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Abstract

To address perception challenges for autonomous vehicles and drones in complex urban environments, this paper proposes a novel
Bird’s Eye View (BEV) fusion method MSA-BEVFusion to integrate LIDAR and RGB cameras via multi-scale attention
mechanisms. Unlike existing methods that tightly couple image and LiDAR features or BEV-based approaches relying on simplistic
convolutional fusion, our method first integrates multi-scale image features through the MFPN module and employs multi-scale
attention enhancement to achieve deep fusion between camera and LiDAR features before feeding them into the detection head,
ultimately delivering superior detection performance. Experiments on the nuScenes dataset demonstrate excellent performance,
achieving 0.2% NDS and 0.4% mAP improvements over BEVFusion-MIT. The method shows robust 3D detection in dark, rainy,
and snowy conditions, with enhanced accuracy for small or occluded objects. Attention heatmaps reveal effective cross-modal
alignment, synergizing LiDAR’s geometric precision with camera texture details. This work bridges modality gaps through
bidirectional interaction, advancing robust environmental perception while mitigating spatial discordance in unified BEV
representations.

1. Introduction inherently possess precise depth ground truth. While LiDAR
point clouds are rich in spatial information, their unordered and

Driven by the rapid advancement of autonomous driving, 3D  sparse nature still poses significant challenges for object
object detection methods have undergone significant  detection. Consequently, fusion methods combining these two
development. Numerous approaches are based on 2D images,  modalities have gradually emerged as a dominant direction in
while a considerable number rely on 3D point clouds acquired current research.
from LiDAR. 2D images offer abundant texture details but are
deficient in depth information which is crucial for 3D detection. Fusion approaches can be broadly classified into three levels
Mainstream depth estimation methods, such as the LSS (Philion  based on their integration point: early-fusion, deep-fusion, and
et al., 2020) which explicitly estimates depth and the BEVDepth  |ate-fusion. Figure 1 illustrates representative examples of these
(Li et al., 2023) incorporating depth supervision, while three fusion approaches.
demonstrating commendable detection performance, do not
attain the same level of accuracy as LiDAR point clouds, which
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Figure 1. Examples of three different fusion models
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Early-fusion primarily occurs at the raw data level. This
includes approaches such as projecting rich color information
from images onto 3D point clouds or projecting upsampled
point clouds back to the image plane. Representative methods
include PFF3D (Zhang et al., 2020), Painted PointRCNN (Vora
et al., 2020), and others. However, these approaches can lead to
the loss of integrity of data from both modalities and imposes
strict requirements on sensor calibration. Furthermore, in case
of failure in one sensor stream, the entire fusion method
becomes ineffective. Deep-fusion, on the other hand, performs
integration at the feature level, combining features from both
camera and LiDAR point clouds. This results in fused features
such as 3D voxels or geometric primitives like pillars.
Representative methods include EPNet (Huang et al., 2020),
3D-CVF (Yoo et al., 2020), and others. This approach typically
exhibits stronger robustness and has gained popularity in recent
years. Late-fusion, also known as object-fusion, refers to
approaches that independently predict detection proposals from
each modality and then perform post-processing on the
combined proposals. Late-fusion can be regarded as a kind of
ensemble method that utilizes multi-modal information to
optimize the final proposal. A representative method is CLOCS
(Pang et al., 2020). However, late fusion’s overall prediction
performance can be compromised when the detection proposals
from one modality are of poor quality.

Bird’s Eye View (BEV) appeared as a prominent data
representation in autonomous driving algorithms in recent years,
and most BEV-based fusion algorithms fall under the deep-
fusion paradigm. In the context of object detection, BEV
effectively eliminates perspective distortion and enhances 3D
spatial perception capabilities by mapping multi-view camera or
LiDAR feature to a unified bird’s eye view coordinate system.
For LiDAR-camera fusion scenarios, the BEV framework
provides a naturally aligned intermediate representation for
integrating data across modalities, enabling deep integration of
visual semantic information with LiDAR’s precise space
information. This significantly enhances detection robustness in
complex dynamic environments. Furthermore, its top-down
perspective and capability to consolidate global contextual
information help mitigate occlusion problems and optimize the
detection performance for distant and occluded targets,
rendering the method more practical and reliable in real-world
applications like autonomous driving.

We propose MSA-BEVFusion, which optimizes the processes
of feature extraction and fusion within the BEV spatial
framework. The main contributions we made are summarized as
follows:
. We decouple the multi-camera and LiDAR sensors, which
ensures a functional detection head with minimal
performance degradation upon single sensor failure.
We introduce a Merged Feature Pyramid Network (MFPN)
module for optimizing the image feature extraction
pipeline. This module integrates multi-scale image features
rather than discarding portions as is common in many
existing methods, thus guaranteeing the preservation of
features across all scales.
We propose a Multi-scale Attention (MSA) module,
enabling the model to adaptively adjust the weights of
camera and LiDAR features via self-attention during
training. This lightweight yet effective module leads to a
notable improvement in NDS and mAP scores compared to
baseline methods.

2. Related Work
2.1 BEV-based object detection

BEV approaches have been widely adopted. Among them,
popular BEV-based detection methods are broadly categorized
as camera-only methods and LiDAR-visual fusion methods.

2.1.1 Camera-Only Methods: While the detection performance
of camera-only methods may not match that of LiDAR-based or
LiDAR-visual fusion methods, the high cost of LiDAR sensors
drives many autonomous driving manufacturers today to
continue extensive research into camera-only algorithms.
Consequently, detection algorithms based on multi-camera
images still hold significant research value. As previously
discussed, a key challenge for 3D object detection from pure
images is that two-dimensional images inherently lack depth
information. In 3D space, points that are distant due to depth
differences can appear very close in the 2D image plane,
whereas points with similar depth can be far apart in the image.
This renders image context completely uninformative for depth
estimation. Lift-Splat-Shoot (Philion et al., 2020) implicitly
unprojects multi-view images into 3D feature frustums through
the Lift operation, then efficiently aggregates features into BEV
grid via Splat for cross-camera fusion. It addresses monocular
depth ambiguity through differentiable depth probability
modeling, learns BEV semantic representations end-to-end, and
enables interpretable motion planning through trajectory
Shooting in the BEV space. BEVDet (Huang et al., 2022)
innovatively performs multi-camera 3D object detection in BEV
space, addresses overfitting through customized BEV-space
data augmentation, proposes Scale-NMS to adaptively adjust
detection boxes by object categories for small-target precision,
and employs modular architecture to decouple image-view
encoder from BEV-space learning. BEVDepth (Li et al., 2022)
explicitly supervises depth prediction networks using point-
cloud-generated depth ground truth, enhances cross-device
robustness  through camera-parameter-encoded  networks,
refines BEV-space feature projection via depth-axis
convolutions to mitigate semantic drift, and achieves high-
precision 3D detection by integrating efficient voxel pooling
with multi-frame fusion under unified BEV representation.

2.1.2 LiDAR-camera fusion methods: LiDAR-camera fusion
approaches achieve high detection precision by capitalizing on
the respective strengths of camera and LiDAR modalities.
While practical implementations are generally costly, their
inherent reliability has nonetheless established them as a
dominant research direction in recent years. However,
traditional methods are often relied on accurate and invariant
sensor calibration. When a sensor fails or calibration drifts due
to vibrations or other physical disturbances, the model often
fails catastrophically. BEVFusion-MIT (Liu et al., 2023) and
BEVFusion-ADLAB (Liang et al., 2022) introduced a
pioneering approach by proposing an innovative unified BEV
framework that integrates multi-modal features into a shared
BEV space while preserving both geometric structure and
semantic richness. By addressing computational bottlenecks in
view transformation through optimized BEV pooling operations,
the method achieves efficient cross-modal feature projection. A
fully-convolutional encoder further aligns heterogeneous sensor
data, enabling seamless multi-task learning for diverse
perception objectives. Its core advancement lies in preserving
dense semantic information from cameras through ray-based
projection, overcoming the information loss caused by sensor
density disparities in conventional fusion approaches. This
design offers a versatile and computationally effective paradigm
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for multimodal perception systems. BEVFormer (Li et al., 2025)
even pushes it further by designing grid-shaped BEV queries to
extract features from LiDAR point clouds and multi-view
images via cross-modal attention in spatial domain, while
recurrently fusing historical BEV features via self-attention for
temporal coherence. This approach transcends conventional
feature concatenation by enabling progressive interaction and
mutual enhancement between modalities through query-level
iterative optimization. The unified BEV representation flexibly
supports multiple collaborative tasks including 3D detection,
object tracking, and map construction, providing an efficient
environmental perception framework for autonomous driving
systems.

2.2 Channel and spatial attention mechanisms

One of the key research hotspots in computer vision in recent
years is attention mechanisms applying weighting operations
across channel and spatial dimensions of tensors. Squeeze-and-
excitation (SENet) (Hu et al., 2018) represents a seminal work
in this area. It operates on the channel dimension of features by
compressing and expanding through linear layers, and then
learns per-channel weights via a sigmoid function. These
weights are subsequently multiplied with the original feature
maps, enabling the model during training to adaptively suppress
less important channels and amplify more important ones.
However, subsequent work has gradually revealed that
modeling cross-channel relationships by reducing channel
dimensionality can introduce detrimental side effects on deep
visual feature extraction. CBAM (Woo et al., 2018) adaptively
refines features through two sequential sub-modules: channel
attention and spatial attention. The channel attention captures
cross-channel information using both global average-pooling
and max-pooling to generate channel weights, while the spatial
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attention aggregates features along channel dimensions and
employs convolutional layers to produce spatial weights. CA
(Hou et al., 2018) decomposes channel attention into two
independent one-dimensional feature encoding processes
aggregating features along horizontal and vertical axes
respectively. By preserving directional coordinate information
during spatial encoding, this method generates position-
sensitive attention maps that enable precise localization of
target regions. EMA (Ouyang et al., 2023) groups channel
dimensions into sub-features while preserving per-channel
information and reducing computational costs. It introduces a
novel cross-spatial learning mechanism that fuses spatial
attention maps from different branches using matrix dot-product
operations, enabling pixel-level cross-dimensional interaction.

3. Methodology

We propose MSA-BEVFusion, a multi-scale attention with
cross-spatial driven fusion model which provides high-
performance detection in BEV space.

3.1 Overview

The workflow of our approach consists of three core
components: multi-modal BEV feature extraction, attention-
based BEV feature fusion, and detection head. First, we extract
features from both LiDAR point cloud and RGB images and
project them both into the shared BEV space, aligning the 3D
LiDAR data with the 2D camera features. Then, we apply a
multi-scale attention based fusion model to combine the multi-
modal BEV features. Finally, a detection head is applied to
obtain the final result of 3D object detection. An illustration of
this approach is shown in Figure 2.

Camera
BEV
Features

Transform

Detection Head
(Transfusion)

LiDAR
BEV
Features

Detection Result

Figure 2. Structure of MSA-BEVFusion

3.2 multi-modal BEV feature extraction branch

For the feature extraction module, we employ several classic
and high-performing backbones to extract 2D and 3D features
respectively. We also propose a neck module for integrating
multi-scale features and utilize an efficient BEV pooling
method when projecting image features into the BEV space.

3.2.1 Camera image encoder: we select Swin-Transformer
(Liu et al., 2021) as our 2D backbone. Unlike other transformer-
based encoders, Swint-T centers around hierarchical window
attention, unifying computational efficiency and multi-scale
feature representation while maintaining the global modeling
capability of Transformers. The processing pipeline starts by

partitioning the input image into non-overlapping 4x4 pixel
patches, which are mapped through a learnable linear projection
to a high-dimensional embedding space of dimension C,
resulting in a feature map of size H / 4xW /4. Following this,
hierarchical representations are constructed through four stages
of progressive downsampling. In each stage, a patch merging
operation is applied to concatenate and then reduce the
dimension of features from adjacent 2x2 patches, successively
reducing the resolution to H /8xW /8, H/16xW /16 , and
ultimately H /32 xW /32, forming multi-scale feature outputs.
During this process, the Swin-Transformer module employs
alternating standard window self-attention (W-MSA), which
partitions the feature map into non-overlapping local windows
of size M xM , and performs self-attention computation within
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each window. To overcome the limitations imposed by window
boundaries on modeling long-range dependencies, a shifted
window partitioning (SW-MSA\) is introduced between adjacent
layers. This is achieved by cyclically shifting the windows

LM / 2J pixels towards the bottom-right before re-partitioning,

enabling attention computation to dynamically capture
contextual information across window boundaries. All in all, the
outputs of the Swin-T module are three tensors f, f,, f, with

shape of Nx2CxH/8xW/8 , Nx4CxH/16xW /16 and
N x8CxH/32xW /32 . To preserve and fuse features from

three scales, the Merged Feature Pyramid Network (MFPN)
module we proposed innovatively fuses features for subsequent
spatial alignment purposes.

Figure 3 illustrates the process of the MFPN module.
Specifically, features from all scales are upsampled to a
common base resolution H/8xW /8, and their channels are

adjusted to C... using 1x1 convolutions. Finally, these

features are concatenated along the channel dimension and then
passed through a 3x3 convolution to extract deeper features,
resulting in  camera  features  with  shape  of
N x C_ymera X H/8xW /8. Then following BEVFusion-MIT (Liu

et al., 2023), we utilize LSS (Philion et al., 2020) to create 3D
point cloud frustum indices by explicitly estimating the depth
value for each feature pixel using the model. Then, using the
pose relationships between the camera, LiDAR and ego-car
coordinates, we employ an optimized BEV pooling method to
accelerate the process of projecting camera features into the
BEV space.

A

Figure 3. The structure of MFPN module

3.2.2 LiDAR point cloud encoder: For the LiDAR point cloud
encoder, we employ a classic voxelization encoding approach.
This involves first establishing a voxel grid for the point cloud,
followed by performing feature extraction through sparse
convolution (Graham et al., 2018). This method employs a
collaborative mechanism of hash tables and feature matrices to
efficiently process 3D sparse data. The workflow encodes input
data into spatial coordinate hash tables and active-site feature
matrices, dynamically establishing convolutional kernel
position mapping rules between input and output sites through
traversal operations. The core submanifold sparse convolution
restricts feature computation exclusively to cases where the
kernel center aligns with active input sites, preserving identical
sparsity patterns between input and output layers. Usually,
matrix multiply-add operations are rigorously confined to active
regions, while integrated batch normalization and pooling
operations enable full-spectrum sparse computation from
feature extraction to multi-scale information fusion. This
architecture fundamentally resolves computational redundancy
in 3D space, achieving substantial reductions in computational
overhead and memory consumption while maintaining high
accuracy. The extracted voxel features are then compressed and
flattened along the z-axis to align with the camera features in
the BEV space. Finally, features from both modalities are now
aligned in the BEV space.

3.3 Multi-scale attention-based feature fuser

Once features from both modalities are represented in the same
BEV space, how to effectively fuse them becomes a topic of
considerable interest. The easiest approach is direct
concatenation. However, this method typically exhibits poor
robustness. Convolutional is also a plausible choice, however,
prior methods have shown that they struggle to effectively
address the issue of spatial misalignment arising from depth
estimation errors. To mitigate this issue, following EMA
(Ouyang et al., 2023), we introduce the Multi-scale Attention
(MSA) module, Extending this approach from 2D image
processing to 3D tasks. The module is illustrated in Figure 4.
The MSA module is designed to enhance feature representation
through a cross-spatial learning approach while maintaining
computational efficiency. MSA takes an input feature map

X e RVOHW and divides it into G sub-feature groups
[XO,Xl,...,XG&] along the channel dimension. To circumvent
the influence of batch dimensions on the number of convolution
kernels in traditional convolutions, MSA cleverly reshapes and
permutes these groups into the batch dimension, forming input
tensors with a shape of NxC//GxH xW , where G is much
smaller than C . The module incorporates three parallel

processing paths internally to extract attention weight
descriptors.
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Figure 4. The structure of MSA module.

Two of these paths belong to the 1x1 branch, which utilizes 1D
global average pooling along the horizontal and vertical
directions, respectively, to encode features. This 1D pooling
operation effectively captures long-range dependencies in the
corresponding direction and preserves precise positional
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information in the other. The pooling output for the horizontal
direction is represented as

WiOSiSW XC(H’i) (1)

where x, indicates the input features at c -th channel. With

such encoding processes, MSA can capture the long-range
dependencies at the horizontal direction and preserve precise
positional information at the vertical direction. Similarly, the
other one parallel route is directly from 1D global average-
pooling along the horizontal dimension direction and hence can
be viewed as a collection of positional information along the
vertical dimension direction. Then, the route utilizes the 1D
global average-pooling along the vertical dimension direction to
capture long-range interactions spatially and preserve the
precise positional information along the horizontal dimension
direction. The pooling output in C at W can be formulated as

W)= Y x(iw) @

H o552

where x, denotes the input feature at the c -th channel. These

two sets of encoded features are concatenated along the image
height dimension and processed by a shared 1x1 convolution.
Subsequently, they undergo a nonlinear transformation via the
Sigmoid function, and the intra-group channel attention maps
are aggregated through simple multiplication, enabling adaptive
calibration and interaction between channels. Since the
positional information preserved along different spatial
directions is complementary, this method helps MSA learn fine-
grained low-level features.

The third path is the 3x3 branch, which employs a 3x3
convolution to expand the feature space and capture multi-scale
features. To further merge information from different spatial
scales, MSA introduces cross-spatial information aggregation
between the outputs of the 1x1 and 3x3 branches. In the 1x1
branch, 2D global average pooling, which is formulated as

1 &Y .
e (i) ®

is used to encode global spatial information. The pooled output
is nonlinearly processed by a Softmax function and then
multiplied with the output of the 3x3 branch using matrix dot-
product, yielding the first spatial attention map. Similarly, by
performing 2D global average pooling in the 3x3 branch and
multiplying with the output of the 1x1 branch, a second spatial
attention map is obtained, which retains complete spatial
positional information. Finally, these two spatial attention maps
are aggregated and processed through a Sigmoid function to
generate attention weights A, used to weight the original

feature map. The final output of MSA is represented as

Xout =X ® Afinal (4)

where ® is element-wise multiplication. The output has the
same size as the input feature map, and its cross-spatial learning
approach effectively combines long-range dependencies and
precise positional information, thereby enhancing feature
representation capabilities.

3.4 Decoder and detection head

For the decoding part, we employ the classic SECOND (Yan et
al., 2018) to perform further processing and preparation on the
output features, with TransFusion (Bai et al., 2022) serving as
the final detection head, which gives the final 2D and 3D
bounding box results. We utilize FocalLoss as our classification
and heatmap loss functions, and employ L1Loss as the
bounding box regression loss function.

4. Experiments
4.1 Experimental settings

4.1.1 Dataset: We use Nuscenes (Caesar et al., 2020) for our
3D detection. The dataset covers diverse urban road scenarios
and weather conditions. Each frame has six surround-view
images at 1600>900 resolution and one 32-beam rotating
LiDAR point cloud, synchronously capturing multi-modal data
at 20Hz. It contains 1,000 driving sequences with
approximately 20 seconds duration, including 400 k keyframes
and 1.4 million precisely annotated 3D bounding boxes
spanning 23 subcategories such as vehicles, pedestrians, and
traffic cones. All annotations include 8 motion state attributes
and 6 visibility levels. The dataset is divided into 700 training
scenes,150 validation scenes and 150 testing scenes, ensuring
coverage of environmental diversities. We use nuScenes
detection score (NDS) and mean average precision (mAP) as
evaluation metrics.

4.1.2 Implementation details: We utilize an NVIDIA RTX
4090 GPU with 24GB of VRAM and implement the model
using PyTorch 1.10 on Ubuntu 20.04 under the open-sourced
MMDetection3D. The input images from the cameras were
downsampled to a resolution of 256x704 pixels. The LiDAR
point clouds were voxelized at a resolution of 0.075mx=0.075m
x0.2m to convert the raw data into a structured format suitable
for processing and fusion with the camera data. This setup
allowed for efficient training and evaluation of the proposed
fusion-based perception model. We train the camera encoder
branch and the LiDAR encoder branch separately, training each
for 20 epochs using the resolutions mentioned above.
Subsequently, we train the fusion module, freezing the weights
of the camera encoder. This stage involves a training duration of
6 epochs, a batch size of 4, an initial learning rate of 2.5,
and utilizes a cosine annealing learning rate schedule. We also
employ BEV space data augmentation following BEVFusion-
MIT (Liu et al., 2023) for better result. No test-time
augmentation is used during testing.

4.2 Detection result
Table 1 presents a comparison of the detection results of MSA-

BEVFusion in NuScenes val set with mainstream methods. ‘L’
means LiDAR-only and ‘L+C’ stands for LiDAR-camera fusion.
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Table 1. MSA-BEVFusion in NuScenes val set compared with
mainstream methods.

Benefiting from the multi-scale feature fusion facilitated by our
designed MFPN module, as well as the multi-scale attention and
cross-spatial properties of the MSA module, MSA-BEVFusion
achieves relatively superior results on the NuScenes dataset.
Our method improves mAP and NDS by 0.4% and 0.2%
respectively, compared to BEVFusion-MIT, the state-of-the-art
method without incorporating temporal context. For mean
Average Scale Error (MASE), mean Average Orientation Error
(mAOE), and mean Average Velocity Error (mAVE), our
method also ranks first among the mainstream methods
compared. Figure 5 presents a set of visualization results under
rainy night conditions. It is evident that even when the raw
image and point cloud data are of very poor quality due to
extremely challenging lighting and reflection conditions, our
method still accurately detects most objects, fully demonstrating
the robustness of our proposed method.

Canfera_front

Camera frontedeft

Camera_back_left

Figure 5. A frame of visualization result under night rainy
condition

4.3 Ablation study

As previously stated, the MFPN and MSA modules we
designed play significant roles in the superior performance of
the model. In this section, we specifically demonstrate the
individual contributions of these two modules through ablation
studies. Table 2 summarizes the impact of different modules on
the model’s performance. Specifically, the baseline employs a
standard FPN module as the camera feature neck and uses 3>3
convolution for feature fusion. The validation of the ablation
studies was conducted on the NuScenes val set.

MFPN MSA mAP?1 NDS1
68.1 70.9

v 68.3 71.1
Vv 68.4 71.3

vV v 68.9 716

Table 2. The impact of different modules on the model’s
performance in NuScenes val set.

Evidently, both the MFPN and MSA modules contribute
significantly to the improvement of the mode’s detection
performance. When the MFPN module is used alone to
optimize the encoding pipeline for camera features, the model’s
performance on the NuScenes val set shows an improvement
of 0.2% in both mAP and NDS compared to the baseline. Using
the MSA module alone to optimize the feature fusion module
with multi-scale attention, mAP and NDS are improved by
0.3% and 0.4%, respectively. The full MSA-BEVFusion model
shows even greater improvements of 0.8% in mAP and 0.7% in
NDS compared to the baseline. This clearly highlights the
positive impact of these two modules on enhancing detection
performance and the rationale for combining them together for
better performance.

5. Conclusion

In this paper, we present MSA-BEVFusion, a BEV object
detection framework utilizing multi-scale attention for feature
fusion. Our method decouples the interdependency between
camera and LiDAR sensors present in traditional methods and
innovatively utilizes the proposed MFPN and MSA modules for
the decoding of camera features and the fusion of multimodal
features. Our results demonstrate that the multi-scale feature
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fusion and multi-scale attention approaches have a positive
impact on the effectiveness and robustness of the model. We
hope this work will advance further exploration into robust
multimodal fusion techniques in the field of autonomous
driving and other fields.
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