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Abstract 

 

To address perception challenges for autonomous vehicles and drones in complex urban environments, this paper proposes a novel 

Bird’s Eye View (BEV) fusion method MSA-BEVFusion to integrate LiDAR and RGB cameras via multi-scale attention 

mechanisms. Unlike existing methods that tightly couple image and LiDAR features or BEV-based approaches relying on simplistic 

convolutional fusion, our method first integrates multi-scale image features through the MFPN module and employs multi-scale 

attention enhancement to achieve deep fusion between camera and LiDAR features before feeding them into the detection head, 

ultimately delivering superior detection performance. Experiments on the nuScenes dataset demonstrate excellent performance, 

achieving 0.2% NDS and 0.4% mAP improvements over BEVFusion-MIT. The method shows robust 3D detection in dark, rainy, 

and snowy conditions, with enhanced accuracy for small or occluded objects. Attention heatmaps reveal effective cross-modal 

alignment, synergizing LiDAR’s geometric precision with camera texture details. This work bridges modality gaps through 

bidirectional interaction, advancing robust environmental perception while mitigating spatial discordance in unified BEV 

representations. 

 

 

1. Introduction 

Driven by the rapid advancement of autonomous driving, 3D 

object detection methods have undergone significant 

development. Numerous approaches are based on 2D images, 

while a considerable number rely on 3D point clouds acquired 

from LiDAR. 2D images offer abundant texture details but are 

deficient in depth information which is crucial for 3D detection. 

Mainstream depth estimation methods, such as the LSS (Philion 

et al., 2020) which explicitly estimates depth and the BEVDepth 

(Li et al., 2023) incorporating depth supervision, while 

demonstrating commendable detection performance, do not 

attain the same level of accuracy as LiDAR point clouds, which 

inherently possess precise depth ground truth. While LiDAR 

point clouds are rich in spatial information, their unordered and 

sparse nature still poses significant challenges for object 

detection. Consequently, fusion methods combining these two 

modalities have gradually emerged as a dominant direction in 

current research. 

 

Fusion approaches can be broadly classified into three levels 

based on their integration point: early-fusion, deep-fusion, and 

late-fusion. Figure 1 illustrates representative examples of these 

three fusion approaches. 

  

 
Figure 1. Examples of three different fusion models 
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Early-fusion primarily occurs at the raw data level. This 

includes approaches such as projecting rich color information 

from images onto 3D point clouds or projecting upsampled 

point clouds back to the image plane. Representative methods 

include PFF3D (Zhang et al., 2020), Painted PointRCNN (Vora 

et al., 2020), and others. However, these approaches can lead to 

the loss of integrity of data from both modalities and imposes 

strict requirements on sensor calibration. Furthermore, in case 

of failure in one sensor stream, the entire fusion method 

becomes ineffective. Deep-fusion, on the other hand, performs 

integration at the feature level, combining features from both 

camera and LiDAR point clouds. This results in fused features 

such as 3D voxels or geometric primitives like pillars. 

Representative methods include EPNet (Huang et al., 2020), 

3D-CVF (Yoo et al., 2020), and others. This approach typically 

exhibits stronger robustness and has gained popularity in recent 

years. Late-fusion, also known as object-fusion, refers to 

approaches that independently predict detection proposals from 

each modality and then perform post-processing on the 

combined proposals. Late-fusion can be regarded as a kind of 

ensemble method that utilizes multi-modal information to 

optimize the final proposal. A representative method is CLOCS 

(Pang et al., 2020). However, late fusion’s overall prediction 

performance can be compromised when the detection proposals 

from one modality are of poor quality. 

 

Bird’s Eye View (BEV) appeared as a prominent data 

representation in autonomous driving algorithms in recent years, 

and most BEV-based fusion algorithms fall under the deep-

fusion paradigm. In the context of object detection, BEV 

effectively eliminates perspective distortion and enhances 3D 

spatial perception capabilities by mapping multi-view camera or 

LiDAR feature to a unified bird’s eye view coordinate system. 

For LiDAR-camera fusion scenarios, the BEV framework 

provides a naturally aligned intermediate representation for 

integrating data across modalities, enabling deep integration of 

visual semantic information with LiDAR’s precise space 

information. This significantly enhances detection robustness in 

complex dynamic environments. Furthermore, its top-down 

perspective and capability to consolidate global contextual 

information help mitigate occlusion problems and optimize the 

detection performance for distant and occluded targets, 

rendering the method more practical and reliable in real-world 

applications like autonomous driving.  

 

We propose MSA-BEVFusion, which optimizes the processes 

of feature extraction and fusion within the BEV spatial 

framework. The main contributions we made are summarized as 

follows: 

 We decouple the multi-camera and LiDAR sensors, which 

ensures a functional detection head with minimal 

performance degradation upon single sensor failure. 

 We introduce a Merged Feature Pyramid Network (MFPN) 

module for optimizing the image feature extraction 

pipeline. This module integrates multi-scale image features 

rather than discarding portions as is common in many 

existing methods, thus guaranteeing the preservation of 

features across all scales. 

 We propose a Multi-scale Attention (MSA) module, 

enabling the model to adaptively adjust the weights of 

camera and LiDAR features via self-attention during 

training. This lightweight yet effective module leads to a 

notable improvement in NDS and mAP scores compared to 

baseline methods. 

 

2. Related Work 

2.1 BEV-based object detection 

BEV approaches have been widely adopted. Among them, 

popular BEV-based detection methods are broadly categorized 

as camera-only methods and LiDAR-visual fusion methods. 

 

2.1.1 Camera-Only Methods: While the detection performance 

of camera-only methods may not match that of LiDAR-based or 

LiDAR-visual fusion methods, the high cost of LiDAR sensors 

drives many autonomous driving manufacturers today to 

continue extensive research into camera-only algorithms. 

Consequently, detection algorithms based on multi-camera 

images still hold significant research value. As previously 

discussed, a key challenge for 3D object detection from pure 

images is that two-dimensional images inherently lack depth 

information. In 3D space, points that are distant due to depth 

differences can appear very close in the 2D image plane, 

whereas points with similar depth can be far apart in the image. 

This renders image context completely uninformative for depth 

estimation. Lift-Splat-Shoot (Philion et al., 2020) implicitly 

unprojects multi-view images into 3D feature frustums through 

the Lift operation, then efficiently aggregates features into BEV 

grid via Splat for cross-camera fusion. It addresses monocular 

depth ambiguity through differentiable depth probability 

modeling, learns BEV semantic representations end-to-end, and 

enables interpretable motion planning through trajectory 

Shooting in the BEV space. BEVDet (Huang et al., 2022) 

innovatively performs multi-camera 3D object detection in BEV 

space, addresses overfitting through customized BEV-space 

data augmentation, proposes Scale-NMS to adaptively adjust 

detection boxes by object categories for small-target precision, 

and employs modular architecture to decouple image-view 

encoder from BEV-space learning. BEVDepth (Li et al., 2022) 

explicitly supervises depth prediction networks using point-

cloud-generated depth ground truth, enhances cross-device 

robustness through camera-parameter-encoded networks, 

refines BEV-space feature projection via depth-axis 

convolutions to mitigate semantic drift, and achieves high-

precision 3D detection by integrating efficient voxel pooling 

with multi-frame fusion under unified BEV representation. 

 

2.1.2 LiDAR-camera fusion methods: LiDAR-camera fusion 

approaches achieve high detection precision by capitalizing on 

the respective strengths of camera and LiDAR modalities. 

While practical implementations are generally costly, their 

inherent reliability has nonetheless established them as a 

dominant research direction in recent years. However, 

traditional methods are often relied on accurate and invariant 

sensor calibration. When a sensor fails or calibration drifts due 

to vibrations or other physical disturbances, the model often 

fails catastrophically. BEVFusion-MIT (Liu et al., 2023) and 

BEVFusion-ADLAB (Liang et al., 2022) introduced a 

pioneering approach by proposing an innovative unified BEV 

framework that integrates multi-modal features into a shared 

BEV space while preserving both geometric structure and 

semantic richness. By addressing computational bottlenecks in 

view transformation through optimized BEV pooling operations, 

the method achieves efficient cross-modal feature projection. A 

fully-convolutional encoder further aligns heterogeneous sensor 

data, enabling seamless multi-task learning for diverse 

perception objectives. Its core advancement lies in preserving 

dense semantic information from cameras through ray-based 

projection, overcoming the information loss caused by sensor 

density disparities in conventional fusion approaches. This 

design offers a versatile and computationally effective paradigm 
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for multimodal perception systems. BEVFormer (Li et al., 2025) 

even pushes it further by designing grid-shaped BEV queries to 

extract features from LiDAR point clouds and multi-view 

images via cross-modal attention in spatial domain, while 

recurrently fusing historical BEV features via self-attention for 

temporal coherence. This approach transcends conventional 

feature concatenation by enabling progressive interaction and 

mutual enhancement between modalities through query-level 

iterative optimization. The unified BEV representation flexibly 

supports multiple collaborative tasks including 3D detection, 

object tracking, and map construction, providing an efficient 

environmental perception framework for autonomous driving 

systems. 

 

2.2 Channel and spatial attention mechanisms 

One of the key research hotspots in computer vision in recent 

years is attention mechanisms applying weighting operations 

across channel and spatial dimensions of tensors. Squeeze-and-

excitation (SENet) (Hu et al., 2018) represents a seminal work 

in this area. It operates on the channel dimension of features by 

compressing and expanding through linear layers, and then 

learns per-channel weights via a sigmoid function. These 

weights are subsequently multiplied with the original feature 

maps, enabling the model during training to adaptively suppress 

less important channels and amplify more important ones. 

However, subsequent work has gradually revealed that 

modeling cross-channel relationships by reducing channel 

dimensionality can introduce detrimental side effects on deep 

visual feature extraction. CBAM (Woo et al., 2018) adaptively 

refines features through two sequential sub-modules: channel 

attention and spatial attention. The channel attention captures 

cross-channel information using both global average-pooling 

and max-pooling to generate channel weights, while the spatial 

attention aggregates features along channel dimensions and 

employs convolutional layers to produce spatial weights. CA 

(Hou et al., 2018) decomposes channel attention into two 

independent one-dimensional feature encoding processes 

aggregating features along horizontal and vertical axes 

respectively. By preserving directional coordinate information 

during spatial encoding, this method generates position-

sensitive attention maps that enable precise localization of 

target regions. EMA (Ouyang et al., 2023) groups channel 

dimensions into sub-features while preserving per-channel 

information and reducing computational costs. It introduces a 

novel cross-spatial learning mechanism that fuses spatial 

attention maps from different branches using matrix dot-product 

operations, enabling pixel-level cross-dimensional interaction. 

 

3. Methodology 

We propose MSA-BEVFusion, a multi-scale attention with 

cross-spatial driven fusion model which provides high-

performance detection in BEV space. 

 

3.1 Overview 

The workflow of our approach consists of three core 

components: multi-modal BEV feature extraction, attention-

based BEV feature fusion, and detection head. First, we extract 

features from both LiDAR point cloud and RGB images and 

project them both into the shared BEV space, aligning the 3D 

LiDAR data with the 2D camera features. Then, we apply a 

multi-scale attention based fusion model to combine the multi-

modal BEV features. Finally, a detection head is applied to 

obtain the final result of 3D object detection. An illustration of 

this approach is shown in Figure 2. 

 

 
Figure 2. Structure of MSA-BEVFusion 

 

 

3.2 multi-modal BEV feature extraction branch 

For the feature extraction module, we employ several classic 

and high-performing backbones to extract 2D and 3D features 

respectively. We also propose a neck module for integrating 

multi-scale features and utilize an efficient BEV pooling 

method when projecting image features into the BEV space. 

 

3.2.1 Camera image encoder: we select Swin-Transformer 

(Liu et al., 2021) as our 2D backbone. Unlike other transformer-

based encoders, Swint-T centers around hierarchical window 

attention, unifying computational efficiency and multi-scale 

feature representation while maintaining the global modeling 

capability of Transformers. The processing pipeline starts by 

partitioning the input image into non-overlapping 4 4  pixel 

patches, which are mapped through a learnable linear projection 

to a high-dimensional embedding space of dimension C, 

resulting in a feature map of size / 4 / 4H W . Following this, 

hierarchical representations are constructed through four stages 

of progressive downsampling. In each stage, a patch merging 

operation is applied to concatenate and then reduce the 

dimension of features from adjacent 2 2  patches, successively 

reducing the resolution to / 8 / 8H W , / 16 / 16H W , and 

ultimately / 32 / 32H W , forming multi-scale feature outputs. 

During this process, the Swin-Transformer module employs 

alternating standard window self-attention (W-MSA), which 

partitions the feature map into non-overlapping local windows 

of size M M , and performs self-attention computation within 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025 
13th International Conference on Mobile Mapping Technology (MMT 2025)  

“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20–22 June 2025, Xiamen, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W5-2025-153-2025 | © Author(s) 2025. CC BY 4.0 License.

 
155



 

 

each window. To overcome the limitations imposed by window 

boundaries on modeling long-range dependencies, a shifted 

window partitioning (SW-MSA) is introduced between adjacent 

layers. This is achieved by cyclically shifting the windows 

/ 2M    pixels towards the bottom-right before re-partitioning, 

enabling attention computation to dynamically capture 

contextual information across window boundaries. All in all, the 

outputs of the Swin-T module are three tensors 1 2 3, ,f f f  with 

shape of 2 8 8N C H W   , 4 16 16N C H W   and 

8 32 32N C H W   . To preserve and fuse features from 

three scales, the Merged Feature Pyramid Network (MFPN) 

module we proposed innovatively fuses features for subsequent 

spatial alignment purposes.  

 

Figure 3 illustrates the process of the MFPN module. 

Specifically, features from all scales are upsampled to a 

common base resolution 8 8H W , and their channels are 

adjusted to cameraC  using 1 1  convolutions. Finally, these 

features are concatenated along the channel dimension and then 

passed through a 3 3  convolution to extract deeper features, 

resulting in camera features with shape of 

8 8cameraN C H W   . Then following BEVFusion-MIT (Liu 

et al., 2023), we utilize LSS (Philion et al., 2020) to create 3D 

point cloud frustum indices by explicitly estimating the depth 

value for each feature pixel using the model. Then, using the 

pose relationships between the camera, LiDAR and ego-car 

coordinates, we employ an optimized BEV pooling method to 

accelerate the process of projecting camera features into the 

BEV space. 

 

 
Figure 3. The structure of MFPN module 

 

3.2.2 LiDAR point cloud encoder: For the LiDAR point cloud 

encoder, we employ a classic voxelization encoding approach. 

This involves first establishing a voxel grid for the point cloud, 

followed by performing feature extraction through sparse 

convolution (Graham et al., 2018). This method employs a 

collaborative mechanism of hash tables and feature matrices to 

efficiently process 3D sparse data. The workflow encodes input 

data into spatial coordinate hash tables and active-site feature 

matrices, dynamically establishing convolutional kernel 

position mapping rules between input and output sites through 

traversal operations. The core submanifold sparse convolution 

restricts feature computation exclusively to cases where the 

kernel center aligns with active input sites, preserving identical 

sparsity patterns between input and output layers. Usually, 

matrix multiply-add operations are rigorously confined to active 

regions, while integrated batch normalization and pooling 

operations enable full-spectrum sparse computation from 

feature extraction to multi-scale information fusion. This 

architecture fundamentally resolves computational redundancy 

in 3D space, achieving substantial reductions in computational 

overhead and memory consumption while maintaining high 

accuracy. The extracted voxel features are then compressed and 

flattened along the z-axis to align with the camera features in 

the BEV space. Finally, features from both modalities are now 

aligned in the BEV space. 

 

3.3 Multi-scale attention-based feature fuser 

Once features from both modalities are represented in the same 

BEV space, how to effectively fuse them becomes a topic of 

considerable interest. The easiest approach is direct 

concatenation. However, this method typically exhibits poor 

robustness. Convolutional is also a plausible choice, however, 

prior methods have shown that they struggle to effectively 

address the issue of spatial misalignment arising from depth 

estimation errors. To mitigate this issue, following EMA 

(Ouyang et al., 2023), we introduce the Multi-scale Attention 

(MSA) module, Extending this approach from 2D image 

processing to 3D tasks. The module is illustrated in Figure 4. 

The MSA module is designed to enhance feature representation 

through a cross-spatial learning approach while maintaining 

computational efficiency. MSA takes an input feature map 
N C H WX    and divides it into G  sub-feature groups 

 0 1 1, , , GX X X −
 along the channel dimension. To circumvent 

the influence of batch dimensions on the number of convolution 

kernels in traditional convolutions, MSA cleverly reshapes and 

permutes these groups into the batch dimension, forming input 

tensors with a shape of / /N C G H W   , where G  is much 

smaller than C . The module incorporates three parallel 

processing paths internally to extract attention weight 

descriptors. 

 

 
Figure 4. The structure of MSA module. 

 

Two of these paths belong to the 1 1  branch, which utilizes 1D 

global average pooling along the horizontal and vertical 

directions, respectively, to encode features. This 1D pooling 

operation effectively captures long-range dependencies in the 

corresponding direction and preserves precise positional 
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information in the other. The pooling output for the horizontal 

direction is represented as 

 

 ( ) ( )
0

1
,H

c c

i W

z H x H i
W  

=   (1) 

 

where cx  indicates the input features at c -th channel. With 

such encoding processes, MSA can capture the long-range 

dependencies at the horizontal direction and preserve precise 

positional information at the vertical direction. Similarly, the 

other one parallel route is directly from 1D global average-

pooling along the horizontal dimension direction and hence can 

be viewed as a collection of positional information along the 

vertical dimension direction. Then, the route utilizes the 1D 

global average-pooling along the vertical dimension direction to 

capture long-range interactions spatially and preserve the 

precise positional information along the horizontal dimension 

direction. The pooling output in C  at W  can be formulated as 

 

 ( ) ( )
0

1
,W

c c

j H

z W x j W
H  

=   (2) 

 

where cx  denotes the input feature at the c -th channel. These 

two sets of encoded features are concatenated along the image 

height dimension and processed by a shared 1 1  convolution. 

Subsequently, they undergo a nonlinear transformation via the 

Sigmoid function, and the intra-group channel attention maps 

are aggregated through simple multiplication, enabling adaptive 

calibration and interaction between channels. Since the 

positional information preserved along different spatial 

directions is complementary, this method helps MSA learn fine-

grained low-level features. 

 

The third path is the 3 3  branch, which employs a 3 3  

convolution to expand the feature space and capture multi-scale 

features. To further merge information from different spatial 

scales, MSA introduces cross-spatial information aggregation 

between the outputs of the 1 1  and 3 3  branches. In the 1 1  

branch, 2D global average pooling, which is formulated as 

 

 ( )
1

,
H W

c c

j i

z x i j
H W

=


  (3) 

 

is used to encode global spatial information. The pooled output 

is nonlinearly processed by a Softmax  function and then 

multiplied with the output of the 3 3  branch using matrix dot-

product, yielding the first spatial attention map. Similarly, by 

performing 2D global average pooling in the 3 3  branch and 

multiplying with the output of the 1 1  branch, a second spatial 

attention map is obtained, which retains complete spatial 

positional information. Finally, these two spatial attention maps 

are aggregated and processed through a Sigmoid function to 

generate attention weights finalA  used to weight the original 

feature map. The final output of MSA is represented as 

 

 out finalX X A=   (4) 

 

where   is element-wise multiplication. The output has the 

same size as the input feature map, and its cross-spatial learning 

approach effectively combines long-range dependencies and 

precise positional information, thereby enhancing feature 

representation capabilities. 

 

3.4 Decoder and detection head 

For the decoding part, we employ the classic SECOND (Yan et 

al., 2018) to perform further processing and preparation on the 

output features, with TransFusion (Bai et al., 2022) serving as 

the final detection head, which gives the final 2D and 3D 

bounding box results. We utilize FocalLoss as our classification 

and heatmap loss functions, and employ L1Loss as the 

bounding box regression loss function. 

 

4. Experiments 

4.1 Experimental settings 

4.1.1 Dataset: We use Nuscenes (Caesar et al., 2020) for our 

3D detection. The dataset covers diverse urban road scenarios 

and weather conditions. Each frame has six surround-view 

images at 1600×900 resolution and one 32-beam rotating 

LiDAR point cloud, synchronously capturing multi-modal data 

at 20Hz. It contains 1,000 driving sequences with 

approximately 20 seconds duration, including 400 k  keyframes 

and 1.4 million precisely annotated 3D bounding boxes 

spanning 23 subcategories such as vehicles, pedestrians, and 

traffic cones. All annotations include 8 motion state attributes 

and 6 visibility levels. The dataset is divided into 700 training 

scenes,150 validation scenes and 150 testing scenes, ensuring 

coverage of environmental diversities. We use nuScenes 

detection score (NDS) and mean average precision (mAP) as 

evaluation metrics. 

 

4.1.2 Implementation details: We utilize an NVIDIA RTX 

4090 GPU with 24GB of VRAM and implement the model 

using PyTorch 1.10 on Ubuntu 20.04 under the open-sourced 

MMDetection3D. The input images from the cameras were 

downsampled to a resolution of 256×704 pixels. The LiDAR 

point clouds were voxelized at a resolution of 0.075m×0.075m

×0.2m to convert the raw data into a structured format suitable 

for processing and fusion with the camera data. This setup 

allowed for efficient training and evaluation of the proposed 

fusion-based perception model. We train the camera encoder 

branch and the LiDAR encoder branch separately, training each 

for 20 epochs using the resolutions mentioned above. 

Subsequently, we train the fusion module, freezing the weights 

of the camera encoder. This stage involves a training duration of 

6 epochs, a batch size of 4, an initial learning rate of 52.5e− , 

and utilizes a cosine annealing learning rate schedule. We also 

employ BEV space data augmentation following BEVFusion-

MIT (Liu et al., 2023) for better result. No test-time 

augmentation is used during testing. 

 

4.2 Detection result 

Table 1 presents a comparison of the detection results of MSA-

BEVFusion in NuScenes val set with mainstream methods. ‘L’ 

means LiDAR-only and ‘L+C’ stands for LiDAR-camera fusion.
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Table 1. MSA-BEVFusion in NuScenes val set compared with 

mainstream methods. 

 

Benefiting from the multi-scale feature fusion facilitated by our 

designed MFPN module, as well as the multi-scale attention and 

cross-spatial properties of the MSA module, MSA-BEVFusion 

achieves relatively superior results on the NuScenes dataset. 

Our method improves mAP and NDS by 0.4% and 0.2% 

respectively, compared to BEVFusion-MIT, the state-of-the-art 

method without incorporating temporal context. For mean 

Average Scale Error (mASE), mean Average Orientation Error 

(mAOE), and mean Average Velocity Error (mAVE), our 

method also ranks first among the mainstream methods 

compared. Figure 5 presents a set of visualization results under 

rainy night conditions. It is evident that even when the raw 

image and point cloud data are of very poor quality due to 

extremely challenging lighting and reflection conditions, our 

method still accurately detects most objects, fully demonstrating 

the robustness of our proposed method. 

 
Figure 5. A frame of visualization result under night rainy 

condition 

 

4.3 Ablation study 

As previously stated, the MFPN and MSA modules we 

designed play significant roles in the superior performance of 

the model. In this section, we specifically demonstrate the 

individual contributions of these two modules through ablation 

studies. Table 2 summarizes the impact of different modules on 

the model’s performance. Specifically, the baseline employs a 

standard FPN module as the camera feature neck and uses 3×3 

convolution for feature fusion. The validation of the ablation 

studies was conducted on the NuScenes val set. 

 

MFPN MSA mAP↑ NDS↑ 

  68.1 70.9 

√  68.3 71.1 

 √ 68.4 71.3 

√ √ 68.9 71.6 

Table 2. The impact of different modules on the model’s 

performance in NuScenes val set. 

 

Evidently, both the MFPN and MSA modules contribute 

significantly to the improvement of the mode’s detection 

performance. When the MFPN module is used alone to 

optimize the encoding pipeline for camera features, the model’s 

performance on the NuScenes val set shows an improvement 

of 0.2% in both mAP and NDS compared to the baseline. Using 

the MSA module alone to optimize the feature fusion module 

with multi-scale attention, mAP and NDS are improved by 

0.3% and 0.4%, respectively. The full MSA-BEVFusion model 

shows even greater improvements of 0.8% in mAP and 0.7% in 

NDS compared to the baseline. This clearly highlights the 

positive impact of these two modules on enhancing detection 

performance and the rationale for combining them together for 

better performance. 

 

5. Conclusion 

In this paper, we present MSA-BEVFusion, a BEV object 

detection framework utilizing multi-scale attention for feature 

fusion. Our method decouples the interdependency between 

camera and LiDAR sensors present in traditional methods and 

innovatively utilizes the proposed MFPN and MSA modules for 

the decoding of camera features and the fusion of multimodal 

features. Our results demonstrate that the multi-scale feature 
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fusion and multi-scale attention approaches have a positive 

impact on the effectiveness and robustness of the model. We 

hope this work will advance further exploration into robust 

multimodal fusion techniques in the field of autonomous 

driving and other fields. 
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