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Abstract

The rapid evolution of urban landscapes necessitates efficient mapping solutions. Traditional high-accuracy semantic maps generated
using expensive sensors and mobile mapping vehicles provide precise spatial data, but face challenges related to cost and scalability.
Crowdsourced dashcam videos present a practical alternative for acquiring urban visual data, leveraging widely available and low-cost
camera technology. Recent advances in photogrammetry and computer vision - such as Structure from Motion (SfM), Simultaneous
Localization and Mapping (SLAM), semantic segmentation and object detection - enable the extraction of both 3D and semantic
information from monocular images. Building upon previous research, we propose a pipeline for constructing and updating semantic
3D maps using crowdsourced low-cost dashcam footages, with a particular emphasis on automatic change detection. Our approach
compares metadata related to urban landmarks (e.g., traffic signs) to identify modifications in cityscapes. We evaluate the robustness
of the proposed approach with various sequences captured under challenging conditions, including rain, darkness and fog, comparing
the performance of SfM-based and SLAM-based 3D reconstruction methods. Results show the effectiveness of the proposed low-cost
methodology in localizing urban objects and changes, although accuracy needs to be improved with better georeferencing procedures.

1. Introduction

Rapid urban development and evolving cityscapes demand
continuous change detection, efficient mapping and update
strategies to effectively monitor dynamic environments and
keep map databases up-to-date (Tran et al., 2018; Lee and Hsu,
2021; Stilla and Xu, 2023; Kharroubi et al., 2025). Typical
change detection solutions include remote sensing
technologies, such as optical satellites, LIDAR and optical
cameras on aircraft or drones, as well as close-range or
terrestrial methods that utilize videos, images or point clouds.
With respect to images, 3D point clouds provide a valuable
alternative solution offering different modalities and enabling
highly detailed 3D geometric analyses with attribute
enrichment. While high-accuracy, expensive Mobile Mapping
Technology (MMT) vehicles (Elhashash et al., 2022) equipped
with multiple cameras, LIDAR and GNSS/IMU sensors offer
centimeter-level precision and redundant data for semantic
map generation, their widespread deployment is constrained
by cost and scalability. In contrast, crowdsourced dashcam
videos provide a cost-effective and widely available
alternative for urban visual data collection (Zhanabatyrova,
2025). Moreover, recent advances in photogrammetry and
computer vision, including Structure from Motion (SfM)
(Schoenberger and Frahm, 2016; Pan et al, 2024),
Simultaneous Localization and Mapping (SLAM) (Kazeroui
et al., 2022), semantic segmentation (Mo et al., 2022) and
object detection (Kaur and Singh, 2023), enable the extraction
of 3D and semantic information from monocular images, also
for change detection purposes (Lin et al., 2022). Due to the
high computational complexity - and sometimes challenges -
of image-based point cloud generation, effective 3D
reconstructions from crowdsourced visual data is still an open
task. Consequently, it is essential to develop efficient methods
for detecting and localizing environmental changes, enabling
the selective re-mapping of only those regions where
modifications have occurred.

1.1 Paper’s Aim

The goal of this work is to further investigate how low-cost
dashcam videos acquired from vehicles moving in urban

environments could support the creation and updating of

semantic 3D maps. Our previous work (Zhanabatyrova et al.,

2023) introduced a pipeline that reconstructs SfM-based

semantic 3D maps from dashcam videos and automatically

detects urban changes based on metadata comparison

(Zhanabatyrova et al., 2023). In this study, we further evaluate

the robustness of our approach using additional visual data

sequences captured under challenging conditions (such as rain,
darkness, fog). Additionally, we compare a SfM-based

methodology with a SLAM pipeline (Campos et al., 2021)

assessing how point cloud quality impacts the system

performance. In summary, the paper’s aim is:

e to assess the robustness of the SfM-based pipeline across
diverse visual conditions (fog vs. clear summer);

e to compare the performance of SfM-based and SLAM-
based pipelines on the same data sequence, while
investigating resolution-induced sensitivities in object
detection, as well as trade-offs in accuracy and
computational cost within the pipeline;

e to demonstrate how crowdsourced dashcam data can
complement or update - with certain accuracy limitations
- pre-existing maps, reducing the need for costty MMT
Sensors.

The proposed methodology distinguishes itself by leveraging
recent advances in SfM- and SLAM-based 3D reconstruction
while operating under the constraints of low-cost,
crowdsourced data acquired with dashcams. Unlike methods
that rely on dense LiDAR point clouds or pre-calibrated multi-
camera systems, our approach, although not achieving very
high accuracy results, is tailored for scenarios where only
single-view RGB data is available and where crowdsourced
videos are the only source of data. Given these constraints, the
system prioritizes efficiency and scalability over centimeter-
level accuracy.

2. Related works

Recent literature has focused on several aspects related to
image-based semantic 3D map generation and change
detection in urban environments. In monocular video
processing, several self-supervised approaches have
demonstrated impressive depth estimation and object
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detection from dashcam videos (Godard et al., 2019; Lee et al.,
2019; Shabestari et al., 2023). Similarly, several methods have
been developed to enhance object detection and semantic
mapping from car videos, utilizing deep learning-based
segmentation techniques to generate semantically enriched
maps and point clouds (McCormac et al., 2017; Li et al., 2019;
Qin et al., 2020; Roddick and Cipolla, 2020; Cheng et al.,
2022; Zhang et al., 2023).

Change detection in urban environments has also attracted
attention, with works addressing the challenge based on image
or point cloud data, from ground or aerial perspective
(Shirowzhan et al., 2019; Zhang et al., 2021; de Gélis et al.,
2021; de Gélis et al., 2023; Xiao et al., 2023). More recently,
change detection is accomplished exploiting visual language
models (Lin et al., 2025), 3D Gaussian Splatting (Lu et al.,
2025), vision transformers (Alpherts et al., 2025) or a SAM-
based zero-shot framework (Kim and Kim, 2025).
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Figure 1. Overview of the pipeline, which comprises both
offline and online stages.

3. Methodology

Figure 1 provides a high-level overview of the system
architecture, outlining a dual-stage process. The first stage
involves offline map creation using either SfM or SLAM,
combined with semantic segmentation and object detection to
extract object information and generate metadata. The second
stage focuses on online change detection, leveraging newly
acquired dashcam data to identify updates and refine the
existing map. The individual components of the pipeline will
be validated for robustness and adaptability, especially when
handling the newly introduced challenging scenarios:

e Offline Map Generation: dashcam videos are processed
using COLMAP (Schonberger et al, 2016) to retrieve camera
poses and build an initial sparse 3D point cloud of the
environment. In addition to a SfM-based approach, this
study also includes a comparative evaluation using a SLAM-
based approach (Campos et al., 2021) on selected sequences
to assess performance variations. To enhance semantic
understanding of the surveyed scene, semantic segmentation
networks - based on architectures similar to Seamseg (Porzi
et al., 2019) and object detectors - derived from the
SSDResNet framework (Lu et al, 2019) are used to
associate 3D points of interest with class labels (e.g., traffic
sign types). SfM and SLAM identify images that observe
each 3D point and record its corresponding pixel
coordinates, known as image keypoints. These keypoints are
then classified using the aforementioned image processing
techniques, ultimately generating a semantic map that
represents the initial state of the urban environment. The
semantic map contains metadata detailing object types, such
as traffic signs, locations, and characteristics.

Online Change Detection and Map Update: new visual data
sequences, collected successively to the creation of a
semantic map, are fed into the pipeline. For each frame,

camera poses are estimated and pixelwise 3D object
localization is performed using a modified deep learning
network built upon BTS (Lee et al., 2019). The camera pose
is estimated by registering the image to an existing point
cloud utilizing custom matching in COLMAP. In this
custom matching, the incoming image is matched with the
nearest image in the point cloud in terms of Euclidean
distance. The pixelwise 3D localization method assigns
precise 3D coordinates to every pixel in the image. To
classify the pixels of interest, an object detection algorithm
is applied, ensuring correct identification of traffic signs. By
combining the estimated 3D coordinates with camera pose
information, objects can be precisely localized within the
map. The extracted objects are then matched against the
offline map exploiting georeferencing information.
Differences trigger a candidate change detection
mechanism. A thresholding algorithm is applied to minimize
false positives and detected changes can eventually trigger
an automatic map update.
In this work, visual sequences (including rainy, dark, and
“foggy” conditions — Figure 2) are considered to test the
robustness of the proposed pipeline. Through quantitative
metrics and qualitative visual comparisons, we investigate
both the performance under standard conditions and the edge
cases imposed by harsh weather. The original object
localization method presented in Zhanabatyrova et al. (2023)
is tested with SfM as well as with a SLAM pipeline.

4. Experiments

4.1 Datasets

To evaluate the proposed methodology, two image sequences
are recorded (Table 1, Figure 2 and Figure 3).

)

Figure 2: Example frames from (a) Sequence 1 and (b)
Sequence 2

Sequence 1 Sequence 2
Date 30.10.2020 30.06.2022
Camera Garmin iPhone 12
Weather rain, dark, fog sun, summer
FPS 10 10
Resolution [px] 1920 x 1080 3840%x2160
Camera set-up (a) (b)
Frames 1202 3136
Length [m] 617 970
Speed 17 km/h 10 km/h

Table 1: Specifications of the sequences used in the evaluation.

The first sequence consists of 3600 frames along a 617 m road
within a university campus. The sequence was collected using
a (calibrated) Garmin dashcam, similar to the single view setup
employed in the previous studies (Zhanabatyrova et al., 2023;
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2024). The dashcam was positioned in one corner of the car’s
front window, slightly convergent to the side to observe both
the middle and the opposite side of the road, allowing for a
broader field of view (Figure 4a). The frames were recorded at
a resolution of 1920x1080 pixels and a frame rate of 30 FPS.
This sequence includes data captured in urban environments
under challenging conditions, such as rainy, dark and foggy
weather (Figure 2a). During the data collection, the camera
set-up imaged a portion of the car in every frame, negatively
affecting the 3D mapping algorithm's performance. Therefore,
during the undistortion process (i.e. mapping of original
distorted pixel to undistorted locations) part of the scene is
eliminated (Figure 5), improving the 3D mapping process. To
maintain consistency with previous experiments and optimize
performance, we adjusted the frame rate to 10 fps to enhance
the reliability of the results.

Figure 4. Camera set up: a) sequence 1; b) sequence 2.

Figure 5: Example of sequence 1 images before (above) and
after (bottom) undistortion.

The second sequence was recorded at a slow driving pace of
10 km/h with the dashcam in the center and facing forward
(Figure 4b), using an iPhone 12 Pro Max. The initial frame rate
of 30 fps is later reduced to 10 fps, resulting in a dataset of
3136 images. Captured at a resolution of 3840x2160 pixels,
the sequence benefits from clear summer weather conditions,
providing excellent visibility and optimal lighting for feature
extraction (Figure 2b). This sequence was collected in the
same region, covering a total distance of 970 m, allowing for
direct comparisons with previously recorded sequences under
different environmental conditions. The two data sequences,
recorded nearly two years apart in different seasons, exhibit
substantial variations in traffic signs, weather conditions,
resolution and lighting, making them suitable for our change
detection experiment.

4.2 Evaluation on foggy and low-visibility data

Despite the accumulation of noticeable drift, the COLMAP
sequential matching demonstrated superior performance on
sequence 1 compared to vocabulary-tree matching (Figure
6a,c), largely due to challenging visibility conditions, hence
low feature recognition in the images. The sequential SfM
reconstruction generated 104,132 3D points and 1202 poses
out of 1202 wundistorted images, demonstrating the
effectiveness of the pre-processing steps in improving the
overall quality of the reconstruction. Due to a lack of onboard
GNSS observations, data geo-registration is performed using
manually selected points on a map (Helmert transformation),
resulting in an alignment error of 8.18 meters (mean) and 8.14
meters (median), reflecting the need of good geographic points
for proper georeferencing purposes. Despite these challenges,
the pipeline remains functional, demonstrating its ability to
process challenging visual data. Camera poses and sparse
point cloud of the entire sequence 1 are shown in Figure 6d.
Due to low visibility conditions, the successive object
detection algorithm successfully identified 11 out of 21 traffic
signs using a threshold 0.15 (Figure 7a), but struggled to detect
the remaining ones, even when located in close proximity.
Setting the confidence threshold at 0.15 helps reduce false
positives and improve detection accuracy. Lowering the
threshold to 0.1 increases sensitivity, allowing the model to
detect more objects, including the third traffic sign in the
background (Figure 7b). However, this heightened sensitivity
also introduces misclassification. The algorithm exhibited
misclassifications, often confusing visually similar signs, such
as "No Parking" and "No Stopping," or other traffic signs with
similar shapes and appearances (Figure 7c,d). Furthermore,
traffic signs located at greater distances proved challenges in
the detection, as diminished resolution and atmospheric
interference reduced recognition accuracy. The overall object
detection process operates efficiently, with an average
processing time of 0.229 seconds per image, without
significantly sacrificing performance.

The successive semantic segmentation component correctly
detects and outlines the borders of traffic signs (Figure 8a).
Despite the extreme challenges posed by the dark and foggy
dataset - particularly for object detection and SfM - the
proposed framework performed well, detecting a significant
number of traffic signs. This demonstrates the robustness of
the approach, even under suboptimal conditions and highlights
its potential for real-world applications. Enhancing image
quality and refining detection algorithms could further
improve results, making this pipeline an effective tool for
urban mapping in complex environments. Georeferencing
could be improved with an onboard GNSS.
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d)

Figure 6: 3D reconstruction using sequential matching (a). Recovered trajectory mapped on a 2D map (b). 3D reconstruction results

using vocabulary-tree matching (c). Overview of the entire recovered trajectory and sparse point cloud for sequence 1 (d).

a

c)

Figure 7. Examples of object detection results with threshold=0.15 (a) and threshold=0.1 (b); misclassification

d)

examples (c,d).

=

Figure 8. Semantic segmentation results on an image of sequence 1 (a) and 2 (b).

>

Figure 9. Views of SfM-based recovered trajectory (red signs) and sparse 3D reconstruction of sequence 2.

4.3 Evaluation on clear high-resolution data

For the second test, with images acquired a high-quality
iPhone camera and under clear weather conditions, the visual
differences between sequential and vocabulary-based
matching are not immediately apparent. However, after geo-
registration (5 reference points), vocabulary matching
demonstrated superior performance, achieving an alignment
error of 2.7 meters (mean) and 1.9 meters (median), compared
to 3.1 meters (mean) and 2.2 meters (median) for sequential
matching. Additionally, vocabulary-based matching yielded a
higher number of 3D points, with 654,969 3D points compared
to 611,565 3D points from sequential matching. Therefore, the
vocabulary-based 3D results are used for the further steps of

e TP

the framework. The reconstruction in Figure 9 clearly reveals
buildings and trees, highlighting a significantly higher point
cloud density compared to the foggy dataset. Several factors
contributed to this improvement, including the slower speed at
which the dataset is collected, enabling more stable and
detailed image capture. Additionally, while both datasets had
areduced frame rate of 10 fps, the enhanced visibility, superior
camera quality, and the feature matching method played a
crucial role in achieving a denser and more accurate
reconstruction.

Despite the improved resolution and visibility of the data,
object detection (Figure 10a) struggles with classification
inconsistencies. Adjusting detection thresholds reduces false
positives but inadvertently increases false negatives, causing
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lower-confidence traffic signs to be ignored despite being
correctly detected. Future work should focus on improving
detection reliability by expanding the training dataset for
underrepresented traffic sign classes, ensuring better feature
recognition across varying conditions and image resolutions.

b) o °)
Figure 10. Object detection for sequence 2 (a) and close-up
examples (b, ¢).

While most signs are successfully detected, misclassifications
persist. Expanding the training dataset with more diverse and
representative  samples could significantly enhance
classification accuracy and detection reliability. For instance,
in our model the construction work class (Figure 10b) is
particularly affected by limited training data. To address the
issue of multiple classes being assigned to the same bounding
box (Figure 10c), an additional filtering step is added. If
bounding boxes overlap by more than 80%, only the class with
the highest confidence score is retained. Additionally, all
classifications with a confidence score below 24% are
removed. The higher resolution and improved clarity in this
dataset significantly benefit semantic segmentation, allowing
for much cleaner boundary delineation, leading to more
reliable semantic segmentation results compared to foggy data
(Figure 8b). However, this improvement comes at the cost of
processing speed - higher-resolution images require increased
computational resources, which significantly slows inference
time.

Flgure 11. Ob] ect locahzatlon on sequence 2 using SfM (a),
and SLAM (b). Red: ground truth; Blue: predictions

The evaluation results of the object localization algorithm on
the second data sequence in clear weather conditions highlight
the good performance of the detection system in identifying
traffic signs, with 32 true positives out of 35 total traffic signs
(Table 2, Figure 11a), indicating that most ground truth signs

are successfully detected. However, the presence of 16 false
positives and 3 false negatives (due to misclassification of
object detection model) suggests that the object detection
algorithm is overly sensitive, generating detections for non-
sign objects and repeatedly classifying the same object
multiple times. A median error of 4.22 m and a standard
deviation of 1.06 m are observed for the detected traffic signs,
indicating a consistent offset in localization (Table 3). This
aligns with the observed pattern of predictions being
systematically shifted in the same direction, likely due to geo-
registration misalignment, as shown in Figure 12. The
presence of this directional bias suggests a need for improved
calibration of geospatial mapping methods to ensure more
accurate localization.

GT True False False
positive  positive negative
StM 35 32 16 3
SLAM+DF(20m) 35 28 7 7
SLAM+DF(30m) 35 28 9 7

Table 2. Object localization results (distance filtering - DF).

Mean Std  Median
SfM error [m] 4.22 1.06 4.22
SLAM error + DF (20 m) 6.58 4.25 543
Table 3. Offsets of localized objects (distance filtering - DF).

e
Flgure 12. Geo -registration shifts in the SfM results,

affecting the localization performance. Blue-ground truth,
red-predictions.

Sequence 2 is also processed with the SLAM-based pipeline:
out of the 3136 total images, 1417 are successfully oriented as
key-frames, creating a final point cloud of 57,319 points
(Figure 13).

i
ke

bl ey e 3
Figure 13. Georeferenced SLAM traJectory (a) and point
cloud (b) for sequence 2.
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In the object detection step, the evaluation results indicate 28
true positives, 7 false positives and 7 false negatives out of 35
total traffic signs in the ground truth (Figure 11b, Table 3).
With respect to the SfM-based results, the number of false
positives is reduced due to lower number of 3D points in the
SLAM-generated point cloud - since predictions for missing
3D points are simply discarded. This demonstrates that when
the object detection model is overly sensitive, lower number
of 3D points appeared to be beneficial. To improve noisy
SLAM point cloud results, we applied additional distance
filtering (DF) to 3D points, removing noisy points beyond 20
meters from the camera pose. This refinement reduced the total
number of points to 26,439 but improved localization quality
and optimized processing efficiency. A comparative analysis
of different distance thresholds showed that filtering 3D points
at 30 m distance introduced 4 additional false positives, while
filtering at 15 meters resulted in 5 extra false negatives.
Therefore, a 20-meter threshold proved to be the optimal
balance, minimizing false negatives while maintaining a high
true positive rate. The higher detection performance of the
SfM-based approach, as reflected in the number of true
positives, can largely be attributed to its denser point cloud.
The average localization error is measured at 6.58 meters, with
a standard deviation of 4.25 meters, while the median error is
5.43 meters (Table 3).

The results based on the SLAM-derived point cloud
demonstrated strong localization/identification performance
while maintaining a more lightweight computational cost
compared to SFM-based approach. Distance filtering was
applied exclusively to the SLAM-based experiment due to the
higher noise levels observed in SLAM-generated point clouds.
While SfM could potentially benefit from similar filtering, its
point cloud remained more stable and less affected by
excessive outliers, making additional filtering unnecessary for
this evaluation.

4.4 Change detection

The two sequences (Table 1) We conducted change detection
tests, using as ground truth results from the first data sequence,
representing the initial state of the environment. Based on this
reference, change detection is performed on the second
sequence in the overlapping part of the trajectory. The change
detection results show that out of 21 total traffic signs in the
aligned trajectory, and 13 documented changes (Figure 15 and
16) in the ground truth dataset (6 newly appeared signs and 7
disappeared ones), the proposed approach identified 8 traffic
signs as appearing (Table 4). Among these, 6 are correctly
classified as true positives (85.7% precision, Table 5), aligning
with the ground truth, while 2 are false positives - resulting
from the object detection algorithm due to a lack of sufficient
training data. Additionally, the algorithm detected 6 out of 7
disappeared signs, resulting in 1 false negative. The model
correctly identified 8 matched signs as true negatives. Figure
14 shows the confusion matrix summarizing change detection
performance. Taking these into account, the overall recall for
change detection is 92.3% (Table 5), confirming the system’s
strong capability in recognizing both newly introduced and
removed traffic signs. This demonstrates strong performance
in finding both newly introduced and missing objects. Further
refinement to reduce false positives can be obtained through
training the object detection algorithm on a larger dataset.

4.5 Discussion

Sequence 1 and 2 feature two very different environmental
conditions and acquisition sensor and camera set-up. Figure 16
show how such conditions can affect the derived 3D scene.

Actual

No change Change

1
Change No change
Predicted

Figure 14. Confusion matrix for change detection results.

Total ~GT True True False False
positives negatives  positives negatives
21 13 12 8 2 1

Table 4. Detected changes between the sequences 1 and 2.

Metric Value
Precision: TP / (TP + FP)  85.7%
Recall: TP / (TP +FN) 92.3%

Table 5. Precision and recall values for the change detection
process.

b) = i £ LS.

Figure 15. Change detection ground truth (a) - Green:
appeared, Blue: disappeared, Red: matched. Predictions
results (b) - Blue: disappeared, Yellow: appeared, Orange:
false positives, Red: matched/ true negatives.

The sparsity of the point cloud stems from several factors
affecting the 3D reconstruction (Figure 16a). Low feature
density in uniform areas, poor visibility (darkness and fog),
limited camera perspective and sequential image matching
reduced the number of valid correspondences. Additionally,
the 10 fps frame rate limited fine-detail capture between
frames. The imposed constraints resulted in fewer matched
features and a sparser reconstruction for sequence 1. Within
the purple dotted rectangle, the reconstructed traffic signs on
the right side of the road are visible. This indicates that certain
images successfully captured the traffic sign features, allowing
spatial reconstruction within the point cloud. Figure 16b
illustrates a denser point cloud from sequence 2 (sunny
weather, better camera), where the traffic sign reconstruction
is more detailed. The corresponding detected feature example
is presented in Figure 16d. However, if the SLAM-based
approach is not selected a particular keyframe, objects might
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not be detected and the system might fail to correctly localize
signs, preventing their integration into an updated map.

c) .
Figure 16. Reconstructed scene for sequence 1 (a) and 2 (b).
Detected features in sequence 1 (¢) and 2 (d) corresponding
to the same location in town.

5. Conclusions

This work has introduced a low-cost crowdsourcing
methodology for urban environment 3D mapping using
crowdsourced dashcam videos, with a focus on automatic
change detection. Leveraging techniques such as SfM, SLAM,
semantic segmentation and object detection, the proposed
approach enables scalable and cost-effective updates of urban
maps in the meter-accuracy range. The system’s robustness is
evaluated with complex sequences captured under challenging
environmental conditions, specifically darkness and fog.
Additionally, performance is assessed using both SfM-based
point clouds and lightweight SLAM-based point clouds. The
results demonstrate that despite the sparser SLAM-based 3D
point cloud, SLAM can achieve comparable object detection
and localization performance to SfM, while significantly
reducing processing time. Furthermore, the change detection
method  successfully identified most environmental
modifications between two states of the environment (2-years
apart), achieving a recall of 92.3% and a precision of 85.7%,
despite the challenging weather conditions of sequence 1.
While SfM offers slightly better numerical accuracy, SLAM
significantly improves processing efficiency, making it a
viable alternative for real-time or resource-constrained
environments without significantly compromising reliability.

The results highlight the potential for (real-time) cityscape
monitoring, robust mapping under diverse environmental
conditions and cost-effective map updates. Future
improvements could further refine system components,

particularly the object detection module, enhancing robustness
and contributing to more reliable and adaptable urban mapping
workflows. Additionally, separating the 3D model into
multiple sections may improve geo-registration accuracy,
enabling better alignment with road geometry and reducing
localization errors. On-board GNSS receiver could be used to
support geolocalization, with the known issues of satellite
signals in urban environments.
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