7 contain moderate geometric 

characteristics with longer trajectories. Table 1 shows the dataset 

description. Figure 2 presents sample 3D LiDAR data of 

representative scenes from the dataset. 

 

Traj-LO and our method were implemented by C++ and tested 

on a computer equipped with an Intel i7-14700K CPU and 64G 

RAM. The segment duration ∆𝑡  was set to 40 ms, and the 

segment number K was set to 3. The results for CT-ICP and 

STEAM-DICP were calculated using the trajectory provided by 

Wu et al. (2023b).  

 

 

 Trajectory length/m Num. of frames Characteristics 

Seq0 860 837 
Tunnel, poor geometric 

features 
Seq1 907 658 

Seq2 689 301 

Seq3 4942 1762 

Freeway/Highway/ 

Parkway, moderate 

geometric features 

Seq4 8876 6343 

Seq5 7836 4734 

Seq6 10310 5083 

Seq7 7328 4012 

Table 1. Dataset description. 

 

 
(a) Seq0 

 
(b) Seq04 
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(c) Seq07 

Figure 2. Comparative LiDAR scene representations in the Aeva dataset. 
 

Aeva dataset Seq0 Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 

CT-ICP 4.79 28.55 15.94 11.65 33.61 14.69 38.2 33.32 

Traj-LO 2.22 13.81 36.09 17.23 28.0 10.72 54.29 14.76 

STEAM-DICP 3.31 3.14 0.93 24.62 17.16 47.41 23.13 43.03 

Our Method 2.53 2.95 1.11 22.27 16.27 21.45 36.85 10.19 

Table 2. Trajectory RMSE comparison on test sequences (unit: meters). Bold indicates best results; underline indicates second-best 

results. 

 

Table 2 compares the root mean square errors (RMSE) of 

absolute trajectory error (ATE) on the test sequences. We 

calculated the ATE with the evo tool, performing Umeyama 

alignment based on all trajectory points between the evaluated 

trajectories with the ground truth. Our method achieves the 

lowest RMSE results among the three sequences, which is the 

best among all the compared methods. On Sequence 1 and 2, CT-

ICP and Traj-LO demonstrate significantly higher localization 

errors compared to Doppler-enhanced methods, quantitatively 

validating the effectiveness of Doppler velocity constraints in 

degraded scenarios. On Sequence 7 with approximately 7,300 m 

trajectory length, our method achieves the minimum trajectory 

RMSE of 10.19 m. On Sequence 6, Traj-LO achieves the largest 

trajectory RMSE of 54.29 m, as high-dynamic motions in this 

sequence violate the trajectory smoothness assumption.  

 

Figure 3 demonstrates the trajectories estimated by our method 

and baseline methods on the Aeva dataset. For better 

visualization and comparison, we performed Umeyama 

alignment based on the first 200 trajectory points. Quantitative 

metrics in Table 2 demonstrate strong alignment with the 

trajectory result in Figure 3, whereas discrepancies are observed 

specifically in Sequence 4. This phenomenon can be attributed to 

the Umeyama alignment before ATE calculation. It is suggested 

to integrates ATE metric with qualitative trajectory visualization 

to holistically assess algorithm performance. 

 

There still exists room for improvement in our method. In future 

work, we plan to adaptively adjust the frame length to handle 

more complex motion dynamics with the assisting of Doppler 

measurements. 

 

 
            (a)                                                                                                   (b) 
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            (c)                                                                                                 (d) 

 
             (e)                                                                                                       (f) 

   
            (g)                                                                                                       (h)  

Figure 3. Trajectories estimated by our method and baseline methods on the Aeva dataset. Subfigures (a)-(h) correspond to Seq0 

through Seq7, respectively. 
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4. Conclusion 

FMCW LiDAR is a promising perception technology capable of 

acquiring dense point clouds along with additional Doppler 

measurements. However, due to its higher cost, there have been 

relatively few studies on LiDAR odometry utilizing this 

technology. This paper proposes a simple yet effective FMCW 

LiDAR odometry approach to better handle degenerate scenes 

such as tunnels. The core idea is to segment each frame into 

smaller segments to better approximate the linear motion 

assumption. In the future, it is anticipated that Doppler 

measurements will be utilized more effectively.  
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