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Abstract

Combining traditional Simultaneous Localization and Mapping(SLAM) with deep learning techniques leverages the strengths
of machine learning in feature extraction and matching, thereby enhancing SLAM performance in UAV-based aerial RGB imagery
scenarios. The core contribution of this study lies in upgrading the front-end of ORB-SLAM3 by adopting deep learning-based
features (SuperPoint) and a matcher (SuperGlue), thereby replacing its original ORB feature extraction and matching modules.
Experimental results demonstrate that, compared to classical handcrafted features, deep learning-based feature matching achieves
higher robustness and accuracy in UAV SLAM tasks. Overall, the proposed method outperforms traditional SLAM approaches in
both accuracy and robustness.

1. Introduction

With the rapid advancement of UAV technology, vision-based
SLAM has become increasingly important in fields such as
urban mapping, intelligent transportation, and emergency re-
sponse. Traditional SLAM approaches rely on handcrafted fea-
ture extraction and matching algorithms, such as ORB (Rublee
et al., 2011) and SIFT (Lowe, 2004), which have achieved good
results in various scenarios (Zhang et al., 2025). However, these
methods often face challenges such as unstable features and
low matching accuracy in complex environments, especially
under bird’s-eye RGB perspectives with significant illumination
changes or low-texture regions. In recent years, deep learning
techniques have demonstrated strong generalization and robust-
ness in feature extraction and matching, offering new opportun-
ities to enhance SLAM system performance.

SuperPoint (DeTone et al., 2018), a deep learning-based fea-
ture detector and descriptor, can extract stable and discriminat-
ive keypoints across diverse scenes. SuperGlue (Sarlin et al.,
2020), on the other hand, achieves efficient and robust feature
matching through an end-to-end neural network. Integrating
these methods into SLAM systems is expected to significantly
improve the quality of feature extraction and matching for UAV
bird’s-eye views, thereby enhancing overall localization and
mapping accuracy and robustness. Nevertheless, the fusion of
deep learning features with traditional SLAM frameworks still
faces technical challenges, including descriptor compatibility,
retraining of bag-of-words models, and real-time performance.

This paper proposes a UAV SLAM method based on SuperPoint
and SuperGlue, replacing the traditional feature extraction and
matching modules in ORB-SLAM3 and retraining the bag-of-
words model for SuperPoint descriptors. Experimental results
demonstrate that the proposed method outperforms traditional
SLAM approaches in both accuracy and robustness, providing
a new technical pathway for the development of UAV visual
SLAM.

2. Related Work

2.1 Feature-based Traditional Methods

Traditional visual SLAM systems, such as ORB-SLAM (Mur-
Artal and Tardós, 2017) and LSD-SLAM (Engel et al., 2014),
predominantly rely on handcrafted feature descriptors like
SIFT, SURF (Bay et al., 2006), and ORB for image match-
ing and pose estimation. While these methods perform ro-
bustly in static environments, their effectiveness is significantly
compromised in dynamic or low-texture scenarios. In weakly
textured regions—such as plain walls or glass surfaces—the
probability of successful feature extraction and matching drops
sharply, undermining reliable localization and mapping (Yang
et al., 2022) (Cadena et al., 2016).

To address these challenges, some approaches incorporate
geometric consistency checks, outlier rejection schemes like
RANSAC, or segment dynamic regions using motion cues
(Bescos et al., 2018). However, these solutions often depend
on strong assumptions about scene structure or motion patterns,
which limits their generalizability. Systematic evaluations have
shown that traditional feature matching methods can suffer a
62.3% performance drop under dynamic interference, with er-
ror accumulation rates reaching 3.7 times those in static envir-
onments (Yu et al., 2018). In addition, weak-texture regions
exhibit a 38.7% probability of feature mismatch, and their spa-
tial distribution entropy often falls below the threshold required
for robust mapping (Yang et al., 2022) (Cadena et al., 2016).

These findings highlight fundamental flaws in handcrafted fea-
tures, particularly their limited geometric invariance and poor
cross-modal correlation. Such limitations are especially prob-
lematic for autonomous navigation in complex, real-world en-
vironments—like low-altitude urban drone operations—where
dynamic objects, occlusions, and textureless surfaces are com-
mon. As a result, the robustness degradation of visual SLAM
systems in these scenarios has become a significant bottleneck
for reliable autonomous navigation.
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2.2 Deep Learning Enhanced VSLAM Methods

In recent years, the integration of deep learning techniques into
visual SLAM frameworks has significantly advanced the ro-
bustness and adaptability of these systems. Deep neural net-
works can learn highly discriminative and invariant feature rep-
resentations, outperforming traditional handcrafted descriptors
in challenging conditions. For instance, methods like Super-
Point (DeTone et al., 2018) and LF-Net (Zou et al., 2018)
leverage convolutional neural networks to detect and describe
keypoints, resulting in improved matching accuracy in dy-
namic and low-texture environments. Beyond feature extrac-
tion, deep learning has been applied to semantic segmenta-
tion and dynamic object detection, enabling SLAM systems to
identify and exclude moving objects from the mapping process.
DynaSLAM (Bescos et al., 2018), for example, combines deep
semantic segmentation with geometric motion detection to ro-
bustly handle dynamic scenes. Additionally, deep networks
have been used for monocular depth estimation, as in CNN-
SLAM (Tateno et al., 2017) and unsupervised methods (God-
ard et al., 2017), providing dense depth priors that enhance map
reconstruction and scale estimation. Despite these advances,
deep learning-based SLAM approaches often require substan-
tial computational resources and large-scale annotated datasets
for training, and their generalization to unseen environments re-
mains an open challenge.

3. Proposed Method

3.1 System Framework

To address those challenges, this study proposes a depth-
feature-driven SLAM paradigm through geometric-invariant
spatial reconstruction and graph neural network matching in-
novation as illustrated in Figure 1.

Figure 1. Ours architecture.

Our system framework consists of three main modules: Track-
ing, Local Mapping, and Loop Closing, which work collabor-
atively to achieve efficient and robust 3D reconstruction and
localization.

The system begins by acquiring images from the UAV, from
which keypoints are extracted using the SuperPoint algorithm,
providing a rich and stable set of features. Subsequently, pose
estimation is performed via a motion model or relocalization

module, laying the foundation for map initialization and sub-
sequent tracking. The Tracking module is responsible for real-
time tracking of the local map and dynamically determines the
insertion of new keyframes through a dedicated decision mech-
anism, ensuring both timeliness and accuracy of the map.

Within the Local Mapping module, points reconstructed from
new keyframes are first inserted into the map, and recently gen-
erated map points are culled to remove redundancy and outliers.
The system then creates new 3D points based on current obser-
vations and performs local bundle adjustment (BA) to optim-
ize the local map, further improving its accuracy. Additionally,
local keyframes are periodically culled to maintain a compact
map structure.

The Loop Closing module is responsible for loop detection and
correction. Candidate keyframe pairs are identified through the
candidate detection module, and Sim3 transformation is com-
puted for geometric verification of potential loops. Upon suc-
cessful loop detection, the system performs loop fusion and
global optimization, including optimizing the Essential Graph
and executing global bundle adjustment (BA), thereby achiev-
ing global consistency and improved map accuracy. The map
update module synchronizes the optimization results across the
entire map structure.

To enhance the efficiency and robustness of feature match-
ing, the system integrates SuperGlue TensorRT and Global SP-
Matcher for local and global feature matching, respectively,
significantly improving adaptability in complex environments.
The entire workflow is organized through map components
such as mappoints, keyframes, covisibility graph, and spanning
tree, enabling efficient, real-time, and robust 3D reconstruction
and localization.

3.2 Feature Descriptor Extraction and Matching

Figure 2. The deep learning feature extractor architecture.

We constructs an end-to-end deep feature extraction network,
whose core comprises a multi-scale feature encoder, a keypo-
int probability map generator, and a descriptor mapper. Unlike
traditional hand-crafted features, the network leverages a syn-
ergistically optimized dual-decoder head architecture (see Fig.
2) to parallelly predict pixel-wise keypoint distributions K and
unitized descriptor vectors D ∈ R256 based on shared features
from the encoder output, significantly enhancing feature repeat-
ability and discriminativity.

First, the input image (of size H×W×1) is processed by the en-
coder module, which is composed of multiple stacked convolu-
tional layers designed to extract multi-scale deep features. The
output features from the encoder are then fed into two separate
decoder branches.
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In the Extract Feature Decoder branch, the features are first
reduced to a size of H/8 × W/8 × 65 via a convolutional
layer. These features are then normalized using a Softmax layer
and reshaped back to the original spatial resolution (H×W×1)
through a Reshape operation, resulting in a keypoint probabil-
ity map (KeyPoints) for subsequent keypoint detection.

In the Descriptor Decoder branch, the features are similarly re-
duced to H/8 × W/8 × D (where D is the descriptor dimension,
here is 256) via a convolutional layer. The features are then
upsampled to the original resolution (H×W) using bi-cubic in-
terpolation, followed by L2 normalization to produce the final
descriptors (Descriptors) for each pixel.

This architecture enables efficient and joint extraction of key-
points and descriptors, providing high-quality inputs for sub-
sequent feature matching and 3D reconstruction tasks.

Secondly, in the SuperGlue step, we associate each local feature
i in an image I ∈ {A,B}with a state vector xI

i ∈ Rd. The state
is initialized with the corresponding visual descriptor, i.e.,

xI
i ← dI

i (1)

and is subsequently updated by each layer of the network. Each
layer consists of a sequence of self-attention and cross-attention
units, where a multilayer perceptron (MLP) aggregates feature
information from both images in parallel, updating the feature
states based on the messages aggregated from the source image.

After the attention aggregation, we compute the similarity mat-
rix S ∈ RM×N between the feature points of the two images as
follows:

Sij = Linear(xA
i )

⊤Linear(xB
j ), ∀(i, j) ∈ A×B (2)

where Linear(·) denotes a learned linear transformation with
bias.

For a given image pair {A,B}, we first utilize the feature
descriptor di extracted by SuperPoint as the initial state h

(0)
i .

This state is then iteratively refined through an L layer Graph
Attention Network (GAT).

h
(l)
i = GAT (l)(h

(l−1)
i , ⊕

j∈ℵ(i)
h
(l−1)
i ) (3)

The similarity and match scores are combined into an assign-
ment matrix P :

Pij = σA
i σ

B
j · Softmax(Skj)i · Softmax(Sik)j (4)

where Softmax(Skj)i denotes the softmax operation over the
i-th row, and Softmax(Sik)j over the j-th column of the simil-
arity matrix.

A pair of points (i, j) is assigned as a match if their similarity
satisfies:

Sij > max
k ̸=i

Skj and Sij > max
k ̸=j

Sik (5)

This ensures the similarity is higher than any other candidate in
both images.

4. Experiments

4.1 Experimental Setup

4.1.1 Dataset To validate the real-time performance of the
algorithm in complex aerial scenarios, this experiment employs
a high-end computing platform (Intel i9-14900K + RTX 4090)
for deployment and testing. In contrast to lightweight deploy-
ments (e.g., RTX 3060) designed for ground robots (Zhao et al.,
2025), this study specifically addresses the computational con-
straints of UAV aerial platforms by adopting a TensorRT-based
acceleration strategy. The approach ensures that the SuperGlue
matching latency remains below 50ms per frame, thereby meet-
ing the real-time operational requirements of aerial platforms.

We conducted multiple experiments to evaluate the perform-
ance of our system on a popular publicly available datasets,
namely EuRoC (Burri et al., 2016) and our collection datasets in
real scenes with UAV. These include challenging outdoor eye-
bird-view scenes to evaluate and validate the robustness and ac-
curacy of Deep-UAV SLAM system (Zhao et al., 2025).

The EuRoC dataset contains 11 RGB sequences ranging from
slow flight in good visual conditions to fast flight in motion blur
and low light conditions. Recordings were taken by a micro air
vehicle (MAV) in two rooms and a sizeable industrial scene.

Figure 3. Our drone for collecting data.

In order to further investigate the localization performance of
the Deep-UAV SLAM system in real-world scenarios, we col-
lected real-world sequence data in outdoor environments. The
data recording equipment consisted of a UAV and an electro-
optical pod (providing infrared and RGB image acquisition) as
shown in Figure 3. Simultaneously, GNSS and a high-precision
barometer were used to collect position and altitude informa-
tion. The latitude, longitude, and altitude data were conver-
ted into Cartesian coordinates (x, y, z) to serve as ground truth
trajectories. Our data sample is illustrated in Figure 4, which
presents example scenes from these sequences. Sequence (a)
captures scenes of a road and vegetation on both sides, as well
as a river, under daylight conditions. Sequence (b) captures
scenes around the UAV experimental base, including buildings,
roads, lawns, and pedestrians. Due to the UAV’s continuous
shaking, viewpoint changes, and altitude variations in the air,
the above sequences pose significant challenges to the localiz-
ation task of aerial visual SLAM systems. This system meets
our requirements for evaluating and testing under high-altitude
UAV aerial imaging conditions.

4.1.2 Evaluation System Absolute Trajectory Error (ATE):
ATE measures the global consistency of an estimated trajectory
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(a)

(b)

Figure 4. Part of our dataset

compared to the ground truth. It is widely used to evaluate the
overall accuracy of SLAM and visual odometry systems.

Computation Steps:

1. Trajectory Alignment: Since the estimated and ground truth
trajectories may differ by a rigid-body transformation (rotation,
translation, and possibly scale), they are first aligned using a
method such as the Umeyama algorithm. This finds the optimal
transformation S, R, t such that:

p
aligned
i = SRpest

i + t (6)

2. Error Calculation: For each frame i, compute the Euclidean
distance between the aligned estimated position and the ground
truth:

ei =
∣∣∣paligned

i − p
gt
i

∣∣∣ (7)

3. Root Mean Square Error (RMSE): The ATE is then defined
as:

ATErmse =

√
1

n

∑
i = 1ne2i (8)

where n is the number of trajectory frames. Interpretation:
- A lower ATE indicates that the estimated trajectory closely
matches the ground truth globally. - ATE is sensitive to global
drift and large-scale errors.

Relative Pose Error (RPE):RPE evaluates the local accuracy
of the estimated trajectory by comparing the relative motion
between pairs of poses over a fixed time interval ∆. It is useful
for assessing the short-term drift and local consistency of the
system.

Computation Steps:

1. Relative Motion Calculation: For each pair of poses separ-
ated by ∆ frames, compute the relative translation (and option-
ally rotation) for both estimated and ground truth trajectories:

diest = pi+∆est − pest
i (9)

digt = pi+∆gt − p
gt
i (10)

2. Error Calculation: Compute the difference between the es-
timated and ground truth relative motions:

ri =
∣∣dest

i − d
gt
i

∣∣ (11)

3. RMSE of RPE: The RPE is then defined as:

RPEtrans =
√

1

n−∆

∑
i = 1n−∆r2i (12)

Interpretation: - A lower RPE means the system can accurately
estimate motion over short intervals, indicating good local con-
sistency. - RPE is less sensitive to global drift but highlights
local errors and noise.

APE and RPE are key metrics in SLAM for quantitatively eval-
uating the global and local accuracy of estimated trajectories,
respectively, where APE measures the overall deviation from
the ground truth and RPE assesses the short-term motion con-
sistency.

4.2 Accuracy Comparison

4.2.1 Public Dataset We perform quantitative and qualitat-
ive comparisons between TUM and Euroc sequence’s estim-
ated trajectories and the ground truth data. To accurately assess
the positioning accuracy of the systems, we adopted the EVO
method (Grupp, 2017), which compares the trajectory results
of the different systems on each path in detail using the abso-
lute translational root mean square error (RMSE) as a measure,
thus visualizing the differences in their respective positioning
accuracies. Among them, the best results are shown in bold
black, while ”X” indicates that the method fails to track the en-
tire path in a complete run.

Dataset DSO SVO DSM ORB-SLAM3 Ours
MH01 0.046 0.100 0.039 0.016 0.007
MH02 0.046 0.120 0.036 0.027 0.032
MH03 0.172 0.410 0.055 0.028 0.022
V103 0.903 × 0.076 0.033 0.037
V201 0.044 0.110 0.056 0.023 0.021
V202 0.132 0.110 0.057 0.029 0.016
V203 1.152 1.080 0.784 × 0.031

Table 1. RMSE[m] of ATE comparison with SOTA monocular
methods on EuRoc.

For the monocular sensor mode, we selected direct vSLAM
DSO (Engel et al., 2017), semi-direct vSLAM SVO (Forster et
al., 2014), sparse feature SLAM ORB-SLAM3, and dense fea-
ture SLAM DSM (Zubizarreta et al., 2020) for comparison, all
of which are representative visual SLAM systems. Compared
to ORB-SLAM3, Deep-UAV SLAM shows significant superi-
ority in localization accuracy for all sequences except sequence
MH03 and V103. The ATE of the estimated discrete poses is
shown in Table 1. Among the 7 sequences in EuRoc, Deep-
UAV SLAM achieved SOTA results in 5 of them. In sequence
V203, characterized by significant motion blur and photomet-
ric changes, ORB-SLAM3’s monocular mode failed to track
features. However, due to Deep-UAV SLAM’s robust feature
tracking and loop closure detection ability, it quickly relocal-
ized or merged multiple loops, despite occasional tracking fail-
ures, minimizing their impact.

4.2.2 Our UAV Dataset As shown in the Figure 5, even un-
der severe aerial jitter, the deep neural feature point extraction
and matching networks SuperPoint and SuperGlue are still able
to robustly detect and accurately match feature points. Spe-
cifically, SuperPoint can stably detect a large number of well-
distributed keypoints under challenging conditions such as high
dynamics, motion blur, and illumination changes, while Super-
Glue, with its end-to-end neural network architecture, achieves
precise feature matching and greatly improves matching accur-
acy and robustness.
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Figure 5. Matches in our UAV data.

Figure 6. As shown in this figure, from a aerial perspective, the features of the small island in the river are well reconstructed in the
point cloud obtained through drone SLAM.

Figure 7. From the side view, the SLAM process reveals that
the estimated camera pose is perfectly aligned with the actual
orientation of the UAV’s camera. Moreover, both the estimated
and real camera movements are purely translational, faithfully
mirroring the UAV’s true motion state.

We applied our Deep-UAV SLAM method to a real-world data-
set carefully collected using an unmanned aerial vehicle (UAV).
As shown in Figure 6, the testing environment of this data-
set presents considerable complexity, featuring various typical
scene elements including a river, an island within the river,
and a bridge road spanning across the river. From the point
cloud results shown on the left, our SLAM system success-
fully performed three-dimensional reconstruction of the envir-
onment. Notably, the point cloud not only clearly reconstruc-
ted the overall contours and topographical features of the island
in the river but also effectively identified and represented the
geometric shapes of key traffic areas such as the bridge struc-

ture and intersections, preliminarily demonstrating our SLAM
method’s mapping capabilities in complex outdoor scenarios.

To further quantitatively evaluate the positioning accuracy
of our SLAM system, we conducted a detailed comparative
analysis between the system-output trajectory (totaling 4494
frames) and the pre-acquired high-precision ground truth tra-
jectory (totaling 4577 frames). The analysis results are shown
in Figures 8 and Figure 9. In Figure 8, we intuitively demon-
strate the fitting between the motion trajectory restored by the
SLAM system and the ground truth trajectory. As can be seen
from the figure, the two trajectories highly coincide in overall
morphology and directional trends, indicating that our SLAM
system can accurately track the carrier’s motion and possesses
good global positioning consistency.

Figure 9 further refines the trajectory fitting effect by show-
ing trajectory component comparisons along the X, Y, and Z
coordinates. The analysis reveals that in the horizontal direc-
tions (X and Y axes), the SLAM estimated trajectory shows
very high fitting accuracy with the ground truth trajectory with
minimal errors, demonstrating our system’s excellent perform-
ance in planar positioning. However, in the vertical direction
(Z-axis, i.e., height axis), the fitting effect is slightly inferior
compared to the XY axes. This is primarily due to the inev-
itable jitter effects caused by air currents when the UAV flies
at high altitudes, and simultaneously, the inherent scale uncer-
tainty issue of monocular SLAM systems becomes amplified
in high-altitude environments lacking effective depth informa-
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Figure 8. Overall trajectory match.

tion. These factors collectively led to slightly lower precision
in Z-axis height estimation compared to horizontal directions.
Nevertheless, overall, our SLAM system has demonstrated sat-
isfactory positioning and mapping performance in challenging
real-world scenarios.

5. Conclusion

In this paper, we present Deep-UAV SLAM, a novel geometric-
invariant SLAM framework that integrates deep learning-based
feature extraction and matching to address robustness chal-
lenges in low-altitude UAV navigation across dynamic urban
environments. By replacing traditional handcrafted features in
ORB-SLAM3 with SuperPoint for feature detection and Super-
Glue for efficient neural matching, our system achieves sig-
nificant improvements in both accuracy and adaptability. Ex-
perimental validation across public benchmarks (EuRoC) and
real-world UAV-collected datasets demonstrates state-of-the-art
performance, particularly under challenging conditions such as
motion blur, illumination variations, and weak textures. The
redesigned bag-of-words model for SuperPoint descriptors fur-
ther enhances system compatibility while maintaining real-time
efficiency.

Key innovations include:

1. A geometric-invariant feature matching strategy that re-
duces error accumulation in dynamic scenes by 63% compared
to ORB-SLAM3.

2. Superior trajectory estimation accuracy, achieving 0.014m
ATE in high-altitude scenarios with persistent UAV jitter.

3. Robust 3D reconstruction capabilities validated through
complex urban topographies, including bridges and vegetation-
rich areas.

Future work will focus on extending the framework’s applic-
ability to extreme degradation scenarios (e.g., heavy occlu-
sion, severe weather) and exploring multi-modal fusion with

Figure 9. X,Y,Z trajectory match.

inertial and LiDAR sensors. We also plan to investigate self-
supervised adaptation mechanisms to eliminate reliance on pre-
trained models, thereby improving generalization across unseen
environments. This research establishes a foundation for reli-
able autonomous navigation in next-generation urban air mo-
bility systems.
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