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Abstract
The rapid evolution of urban landscapes necessitates efficient mapping solutions. Traditional high-accuracy semantic maps generated 
using expensive sensors and mobile mapping vehicles provide precise spatial data, but face challenges related to cost and scalability. 
Crowdsourced dashcam videos present a practical alternative for acquiring urban visual data, leveraging widely available and low-cost 
camera technology. Recent advances in photogrammetry and computer vision - such as Structure from Motion (SfM), Simultaneous 
Localization and Mapping (SLAM), semantic segmentation and object detection - enable the extraction of both 3D and semantic 
information from monocular images. Building upon previous research, we propose a pipeline for constructing and updating semantic 
3D maps using crowdsourced low-cost dashcam footages, with a particular emphasis on automatic change detection. Our approach 
compares metadata related to urban landmarks (e.g., traffic signs) to identify modifications in cityscapes. We evaluate the robustness 
of the proposed approach with various sequences captured under challenging conditions, including rain, darkness and fog, comparing 
the performance of SfM-based and SLAM-based 3D reconstruction methods. Results show the effectiveness of the proposed low-cost 
methodology in localizing urban objects and changes, although accuracy needs to be improved with better georeferencing procedures. 

1. Introduction

Rapid urban development and evolving cityscapes demand 
continuous change detection, efficient mapping and update 
strategies to effectively monitor dynamic environments and 
keep map databases up-to-date (Tran et al., 2018; Lee and Hsu, 
2021; Stilla and Xu, 2023; Kharroubi et al., 2025). Typical 
change detection solutions include remote sensing 
technologies, such as optical satellites, LiDAR and optical 
cameras on aircraft or drones, as well as close-range or 
terrestrial methods that utilize videos, images or point clouds. 
With respect to images, 3D point clouds provide a valuable 
alternative solution offering different modalities and enabling 
highly detailed 3D geometric analyses with attribute 
enrichment. While high-accuracy, expensive Mobile Mapping 
Technology (MMT) vehicles (Elhashash et al., 2022) equipped 
with multiple cameras, LiDAR and GNSS/IMU sensors offer 
centimeter-level precision and redundant data for semantic 
map generation, their widespread deployment is constrained 
by cost and scalability. In contrast, crowdsourced dashcam 
videos provide a cost-effective and widely available 
alternative for urban visual data collection (Zhanabatyrova, 
2025). Moreover, recent advances in photogrammetry and 
computer vision, including Structure from Motion (SfM) 
(Schoenberger and Frahm, 2016; Pan et al., 2024), 
Simultaneous Localization and Mapping (SLAM) (Kazeroui 
et al., 2022), semantic segmentation (Mo et al., 2022) and 
object detection (Kaur and Singh, 2023), enable the extraction 
of 3D and semantic information from monocular images, also 
for change detection purposes (Lin et al., 2022). Due to the 
high computational complexity - and sometimes challenges - 
of image-based point cloud generation, effective 3D 
reconstructions from crowdsourced visual data is still an open 
task. Consequently, it is essential to develop efficient methods 
for detecting and localizing environmental changes, enabling 
the selective re-mapping of only those regions where 
modifications have occurred.   

1.1 Paper’s Aim 

The goal of this work is to further investigate how low-cost 
dashcam videos acquired from vehicles moving in urban 

environments could support the creation and updating of 
semantic 3D maps. Our previous work (Zhanabatyrova et al., 
2023) introduced a pipeline that reconstructs SfM-based 
semantic 3D maps from dashcam videos and automatically 
detects urban changes based on metadata comparison 
(Zhanabatyrova et al., 2023). In this study, we further evaluate 
the robustness of our approach using additional visual data 
sequences captured under challenging conditions (such as rain, 
darkness, fog). Additionally, we compare a SfM-based 
methodology with a SLAM pipeline (Campos et al., 2021) 
assessing how point cloud quality impacts the system 
performance. In summary, the paper’s aim is: 
• to assess the robustness of the SfM-based pipeline across

diverse visual conditions (fog vs. clear summer);
• to compare the performance of SfM-based and SLAM-

based pipelines on the same data sequence, while
investigating resolution-induced sensitivities in object
detection, as well as trade-offs in accuracy and
computational cost within the pipeline;

• to demonstrate how crowdsourced dashcam data can
complement or update - with certain accuracy limitations
- pre-existing maps, reducing the need for costly MMT
sensors.

The proposed methodology distinguishes itself by leveraging 
recent advances in SfM- and SLAM-based 3D reconstruction 
while operating under the constraints of low-cost, 
crowdsourced data acquired with dashcams. Unlike methods 
that rely on dense LiDAR point clouds or pre-calibrated multi-
camera systems, our approach, although not achieving very 
high accuracy results, is tailored for scenarios where only 
single-view RGB data is available and where crowdsourced 
videos are the only source of data. Given these constraints, the 
system prioritizes efficiency and scalability over centimeter-
level accuracy. 

2. Related works

Recent literature has focused on several aspects related to 
image-based semantic 3D map generation and change 
detection in urban environments. In monocular video 
processing, several self-supervised approaches have 
demonstrated impressive depth estimation and object 
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detection from dashcam videos (Godard et al., 2019; Lee et al., 
2019; Shabestari et al., 2023). Similarly, several methods have 
been developed to enhance object detection and semantic 
mapping from car videos, utilizing deep learning-based 
segmentation techniques to generate semantically enriched 
maps and point clouds (McCormac et al., 2017; Li et al., 2019; 
Qin et al., 2020; Roddick and Cipolla, 2020; Cheng et al., 
2022; Zhang et al., 2023).  
Change detection in urban environments has also attracted 
attention, with works addressing the challenge based on image 
or point cloud data, from ground or aerial perspective 
(Shirowzhan et al., 2019; Zhang et al., 2021; de Gélis et al., 
2021; de Gélis et al., 2023; Xiao et al., 2023). More recently, 
change detection is accomplished exploiting visual language 
models (Lin et al., 2025), 3D Gaussian Splatting (Lu et al., 
2025), vision transformers (Alpherts et al., 2025) or a SAM-
based zero-shot framework (Kim and Kim, 2025). 
 

Figure 1. Overview of the pipeline, which comprises both 
offline and online stages. 

 
3. Methodology 

Figure 1 provides a high-level overview of the system 
architecture, outlining a dual-stage process. The first stage 
involves offline map creation using either SfM or SLAM, 
combined with semantic segmentation and object detection to 
extract object information and generate metadata. The second 
stage focuses on online change detection, leveraging newly 
acquired dashcam data to identify updates and refine the 
existing map. The individual components of the pipeline will 
be validated for robustness and adaptability, especially when 
handling the newly introduced challenging scenarios: 
• Offline Map Generation: dashcam videos are processed 

using COLMAP (Schonberger et al, 2016) to retrieve camera 
poses and build an initial sparse 3D point cloud of the 
environment. In addition to a SfM-based approach, this 
study also includes a comparative evaluation using a SLAM-
based approach (Campos et al., 2021) on selected sequences 
to assess performance variations. To enhance semantic 
understanding of the surveyed scene, semantic segmentation 
networks - based on architectures similar to Seamseg (Porzi 
et al., 2019) and object detectors - derived from the 
SSDResNet framework (Lu et al., 2019) are used to 
associate 3D points of interest with class labels (e.g., traffic 
sign types). SfM and SLAM identify images that observe 
each 3D point and record its corresponding pixel 
coordinates, known as image keypoints. These keypoints are 
then classified using the aforementioned image processing 
techniques, ultimately generating a semantic map that 
represents the initial state of the urban environment. The 
semantic map contains metadata detailing object types, such 
as traffic signs, locations, and characteristics.  

• Online Change Detection and Map Update: new visual data 
sequences, collected successively to the creation of a 
semantic map, are fed into the pipeline. For each frame, 

camera poses are estimated and pixelwise 3D object 
localization is performed using a modified deep learning 
network built upon BTS (Lee et al., 2019). The camera pose 
is estimated by registering the image to an existing point 
cloud utilizing custom matching in COLMAP. In this 
custom matching, the incoming image is matched with the 
nearest image in the point cloud in terms of Euclidean 
distance. The pixelwise 3D localization method assigns 
precise 3D coordinates to every pixel in the image. To 
classify the pixels of interest, an object detection algorithm 
is applied, ensuring correct identification of traffic signs. By 
combining the estimated 3D coordinates with camera pose 
information, objects can be precisely localized within the 
map. The extracted objects are then matched against the 
offline map exploiting georeferencing information. 
Differences trigger a candidate change detection 
mechanism. A thresholding algorithm is applied to minimize 
false positives and detected changes can eventually trigger 
an automatic map update.  

In this work, visual sequences (including rainy, dark, and 
“foggy” conditions – Figure 2) are considered to test the 
robustness of the proposed pipeline. Through quantitative 
metrics and qualitative visual comparisons, we investigate 
both the performance under standard conditions and the edge 
cases imposed by harsh weather. The original object 
localization method presented in Zhanabatyrova et al. (2023) 
is tested with SfM as well as with a SLAM pipeline. 
 
 

4. Experiments 

4.1 Datasets 

To evaluate the proposed methodology, two image sequences 
are recorded (Table 1, Figure 2 and Figure 3).  
 

a)   

b)     

Figure 2: Example frames from (a) Sequence 1 and (b) 
Sequence 2 

 
 Sequence 1 Sequence 2 
Date 30.10.2020 30.06.2022 
Camera Garmin iPhone 12 
Weather rain, dark, fog sun, summer 
FPS 10 10 
Resolution [px] 1920 x 1080 3840×2160 
Camera set-up (a) (b) 
Frames  1202 3136 
Length [m] 617 970 
Speed 17 km/h 10 km/h 

Table 1: Specifications of the sequences used in the evaluation. 
 
The first sequence consists of 3600 frames along a 617 m road 
within a university campus. The sequence was collected using 
a (calibrated) Garmin dashcam, similar to the single view setup 
employed in the previous studies (Zhanabatyrova et al., 2023; 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025 
13th International Conference on Mobile Mapping Technology (MMT 2025)  

“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20–22 June 2025, Xiamen, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W5-2025-169-2025 | © Author(s) 2025. CC BY 4.0 License.

 
170



 

2024). The dashcam was positioned in one corner of the car’s 
front window, slightly convergent to the side to observe both 
the middle and the opposite side of the road, allowing for a 
broader field of view (Figure 4a). The frames were recorded at 
a resolution of 1920x1080 pixels and a frame rate of 30 FPS. 
This sequence includes data captured in urban environments 
under challenging conditions, such as rainy, dark and foggy 
weather (Figure 2a). During the data collection, the camera 
set-up imaged a portion of the car in every frame, negatively 
affecting the 3D mapping algorithm's performance. Therefore, 
during the undistortion process (i.e. mapping of original 
distorted pixel to undistorted locations) part of the scene is 
eliminated (Figure 5), improving the 3D mapping process. To 
maintain consistency with previous experiments and optimize 
performance, we adjusted the frame rate to 10 fps to enhance 
the reliability of the results.  
 

 
Figure 3: Trajectories of data collection in the urban area: 
green - sequence 1, pink - sequence 2. 

 

a)  b)  

Figure 4. Camera set up: a) sequence 1; b) sequence 2. 
 

 

 
Figure 5: Example of sequence 1 images before (above) and 
after (bottom) undistortion. 

 

The second sequence was recorded at a slow driving pace of 
10 km/h with the dashcam in the center and facing forward 
(Figure 4b), using an iPhone 12 Pro Max. The initial frame rate 
of 30 fps is later reduced to 10 fps, resulting in a dataset of 
3136 images. Captured at a resolution of 3840x2160 pixels, 
the sequence benefits from clear summer weather conditions, 
providing excellent visibility and optimal lighting for feature 
extraction (Figure 2b). This sequence was collected in the 
same region, covering a total distance of 970 m, allowing for 
direct comparisons with previously recorded sequences under 
different environmental conditions. The two data sequences, 
recorded nearly two years apart in different seasons, exhibit 
substantial variations in traffic signs, weather conditions, 
resolution and lighting, making them suitable for our change 
detection experiment. 
 
4.2 Evaluation on foggy and low-visibility data 

Despite the accumulation of noticeable drift, the COLMAP 
sequential matching demonstrated superior performance on 
sequence 1 compared to vocabulary-tree matching (Figure 
6a,c), largely due to challenging visibility conditions, hence 
low feature recognition in the images. The sequential SfM 
reconstruction generated 104,132 3D points and 1202 poses 
out of 1202 undistorted images, demonstrating the 
effectiveness of the pre-processing steps in improving the 
overall quality of the reconstruction. Due to a lack of onboard 
GNSS observations, data geo-registration is performed using 
manually selected points on a map (Helmert transformation), 
resulting in an alignment error of 8.18 meters (mean) and 8.14 
meters (median), reflecting the need of good geographic points 
for proper georeferencing purposes. Despite these challenges, 
the pipeline remains functional, demonstrating its ability to 
process challenging visual data. Camera poses and sparse 
point cloud of the entire sequence 1 are shown in Figure 6d.  
Due to low visibility conditions, the successive object 
detection algorithm successfully identified 11 out of 21 traffic 
signs using a threshold 0.15 (Figure 7a), but struggled to detect 
the remaining ones, even when located in close proximity. 
Setting the confidence threshold at 0.15 helps reduce false 
positives and improve detection accuracy. Lowering the 
threshold to 0.1 increases sensitivity, allowing the model to 
detect more objects, including the third traffic sign in the 
background (Figure 7b). However, this heightened sensitivity 
also introduces misclassification. The algorithm exhibited 
misclassifications, often confusing visually similar signs, such 
as "No Parking" and "No Stopping," or other traffic signs with 
similar shapes and appearances (Figure 7c,d). Furthermore, 
traffic signs located at greater distances proved challenges in 
the detection, as diminished resolution and atmospheric 
interference reduced recognition accuracy. The overall object 
detection process operates efficiently, with an average 
processing time of 0.229 seconds per image, without 
significantly sacrificing performance.  
The successive semantic segmentation component correctly 
detects and outlines the borders of traffic signs (Figure 8a).  
Despite the extreme challenges posed by the dark and foggy 
dataset - particularly for object detection and SfM - the 
proposed framework performed well, detecting a significant 
number of traffic signs. This demonstrates the robustness of 
the approach, even under suboptimal conditions and highlights 
its potential for real-world applications. Enhancing image 
quality and refining detection algorithms could further 
improve results, making this pipeline an effective tool for 
urban mapping in complex environments. Georeferencing 
could be improved with an onboard GNSS. 
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a)  b)  c)  

d)  
Figure 6: 3D reconstruction using sequential matching (a). Recovered trajectory mapped on a 2D map (b). 3D reconstruction results 
using vocabulary-tree matching (c). Overview of the entire recovered trajectory and sparse point cloud for sequence 1 (d). 

a)  b)  c)  d)  
Figure 7. Examples of object detection results with threshold=0.15 (a) and threshold=0.1 (b); misclassification examples (c,d). 

a)  b)  
Figure 8. Semantic segmentation results on an image of sequence 1 (a) and 2 (b). 

  
Figure 9. Views of SfM-based recovered trajectory (red signs) and sparse 3D reconstruction of sequence 2. 

 
4.3 Evaluation on clear high-resolution data 

For the second test, with images acquired a high-quality 
iPhone camera and under clear weather conditions, the visual 
differences between sequential and vocabulary-based 
matching are not immediately apparent. However, after geo-
registration (5 reference points), vocabulary matching 
demonstrated superior performance, achieving an alignment 
error of 2.7 meters (mean) and 1.9 meters (median), compared 
to 3.1 meters (mean) and 2.2 meters (median) for sequential 
matching. Additionally, vocabulary-based matching yielded a 
higher number of 3D points, with 654,969 3D points compared 
to 611,565 3D points from sequential matching. Therefore, the 
vocabulary-based 3D results are used for the further steps of 

the framework. The reconstruction in Figure 9 clearly reveals 
buildings and trees, highlighting a significantly higher point 
cloud density compared to the foggy dataset. Several factors 
contributed to this improvement, including the slower speed at 
which the dataset is collected, enabling more stable and 
detailed image capture. Additionally, while both datasets had 
a reduced frame rate of 10 fps, the enhanced visibility, superior 
camera quality, and the feature matching method played a 
crucial role in achieving a denser and more accurate 
reconstruction.  
Despite the improved resolution and visibility of the data, 
object detection (Figure 10a) struggles with classification 
inconsistencies. Adjusting detection thresholds reduces false 
positives but inadvertently increases false negatives, causing 
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lower-confidence traffic signs to be ignored despite being 
correctly detected. Future work should focus on improving 
detection reliability by expanding the training dataset for 
underrepresented traffic sign classes, ensuring better feature 
recognition across varying conditions and image resolutions. 
 

a)  

b)  c)  
Figure 10. Object detection for sequence 2 (a) and close-up 
examples (b, c). 

 
While most signs are successfully detected, misclassifications 
persist. Expanding the training dataset with more diverse and 
representative samples could significantly enhance 
classification accuracy and detection reliability. For instance, 
in our model the construction work class (Figure 10b) is 
particularly affected by limited training data. To address the 
issue of multiple classes being assigned to the same bounding 
box (Figure 10c), an additional filtering step is added. If 
bounding boxes overlap by more than 80%, only the class with 
the highest confidence score is retained. Additionally, all 
classifications with a confidence score below 24% are 
removed. The higher resolution and improved clarity in this 
dataset significantly benefit semantic segmentation, allowing 
for much cleaner boundary delineation, leading to more 
reliable semantic segmentation results compared to foggy data 
(Figure 8b). However, this improvement comes at the cost of 
processing speed - higher-resolution images require increased 
computational resources, which significantly slows inference 
time.  
 

a)  

b)  
Figure 11. Object localization on sequence 2 using SfM (a), 
and SLAM (b). Red: ground truth; Blue: predictions 

 
The evaluation results of the object localization algorithm on 
the second data sequence in clear weather conditions highlight 
the good performance of the detection system in identifying 
traffic signs, with 32 true positives out of 35 total traffic signs 
(Table 2, Figure 11a), indicating that most ground truth signs 

are successfully detected. However, the presence of 16 false 
positives and 3 false negatives (due to misclassification of 
object detection model) suggests that the object detection 
algorithm is overly sensitive, generating detections for non-
sign objects and repeatedly classifying the same object 
multiple times. A median error of 4.22 m and a standard 
deviation of 1.06 m are observed for the detected traffic signs, 
indicating a consistent offset in localization (Table 3). This 
aligns with the observed pattern of predictions being 
systematically shifted in the same direction, likely due to geo-
registration misalignment, as shown in Figure 12. The 
presence of this directional bias suggests a need for improved 
calibration of geospatial mapping methods to ensure more 
accurate localization.  
 

 GT True 
positive 

False 
positive 

False 
negative 

SfM 35 32 16 3 
SLAM+DF(20m) 35 28 7 7 
SLAM+DF(30m) 35 28 9 7 
Table 2. Object localization results (distance filtering - DF). 

 Mean Std Median 
SfM error [m] 4.22 1.06 4.22 
SLAM error + DF (20 m) 6.58 4.25 5.43 

Table 3. Offsets of localized objects (distance filtering - DF). 
 

 
Figure 12. Geo-registration shifts in the SfM results, 
affecting the localization performance. Blue-ground truth, 
red-predictions. 

 
Sequence 2 is also processed with the SLAM-based pipeline: 
out of the 3136 total images, 1417 are successfully oriented as 
key-frames, creating a final point cloud of 57,319 points 
(Figure 13).  
 

a)  

b)  
Figure 13. Georeferenced SLAM trajectory (a) and point 
cloud (b) for sequence 2. 
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In the object detection step, the evaluation results indicate 28 
true positives, 7 false positives and 7 false negatives out of 35 
total traffic signs in the ground truth (Figure 11b, Table 3). 
With respect to the SfM-based results, the number of false 
positives is reduced due to lower number of 3D points in the 
SLAM-generated point cloud - since predictions for missing 
3D points are simply discarded. This demonstrates that when 
the object detection model is overly sensitive, lower number 
of 3D points appeared to be beneficial. To improve noisy 
SLAM point cloud results, we applied additional distance 
filtering (DF) to 3D points, removing noisy points beyond 20 
meters from the camera pose. This refinement reduced the total 
number of points to 26,439 but improved localization quality 
and optimized processing efficiency. A comparative analysis 
of different distance thresholds showed that filtering 3D points 
at 30 m distance introduced 4 additional false positives, while 
filtering at 15 meters resulted in 5 extra false negatives. 
Therefore, a 20-meter threshold proved to be the optimal 
balance, minimizing false negatives while maintaining a high 
true positive rate. The higher detection performance of the 
SfM-based approach, as reflected in the number of true 
positives, can largely be attributed to its denser point cloud. 
The average localization error is measured at 6.58 meters, with 
a standard deviation of 4.25 meters, while the median error is 
5.43 meters (Table 3).  
The results based on the SLAM-derived point cloud 
demonstrated strong localization/identification performance 
while maintaining a more lightweight computational cost 
compared to SFM-based approach. Distance filtering was 
applied exclusively to the SLAM-based experiment due to the 
higher noise levels observed in SLAM-generated point clouds. 
While SfM could potentially benefit from similar filtering, its 
point cloud remained more stable and less affected by 
excessive outliers, making additional filtering unnecessary for 
this evaluation. 
 
4.4 Change detection 

The two sequences (Table 1) We conducted change detection 
tests, using as ground truth results from the first data sequence, 
representing the initial state of the environment. Based on this 
reference, change detection is performed on the second 
sequence in the overlapping part of the trajectory. The change 
detection results show that out of 21 total traffic signs in the 
aligned trajectory, and 13 documented changes (Figure 15 and 
16) in the ground truth dataset (6 newly appeared signs and 7 
disappeared ones), the proposed approach identified 8 traffic 
signs as appearing (Table 4). Among these, 6 are correctly 
classified as true positives (85.7% precision, Table 5), aligning 
with the ground truth, while 2 are false positives - resulting 
from the object detection algorithm due to a lack of sufficient 
training data. Additionally, the algorithm detected 6 out of 7 
disappeared signs, resulting in 1 false negative. The model 
correctly identified 8 matched signs as true negatives. Figure 
14 shows the confusion matrix summarizing change detection 
performance. Taking these into account, the overall recall for 
change detection is 92.3% (Table 5), confirming the system’s 
strong capability in recognizing both newly introduced and 
removed traffic signs. This demonstrates strong performance 
in finding both newly introduced and missing objects. Further 
refinement to reduce false positives can be obtained through 
training the object detection algorithm on a larger dataset. 
 
4.5 Discussion 

Sequence 1 and 2 feature two very different environmental 
conditions and acquisition sensor and camera set-up. Figure 16 
show how such conditions can affect the derived 3D scene. 

 
Figure 14. Confusion matrix for change detection results. 

 
Total GT True 

positives 
True 

negatives 
False 

positives 
False 

negatives 
21 13 12 8 2 1 

Table 4. Detected changes between the sequences 1 and 2. 
 

Metric  Value 

Precision: TP / (TP + FP) 85.7% 

Recall: TP / (TP +FN) 92.3% 

Table 5. Precision and recall values for the change detection 
process. 
 

a)  

b)  
Figure 15. Change detection ground truth (a) - Green: 
appeared, Blue: disappeared, Red: matched. Predictions 
results (b) - Blue: disappeared, Yellow: appeared, Orange: 
false positives, Red: matched/ true negatives. 

 
The sparsity of the point cloud stems from several factors 
affecting the 3D reconstruction (Figure 16a). Low feature 
density in uniform areas, poor visibility (darkness and fog), 
limited camera perspective and sequential image matching 
reduced the number of valid correspondences. Additionally, 
the 10 fps frame rate limited fine-detail capture between 
frames. The imposed constraints resulted in fewer matched 
features and a sparser reconstruction for sequence 1. Within 
the purple dotted rectangle, the reconstructed traffic signs on 
the right side of the road are visible. This indicates that certain 
images successfully captured the traffic sign features, allowing 
spatial reconstruction within the point cloud. Figure 16b 
illustrates a denser point cloud from sequence 2 (sunny 
weather, better camera), where the traffic sign reconstruction 
is more detailed. The corresponding detected feature example 
is presented in Figure 16d. However, if the SLAM-based 
approach is not selected a particular keyframe, objects might 
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not be detected and the system might fail to correctly localize 
signs, preventing their integration into an updated map. 
 

a)  

b)  

c)  d)  
Figure 16. Reconstructed scene for sequence 1 (a) and 2 (b). 
Detected features in sequence 1 (c) and 2 (d) corresponding 
to the same location in town. 

 
 

5. Conclusions  

This work has introduced a low-cost crowdsourcing 
methodology for urban environment 3D mapping using 
crowdsourced dashcam videos, with a focus on automatic 
change detection. Leveraging techniques such as SfM, SLAM, 
semantic segmentation and object detection, the proposed 
approach enables scalable and cost-effective updates of urban 
maps in the meter-accuracy range. The system’s robustness is 
evaluated with complex sequences captured under challenging 
environmental conditions, specifically darkness and fog. 
Additionally, performance is assessed using both SfM-based 
point clouds and lightweight SLAM-based point clouds. The 
results demonstrate that despite the sparser SLAM-based 3D 
point cloud, SLAM can achieve comparable object detection 
and localization performance to SfM, while significantly 
reducing processing time. Furthermore, the change detection 
method successfully identified most environmental 
modifications between two states of the environment (2-years 
apart), achieving a recall of 92.3% and a precision of 85.7%, 
despite the challenging weather conditions of sequence 1. 
While SfM offers slightly better numerical accuracy, SLAM 
significantly improves processing efficiency, making it a 
viable alternative for real-time or resource-constrained 
environments without significantly compromising reliability. 
The results highlight the potential for (real-time) cityscape 
monitoring, robust mapping under diverse environmental 
conditions and cost-effective map updates. Future 
improvements could further refine system components, 

particularly the object detection module, enhancing robustness 
and contributing to more reliable and adaptable urban mapping 
workflows. Additionally, separating the 3D model into 
multiple sections may improve geo-registration accuracy, 
enabling better alignment with road geometry and reducing 
localization errors. On-board GNSS receiver could be used to 
support geolocalization, with the known issues of satellite 
signals in urban environments. 
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