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Abstract:
The extraction of architectural structural line features can simplify the 3D spatial representation of monitored objects, reduce the 
storage burden of massive point clouds, and provide crucial geometric parameters for subsequent 3D modelling. To address the 
problem of line segment discontinuity caused by point cloud quality, this paper proposes a line segment extraction algorithm based 
on planar graph-cut segmentation. Specifically, a region growing and merging algorithm is employed to segment the point cloud into 
multiple planar patches. Subsequently, 3D-2D projection is performed to generate grayscale images, from which line segment 
parameters are identified and extracted using a graph-cut segmentation algorithm combined with vectorization techniques. Then, 
depending on spatial 3D-2D back-projection, all extracted 3D line segments are optimized by the structural regularization to further 
mitigates the discontinuity among collinear line segments and provide high-quality linear features for subsequent 3D reconstruction.

Patch-based Graph Cut Optimization for 3D Line Segment Extraction of 
Building Structures from Outdoor Point Cloud Data 

Ruoming Zhai1, Peng Wan1, Xianquan Han1, Jianzhou Li1, Yifeng He2, Bangning Ding1

1 Changjiang River Scientific Research Institute, Wuhan, China – rmzhai@mail.crsri.cn, wanpeng@mail.crsri.cn, 
hanxq@mail.crsri.cn, lijianzhouljz@163.com, bnding@ mail.crsri.cn 

2 School of Geodesy and Geomatics, Wuhan University, Wuhan, China – heyifeng@whu.edu.cn 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025 
13th International Conference on Mobile Mapping Technology (MMT 2025)  

“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20–22 June 2025, Xiamen, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W5-2025-161-2025 | © Author(s) 2025. CC BY 4.0 License. 161



1. Introduction

Leveraging its non-contact measurement, high speed, and high
precision, three-dimensional (3D) laser scanning technology
enables the efficient acquisition of large-scale, high-precision
point cloud data of urban buildings, which provides essential
support for digital twin applications, such as digital city
development (Kase et al., 2025), cultural heritage preservation
(Ursini et al., 2022), and smart infrastructure management (Xu
et al., 2021). Meanwhile, building geometry representations
using massive point clouds require more data storage and affect
the efficiency of subsequent geometric modelling. Therefore,
extracting 3D line features can accurately capture the main
structural contours of buildings, simplify the digital
representation, and reduce data redundancy, providing precise
wireframe models for large-scale 3D reconstruction. Line
feature extraction can be categorized into point-based and
patch-based methods, depending on the geometry representation
types of point clouds.

Point-based methods derive the geometric representation of
each point within its neighbourhood, which includes
eigenvalue-based features (Chen et al., 2023), spatial gradients
(Xia et al., 2017; Chen et al., 2021), centroid offsets (Xin et al.,
2024), and high-dimensional feature vectors derived from deep
learning (Jiang et al., 2023; Zhang et al., 2023). Through
adjusting threshold conditions based on variations in geometric
representations, edge points are further filtered for line feature
representations. However, their performance is highly sensitive
to the quality of the point cloud data, and the extracted line
features are typically represented as discrete edge points,
lacking geometrically parameterized representations.

On the other hand, plane methods involve performing plane
segmentation followed by the extraction of plane edge lines,
which can be categorized into projection slicing-based, plane
intersection-based, and patch-based methods. The projection
slicing-based method (Zhao et al., 2022; Tian et al., 2022) slices
the point cloud along different axes and aggregates all boundary
points, obtaining the final building contour lines through 3D
line segment fitting. The plane intersection-based method (Cui
et al., 2019; Han et al., 2021; Chen et al., 2024) selects the
optimal set of intersection segments as the final line segments
by employing a global energy optimization algorithm according
to the plane intersection relationships. However, when the
number of extracted planes increases significantly, the energy
optimization algorithm may suffer from low computational
efficiency and may not yield satisfactory results for irregular
geometric structures. The patch-based method clusters points
that satisfy distance threshold conditions within the same plane
to generate patches. It generally employs plane segmentation
algorithms such as Random Sample Consensus (RANSAC),
supervoxel (Mi et al., 2021), and region growing (Hu et al.,
2022) to extract multiple patches, followed by line segment
fitting through the identification of patch contours. Some
studies prefer adopting projection-based methods, where points
within the patches are projected onto a 2D plane for 2D line
segment extraction using methods such as α -shape, LSD, and
CannyLines, followed by 3D-2D reprojection to obtain 3D line
segments. Due to the influence of point cloud noise,
incompleteness, and uneven density, directly fitting 3D line
segments in 3D space can lead to issues such as discontinuities
in the line segments, unclosed intersections, and angular
deviations, making it difficult to accurately represent the true
architectural contours. Due to the influence of point cloud noise,
incompleteness, and uneven density, these methods often
encounter issues such as discontinuous line segments, unclosed

intersections, and angular deviations, which hinder the accurate
representation of architectural contours, especially in large-scale
outdoor building scenes.

To address these issues, this study proposes a 3D line extraction
method for point clouds based on patch segmentation and
graph-cut partitioning, which extracts 3D line features by
leveraging projected points for 2D line detection and back-
projects them to reconstruct building contours in large-scale
outdoor scenes.

2. Methodology

2.1 Technical framework

This study consists of three key components:
(1) The geometric features of point clouds are computed using
the PCA algorithm to provide clustering constraints for region
growing and merging in patch segmentation.
(2) For each extracted patch, a 3D-to-2D projection is
performed to generate an image, followed by graph-cut
segmentation for 2D line extraction, and then a 2D-to-3D back-
projection to obtain the initial patch line sets. (3) The adjacent
patch constraint and structural constraint are applied to refine
patch lines, eliminating discontinuities, unclosed intersections,
and angular deviations, and ultimately producing the final 3D
line segments depicting building contours.

Figure 1. The workflow of 3D line extraction.
2.2 Patch segmentation

Region Growing. To facilitate geometric clustering of point
clouds, KD-tree indexing is applied for neighbourhood search,
followed by covariance matrix computation to obtain
eigenvalues 1 , 2 , 3 ( 1 2 3    )and their
corresponding eigenvectors. The normal vector n is

determined by the eigenvector associated with 3 , and
curvature is computed as:
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Then, A distance scale parameter sd is defined as the distance
to the third nearest neighbour, ensures generalization to point
cloud scenes of different scales. Region growing begins by
sorting points according to curvature C , selecting seed points
from 90% of the lowest-curvature points, and expanding
clusters based on three constraints:
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where n denotes the angle between the normal vectors of 0

sp

and 0
jp , serving to constrain the angular deviation between the

seed point and candidate points, orthod defines the perpendicular
distance from the candidate point to the neighborhood plane
along the seed point’s normal direction, and projd is set to

50 i
sd adaptively determining the distance threshold between

the seed point and candidate points, with i
sd denoting the

distance between a point and its third nearest neighbor.

Points satisfying all conditions are added to a temporary cluster.
This process iterates until no new points meet the criteria.

Region Merging. Since initial clustering often results in over-
segmentation, region merging is conducted to form larger planar
patches. Geometric properties are computed for each cluster,
and adjacency is determined based on overlapping points.
Regions are merged if they satisfy:
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where p n


and _p orthod are the angle and distance

thresholds among cluster i and j . Clusters meeting both
constraints are merged and, if a merged region contains more
than 100 points, it is added to the final patch set, with the
process iterating until all candidate regions are processed.
2.3 Patch line extraction

2.3.1 3D-2D Projection
In the 3D-2D projection for image generation, points within a
patch are projected onto a fitted plane, thereby defining a
corresponding plane coordinate system for contour extraction
and 2D line segment fitting. The plane equation is established

based on a point  0 0 0 0, ,P x y z and the normal vector

 0 , ,x y zn n n n within the patch as follows:

0 0 0

x y z

x x y y z z
n n n
  

  (7)

Assuming a point iP within the patch is projected along the

normal vector 0n onto the plane, the unit vector xu between
the projected point and the centroid is treated as the x-axis,
while the cross product of xu and 0n defines the y-axis,
forming the plane's coordinate system. The projected
coordinates of points on the fitted plane are formulated as
follows:
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where  ,i ix y is pixel coordinates for each point and '
iP is

the projected point of 0P .

2.3.2 Graph-cut method for 2D line segment extraction
According to the image coordinate system established above,
the projected grayscale image of the patch can be obtained,
where pixels corresponding to the projected point cloud are set
to 255, and all other regions are set to 0.

In the graph-cut segmentation algorithm, the image is
discretized into an undirected graph  ,G V E , where each

node represents a pixel in the set of vertices V , and the edge
set E defines the connectivity between nodes. Connectivity is
constructed using the 8-neighborhood relationship, with edge
weights representing the connectivity between adjacent pixels.
These weights are formulated as follows:

 
   , ,

, u u v vx y x y
w u v




 (10)

where  ,u ux y and  ,v vx y represent the coordinates of
pixels u and v , respectively, and  is a smoothing factor that
controls the sensitivity of edge weights to distance. This weight
function ensures that pixels with greater spatial distances exhibit
lower connectivity, effectively reducing boundary redundancy.

Then, the cut-pursuit approach formulates the minimization
optimization function for region segmentation over the
constructed weighted graph:
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 
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where the loss function  ,v vf y x measures the differences

between the pixel label vx and the ground true label vy . The

0l pseudo-norm
0u vx x represents the label differences

between adjacent pixels. Finally, the cut-pursuit method
iteratively solves the energy minimization problem to partition
the image graph into optimal connected components. Once the
image has been accurately segmented, the widely used Potrace
algorithm is employed to obtain compact and closed boundary
lines, as shown in Figure 2.

(a) (b)

(c) (d)
Figure 2. Graph-cut method for vectorized lines generation.

2.4 3D Line optimization

Due to the errors caused by 2D line segment fitting in the image,
the same line segment extracted from the contours of different
patches may result in two non-overlapping 3D line segments
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when back-projected into 3D space. Therefore, this study
leveraging intersecting line constraints from adjacent patches,
aiming to further optimize the extracted line segments using the
planar characteristics of the patches.
As illustrated in Figure 3, for each intersection line, adjacent
patches are identified, and their line segment sets are searched
for those with similar direction and proximity, which are then
adjusted to align their direction vectors with the intersection line,
optimizing the segments while preserving the planar properties
of the patches.

Figure 3. Intersection line spatial relationship.
Specifically, Equation (12) represents the vector angle between
the direction vector of the intersection line and the direction
vector of a line segment within the corresponding patch, while
Equation (13) defines the perpendicular distance between the
projections of the two endpoints of the line segment onto the
intersection line.
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Additionally, to address discontinuity and non-collinearity in
the extraction of certain non-intersecting line segments, the
structural collinear optimization is applied to merge collinear
segments and reduce unnecessary redundancy, and it considers
three spatial relationships for collinear improvement, as shown
in Figure 3.

Figure 4. The structural collinear optimization results.
Then, it is followed by the structural perpendicular optimization
considering three spatial relationships, which connects unclosed
line segments and corrects orthogonal angles by extending
segments or adjusting their orientations. The results before and
after the optimization are shown in Figure 4.

Before

After

Figure 5. The structural perpendicular optimization results.
3. Experiment

3.1 Dataset deployment

To validate the effectiveness of the proposed method for
extracting 3D line features in outdoor building structures, we
utilized ground-based LiDAR sensor, Leica P50, to scan
structural facades of the building with multiple windows
(Scene1), and selected two additional outdoor building scenes
from Semantic3D (Scene2) and Oxford-Spires (Scene3) datasets,
as shown in Figure 6. Comparative experiments were conducted
to demonstrate the generalization of our proposed method in
large-scale and complex building structures, focusing on patch
segmentation, 2D line extraction and 3D line regularization.

(a) Scene1 (b) Scene2

(c) Scene3
Figure 6. Point cloud dataset for outdoor building scenes.

3.2 Result of patch segmentation

In the patch segmentation stage, the number and quality of
segmented patches are determined by the angular threshold used
in the region growing and merging processes. When the
threshold is set too low, over-segmentation occurs during region
growing, resulting in an excessive number of point cloud
clusters. In the subsequent merging stage, clusters with only a
small number of points are often regarded as noise and filtered
out, which may lead to the loss of critical structural features.
Conversely, when the threshold is too high, the loss of clusters
is reduced; however, patches belonging to different planes may
be erroneously merged, leading to missing line segments during
subsequent 2D line extraction. To balance noise filtering and
patch fragmentation, a range of angular thresholds—5°, 10°,
15°, and 20°—is tested for patch extraction. The corresponding
results are presented in Table 1. In Figure 7, it can be observed
that an angular threshold of 15° yields the most effective
extraction of valid line segments.

Table 1. results of patch segmentation in different angular
threshold constraints.

Angle
(°) Metrics (%) Scene1 Scene2 Scene3

5
Drop rate 6.96 23.7 23.1

Cluster amount 22 84 296
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10
Drop rate 4.77 14.3 12.9

Cluster amount 23 90 335

15
Drop rate 3.81 10.6 9.3

Cluster amount 10 82 309

20
Drop rate 3.42 9.0 7.6

Cluster amount 9 82 232

Figure 7. Visualization results of patch segmentation.

3.3 Result of 2D line extraction

Based on the extracted patches, we perform a 3D-2D spatial
projection to establish a local planar coordinate system for each
patch, facilitating 2D line segment detection. Three algorithms,
namely Graph-cuts, LSD, and FLD, are employed to evaluate
the effectiveness of different 2D line detection and extraction
methods. The detected 2D line segments are then re-projected
into 3D space to generate a set of 3D line segments.

Table 2. Amount of 3D line segments in different 2D line
detection algorithms.

Number of 3D line segments Graph-cut LSD FLD
Scene1 1505 1687 1552
Scene2 542 542 427
Scene3 2393 2738 2121

As illustrated in Table 2 and Figure 8, both LSD and FLD
extract many line segments, yet their completeness is relatively

low, primarily due to the over-segmentation of individual line
structures into multiple shorter segments. In contrast, the Graph-
cuts-based method used in this study extracts fewer line
segments but achieves higher precision, indicating an
improvement in the continuity of 2D line detection. However,
there remains some discontinuities, particularly among vertical
line segments, resulting in incomplete closures. Moreover,
sparse point cloud distributions along linear patterns tend to
induce the extraction of redundant or spurious line segments.
The proposed method emphasizes the extraction of closed line
structures and demonstrates greater robustness to density
variations caused by linear scanners when compared to
alternative methods.

(a) Graph-cut (b) LSD

(c) FLD
Figure 8. Visualization result of Scene1.

(a) Graph-cut (b) LSD

(c) FLD
Figure 9. Visualization result of Scene2.

(a) Graph-cut (b) LSD

(c) FLD
Figure 10. Visualization result of Scene3.

3.4 Result of 3D line extraction

To address the issue of disconnected intersections caused by
incomplete point cloud data, we propose a line segment
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optimization algorithm that incorporates structural collinear and
perpendicular regularization. Specifically, thresholds for
intersection distance and angle are set to 0.3m and 15°,
respectively; for collinearity, the distance and angle thresholds
are 0.3 meters and 40°; and for orthogonality, they are set to 0.3
meters and 70°. As illustrated in Figure 9, most line segments
belonging to the same linear structure are successfully merged,
and intersections at orthogonal directions are effectively closed,
resulting in improved structural continuity and regularity.

Figure 9. Visualization results of structural regularization.

4. Conclusion

This paper proposes a point cloud line feature extraction
algorithm based on planar graph-cut segmentation, aiming to
provide structurally consistent and geometrically accurate
architectural line features for 3D reconstruction. Experiments
conducted on three outdoor architectural scenes demonstrate
that the proposed method effectively alleviates the issue of
unclosed orthogonal line segments through graph-cut
segmentation. The incorporation of adjacency constraints
successfully merges redundant line segments and reduces
angular deviation to some extent. Furthermore, collinearity and
orthogonality optimization constraints help address the common
problems of line discontinuity and non-closure, significantly
reducing data redundancy. Overall, the proposed method
improves the geometric completeness of extracted line features
and enhances the accuracy of architectural contour extraction.
However, the method still exhibits limitations in extracting line

segments in regions with sparse or missing point cloud data.
Further optimization is required, particularly regarding the
adaptive selection of parameters in the architectural geometric
regularization constraints.
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