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Abstract

Point cloud completion, a critical task in 3D vision, aims to repair incomplete point cloud data caused by sensor limitations or
environmental occlusions, thereby providing complete 3D structural information for downstream applications. Most existing
methods employ global generation strategies to directly output complete point clouds, but these approaches frequently alter the
original geometric structures, resulting in detail loss or increased noise. A novel attention-based multi-scale point cloud completion
network is proposed to overcome these limitations. The first enhancement introduces a channel attention mechanism during multi-
scale feature fusion, which strengthens the coordinated expression of local details and global semantics through adaptive weight
allocation. The second improvement designs a hybrid loss function that combines Wasserstein GAN with gradient penalty and
geometric consistency constraints, thereby enhancing both detail authenticity and structural coherence in generated point clouds.
Experiments conducted on the ShapeNet-Part dataset demonstrate the effectiveness of the proposed method. The improved approach
achieves a reduction in Chamfer Distance compared to PF-Net, with particularly enhanced robustness observed in completing
complex structures such as hollow chair backs and thin-walled lampshades. These results validate the superiority of the proposed

technical innovations in geometric detail preservation and structural integrity maintenance.

1. Introduction

Three-dimensional  point cloud completion technology
represents a crucial research direction in computer vision and
3D reconstruction, aiming to algorithmically repair incomplete
point cloud data caused by sensor limitations or environmental
occlusions to restore complete geometric structures of objects.
With rapid advancements in autonomous driving, robotic
navigation, and augmented reality applications, the demand for
high-precision 3D environmental perception has become
increasingly urgent (Pham et al., 2021). For instance, in
autonomous driving scenarios, LiDAR-captured point clouds
often exhibit partial missing regions due to vehicle occlusions
or complex weather conditions. Direct utilization of such data
for obstacle detection or path planning may lead to critical
safety risks. Traditional point cloud completion methods
predominantly rely on handcrafted geometric interpolation
algorithms, such as Poisson reconstruction or surface fitting.
However, these approaches frequently underperform when
handling complex topological structures or large-scale missing
regions, while also struggling to generalize across diverse
object categories (Huang et al., 2020).

Recent breakthroughs in deep learning have provided new
perspectives for point cloud processing. Early works like
PointNet (Charles et al., 2017) and PointNet++ (Qi et al., 2017)
demonstrated the potential of neural networks in point cloud
classification and segmentation tasks by directly processing
unordered point sets. Building upon these foundations, point
cloud completion methods have gradually shifted from
voxelization or multi-view projection to end-to-end point cloud
generation. For example, PCN (Point Completion Network)
(Yuan et al., 2018) employs an encoder-decoder architecture to
generate complete point clouds through folding operations that
map 2D grids to 3D space. However, its global generation
strategy tends to overwrite original point clouds, thereby
distorting the geometric structures of input regions. Although
FoldingNet (Yang et al., 2018) optimizes the generation process,

it still faces challenges in detail blurring and noise accumulation.
PF-Net (Point Fractal Network) (Huang et al., 2020) introduces
an innovative partial generation framework that predicts only
missing regions rather than entire point clouds, effectively
preserving the original input structures. Nevertheless, PF-Net
adopts simplistic feature concatenation for multi-scale feature
fusion, failing to fully exploit semantic relationships across
multi-resolution features. Additionally, its adversarial loss
design remains overly simplistic, limiting the diversity and
geometric authenticity of generated results.

Specifically, PF-Net’s limitations manifest in two aspects. First,
the feature fusion stage neglects the importance differences
among channels, allowing high-dimensional features to
potentially obscure critical low-level geometric details. Second,
the adversarial loss relies solely on a binary classification
discriminator, inadequately constraining surface smoothness
and local consistency in generated point clouds. These issues
become particularly pronounced in complex scenarios. For
instance, when completing a chair with hollow backrest
structures, existing methods may erroneously fill cavity regions
or generate incoherent support structures.

To address these challenges, this paper proposes an improved
framework based on PF-Net, with two core contributions. First,
a channel attention mechanism dynamically adjusts fusion
weights of multi-scale features, enhancing the network’s
collaborative perception of local details and global semantics.
Second, a hybrid loss function combines Wasserstein GAN with
gradient penalty (WGAN-GP) (Zhang et al., 2019) and normal
vector consistency constraints, simultaneously improving
generation diversity and geometric rationality. Experiments
demonstrate that the proposed method significantly reduces
Chamfer Distance errors on the ShapeNet-Part dataset and
exhibits superior detail restoration capabilities in complex
structure completion tasks. This work not only provides a new
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technical pathway for point cloud completion but also offers
reliable solutions for 3D perception challenges in practical

2. Related work

Three-dimensional  point cloud completion technology
represents a crucial research direction in computer vision and
3D reconstruction, aiming to algorithmically repair incomplete
point cloud data caused by sensor limitations or environmental
occlusions to restore complete geometric structures of objects.
With rapid advancements in autonomous driving, robotic
navigation, and augmented reality applications, the demand for
high-precision 3D environmental perception has become
increasingly urgent. For instance, in autonomous driving
scenarios, LiDAR-captured point clouds often exhibit partial
missing regions due to vehicle occlusions or complex weather
conditions. Direct utilization of such data for obstacle detection
or path planning may lead to critical safety risks. Traditional
point cloud completion methods predominantly rely on
handcrafted geometric interpolation algorithms, such as Poisson
reconstruction or surface fitting. However, these approaches
frequently underperform when handling complex topological
structures or large-scale missing regions, while also struggling
to generalize across diverse object categories.

Recent advancements in deep learning have significantly
propelled research progress in point cloud completion, with
existing methods broadly categorized into voxel-based, global
generation, and partial generation approaches. Early works
convert point clouds into voxel grids for completion using 3D
convolutional networks, but face limitations in resolution and
computational efficiency. The emergence of PointNet (Charles
et al., 2017) shifted focus to direct point cloud processing. PCN
(Yuan et al., 2018) employs an encoder-decoder framework
with folding operations to generate complete point clouds, yet
its global generation strategy tends to overwrite original
structures, causing detail loss (Li et al., 2023). FoldingNet
(Yang et al., 2018) further optimizes surface reconstruction but
exhibits limited adaptability to complex topological structures.
Partial generation methods like PF-Net (Huang et al., 2020)
preserve known structures by hierarchically predicting missing
regions, yet rely on simplistic concatenation for multi-scale

feature fusion, failing to fully explore inter-channel correlations.

Multi-scale feature fusion techniques have been widely applied
in multimodal tasks. PointNet++ (Qi et al., 2017) extracts local
features through hierarchical sampling and grouping, but its
inter-level information transmission depends on fixed rules
(Huang et al., 2020). MSN proposes a multi-resolution tree
network to fuse features of varying granularity, yet lacks
adaptive weighting mechanisms. Recently, Transformer
architectures have been introduced to point cloud processing.
PoinTr (Yu et al., 2021) models global context via self-attention
but suffers from high computational complexity and insufficient
focus on local details.

3. Method

The proposed framework builds upon PF-Net, retaining its core
architecture of multi-resolution encoder (MRE) and point
pyramid decoder (PPD) (Huang et al., 2020), while optimizing
multi-scale feature fusion and loss function design. Key
improvements include a multi-scale channel attention
mechanism and a hybrid loss function, aiming to enhance local
detail perception and improve geometric consistency and
diversity in generated point clouds.

applications such as autonomous driving and industrial

inspection.

The development of attention mechanisms in 3D tasks offers
new insights for point cloud completion. PointTransformer
enhances semantic understanding in classification and
segmentation through self-attention. CAE-Net ( Mahmud et al.,
2024) introduces channel attention for feature selection in
completion tasks, but its attention module operates only on
single-scale features. In contrast, the proposed multi-scale
channel attention mechanism achieves balanced integration of
local details and global semantics through hierarchical weighted
fusion, addressing limitations of existing methods.

Generative Adversarial Networks (GANs) and their variants
demonstrate strong performance in point cloud generation. L-
GAN pioneers GAN applications for point cloud generation but
produces coarse results. Subsequent works like 3D-
PointCapsule enhance generation diversity via capsule networks
but exhibit limited capability in modeling complex geometric
structures. Wasserstein GAN with gradient penalty (WGAN-GP)
(Zhang et al., 2019) improves training stability through
Lipschitz constraints and effectively mitigates mode collapse,
yet remains underutilized in point cloud completion. This work
integrates WGAN-GP with geometric consistency losses to
enhance generation diversity while constraining local surface
smoothness.

Regarding  geometric  constraints,  existing  methods
predominantly rely on Chamfer Distance (CD) or Earth
Mover’s Distance (EMD) to measure point cloud similarity, but
such metrics struggle to capture local geometric properties.
Recent works like propose normal vector consistency losses to
enhance geometric plausibility by aligning surface orientations
between generated and ground-truth point clouds. introduces
curvature consistency losses to optimize complex surface
generation. Building on these, a hybrid loss function is designed
to combine global shape matching with local curvature
continuity constraints, improving the physical plausibility of
completion results.

In summary, while existing methods have achieved progress in
point cloud completion, limitations persist in adaptive multi-
scale feature fusion, balance between generation diversity and
geometric consistency, and dynamic feature selection. This
work addresses these challenges by proposing an optimized
framework integrating channel attention mechanisms, hybrid
loss functions, and dynamic sampling, offering a more efficient
solution for complex point cloud completion tasks.
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Figure 1. The framework of a multi-scale point cloud
completion network integrating attention mechanisms.

CMLP

3.1 Multi-scale Channel Attention Mechanism

The proposed framework builds upon PF-Net, retaining its core
architecture of multi-resolution encoder (MRE) and point
pyramid decoder (PPD) (Huang et al., 2020), while optimizing
multi-scale feature fusion and loss function design. Key
improvements include a multi-scale channel attention
mechanism and a hybrid loss function, aiming to enhance local
detail perception and improve geometric consistency and
diversity in generated point clouds.
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Figure 2. A Squeeze-and-Excitation block.
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Traditional PF-Net extracts multi-scale features via MRE but
relies on simple concatenation for feature fusion, neglecting
importance  variations among channels in  semantic
representation. For example, in chair completion tasks, high-
frequency detail features (e.g., edge points) dominate the
support structures of chair backs, while low-frequency global
features determine the overall shape of chair seats. To
adaptively enhance critical channel expressiveness, a channel
attention module is introduced. The design draws inspiration
from the Squeeze-and-Excitation Network (Hu et al., 2018), but
adapts to the unstructured nature of point clouds. Figure 2
illustrates the core workflow of the SE module. The SE module
first applies Global Average Pooling (GAP) to input features,
compressing spatial dimensions into channel-wise descriptors
(Squeeze operation). Subsequent processing involves two fully
connected layers that learn nonlinear inter-channel relationships
(Excitation operation). Unlike the original SENet, the CMLP
module (as shown in Figure 3) employs a parameter-sharing
network to handle multi-scale features during channel weight
generation. Enforced cross-level parameter reuse strengthens
geometric correlations between features at different resolutions.
This  architectural modification enhances information
interaction  across  hierarchical  representations  while
maintaining computational efficiency.
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Figure 3. The feature extractors of 3Dpoint encoders.

Specifically, for multi-scale features {F,,F,,F;,F,} (dimensions:
128, 256, 512, 1024) output by the CMLP module in MRE,
global average pooling (GAP) compresses spatial information
into channel descriptors:

1 =3 Y ()

@)
h=1 w=1

where H xW denotes spatial dimensions of feature maps. This
operation captures global channel statistics, such as point
density in chair back regions or local curvature distributions. A

two-layer fully connected network then learns nonlinear inter-
channel relationships and outputs normalized weight vectors:

s =0(W,-5(W,-z)) @)
where W, =R“™® and W, =R are learnable
parameters, =16  represents  the  compression

ratio, 0 denotes the ReLU activation, and o signifies the
Sigmoid function. Original features undergo dynamic
adjustment through channel-wise multiplication:
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Fi = Si O Fi (3)
In the formula, © represents the multiplication of each
channel. This design enables adaptive enhancement of channel
features strongly correlated with missing geometric structures.
For instance, when completing hollow chair backs, weights for
high-frequency detail channels (e.g., edge orientations) increase
significantly, while weights for low-frequency global channels
(e.g., overall symmetry) decrease relatively.

During decoding, the PPD further optimizes generation through
hierarchical attention mechanisms. The primary layer generates
low-resolution skeleton points, with attention weights computed
via graph convolutional network (GCN) (Liu et al., 2022) :

a; = Softmax(qT -B(y; )) (@)
where @ represents the local geometric features extracted by
GCN, 0 is the learnable query vector, and @; indicates the

attention score of the j -th skeleton point. The secondary layer

fuses primary-layer features with current-layer features through
cross-attention:

Ysecondary _ Zk: ﬁk v ( y kprimary ® yﬁurrent) (5)

where [, represents the attention weight, @ indicates feature

concatenation, and ¥ is the multi-layer perceptron (MLP). The
detail layer introduces joint spatial-channel attention by
extracting local geometric contexts via 3D convolution and
computing spatial attention maps:

Apatial = SIngId (ConVSD(YdetaiI )) (6)

Final detailed point clouds are generated through combined
spatial-channel attention:

Ydetail = A%patial G)('Ahhannel Q Fdetail ) (7)
This hierarchical design enables progressive refinement of
missing geometric structures while preserving spatial coherence
with original point clouds. For example, chair leg completion
involves skeleton point generation in the primary layer,
structural refinement in the secondary layer, and surface texture
supplementation in the detail layer.

3.2 Hybrid Loss Function

The proposed framework builds upon PF-Net, retaining its core
architecture of multi-resolution encoder (MRE) and point
pyramid decoder (PPD), while optimizing multi-scale feature
fusion and loss function design. Key improvements include a
multi-scale channel attention mechanism and a hybrid loss
function, aiming to enhance local detail perception and improve
geometric consistency and diversity in generated point clouds.

The original multi-stage Chamfer Distance (CD) loss in PF-Net
effectively constrains global shape matching but exhibits
limited capability in modeling local geometric details (e.g.,
curvature, surface smoothness). A hybrid loss function

4. Experiment and evaluation

To train the proposed model and comprehensively evaluate
point cloud completion performance, the following experiments
are designed. The experiments utilize 13 categories of object
shapes from the ShapeNet dataset (e.g., bags, cars, chairs, lamps)
for training and evaluation. A total of 14,473 3D object point
cloud models are included, with 11,705 samples allocated to the

combining adversarial loss and geometric consistency
constraints is proposed, comprising three components:
Dynamically Weighted Multi-stage CD Loss: The hierarchical
CD constraints from PF-Net are retained but enhanced with a
dynamic weight adjustment strategy. For primary, secondary,
and detail generation layers, the loss function is defined as:

3 )
Leo = Zﬂ:?ﬁ “dep (Yi 'Yg(tl)) (8)

where 7; represents dynamic weights adaptively adjusted
based on the complexity of missing regions during training. For
example, weights for the detail layer ( ;) increase for complex
hollow structures (e.g., chair back meshes) to strengthen local

optimization, while weights decrease for smooth surfaces (e.g.,
tabletops) to avoid overfitting.

Wasserstein GAN with Gradient Penalty (WGAN-GP) (Zhang
et al., 2019) : To address mode collapse in traditional GAN
training, WGAN-GP is adopted as the adversarial loss. The
discriminator D , constructed with multi-layer graph
convolutional networks (GCNs) (Liu et al., 2022) , has its loss
function defined as:

Luw =, o, [DO)]-E,_, [D0)]+4, €, [(

ke

vo(-1f | ©

A

The generator minimizes —E{D(Y ﬂ The gradient penalty

term (44, =10 ) enforces Lipschitz continuity of the

discriminator, improving training stability. Experiments
demonstrate that this design significantly reduces holes and
fractures in thin-walled structures (e.g., lampshades).

Normal Vector Consistency Loss: To enhance local surface
smoothness, normal vector differences between generated and
ground-truth point clouds are calculated. Local normals n; are

estimated via principal component analysis (PCA), with the loss
defined as:

pred . _gt
Lnormal :%i 1_W (10)

i=1

This loss enforces consistency in local curvature between
generated and real data, particularly improving edge and hole
regions. When completing the chair legs, the normal vector
constraint can prevent the generated point cloud surface from
having unreasonable concavities or fractures.

The total loss function combines these components as a

weighted sum:

Lo = Aleo + A Laay + A bnorma (11)
Optimal weights ( 4, =10 , 4,=01, 4, =05 ) are
determined through grid search. The training process prioritizes

shape matching in early stages and gradually shifts focus to
geometric detail refinement.

training set and 2,768 samples to the test set. All input point
clouds are centered at the origin, and their 3D coordinates are
normalized to the range [-1, 1]. Complete ground-truth point
clouds are generated by uniformly sampling 2,048 points from
the dataset models. Incomplete point clouds are created by
randomly selecting one of five predefined viewpoints along the
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coordinate axes and removing points within a specified radius
from the selected viewpoint. The experiments employ the
PyTorch deep learning platform and use the adaptive moment
estimation (Adam) optimizer to train the 3D point cloud
completion network. The learning rate is set to 0.0003, with a
batch size of 64, and training proceeds for 201 epochs. Point
cloud data with a missing ratio of 25% are used for both
training and testing. Comparative evaluations with other point
cloud completion methods are conducted under this
configuration.

The Chamfer Distance (CD), a widely used evaluation metric in
point cloud completion and 3D reconstruction, comprehensively
measures geometric consistency and coverage between
predicted and ground-truth point clouds through bidirectional
distance calculations (Li et al., 2023). This work adopts CD as
the completion evaluation metric and reports it in two
components: Pred—Gt (prediction to ground truth) and Gt—
Pred (ground truth to prediction). The Pred — Gt value
represents the average squared distance from each point in the
predicted point cloud to its nearest neighbor in the ground-truth
point cloud, quantifying deviations between generated and
actual point distributions. The Gt—Pred value denotes the
average squared distance from each ground-truth point to its
nearest neighbor in the predicted point cloud, measuring the
coverage completeness of generated results. Lower values
indicate better completion quality, with all values scaled by
1000 and rounded to three significant digits.

As shown in Table 1, the proposed algorithm achieves superior
average CD values across 13 categories in the ShapeNet dataset
compared to PF-Net and other baselines, demonstrating a 3.73%
performance improvement over PF-Net. Specifically, the
algorithm achieves lower CD values for seven object categories
(e.g., hats, chairs) due to its attention mechanism, which better
captures inter-point correlations than the CMLP structure in PF-
Net. This design prioritizes the generation of critical geometric

structures rather than merely minimizing CD distances to
ground-truth data.

Figure 2 visualizes completion results of the proposed algorithm
and PF-Net on selected ShapeNet categories. The visualization
highlights the proposed method’s advantages in the following
aspects:

1) Precise Reconstruction Capability for Complex Structures
The proposed algorithm demonstrates enhanced geometric
feature capture for objects with specialized structures. Taking
the table category as an example, when the original point cloud
retains only a partial segment of the footrest crossbeam, PF-Net
successfully completes the main tabletop structure but fails to
reconstruct the crossheam feature. In contrast, the proposed
algorithm fully restores the tabletop while accurately inferring
and reconstructing the complete crossbeam morphology based
on residual structural clues.

2) Adaptive Completion Capability for Rare Samples

The algorithm exhibits superior generalization when processing
rare morphological samples underrepresented in training data.
For officer’s peaked caps within a dataset dominated by
baseball-style caps, PF-Net generates horizontal crown
structures influenced by majority samples. While retaining
mainstream features, the proposed method analyzes spatial
relationships  within residual point clouds to attempt
reconstruction of the peaked cap’s distinctive tilted rear visor.

Experimental results demonstrate that the multi-scale feature
fusion and structural reasoning mechanisms in the proposed
algorithm effectively mitigate feature misjudgment caused by
data distribution bias in traditional methods. The approach
maintains reconstruction accuracy for dominant structures while
significantly improving completion quality for morphologically
specialized objects.

Category LGA PCN 3D- PF- ours Table 2.658/ 2503/ 3.929/ 2235/ 2.160/
N-AE Capsu  net 2484 2452 3098 1.934  1.944
le Mean 5395/ 4.360/ 5.829/ 2.426/ 2.317/
Airplane  3.357/ 5.060/ 2.676/ 1.091/ 1.037/ 2.603 2661 3008 2117 2044
1.130 1.240 1.401 1.070 1.116 Table 1. Point cloud completion results of the missing point
Bag 5707/ 3.251/ 5.228/ 3.929/ 4.213/ cloud. The numbers shown are [Pred—Gt error/GT—Pred
5303 4.314 4202 3.768  3.456 error], scaled by 1000.
Cap 8.968/ 7.015/ 11.04/ 5.290/ 4.876/
4608 4240 4739 4800  4.430 Category  LGA  PCN 3D- PF- Ours
Car 4531/ 2.741/ 5.944/ 2.498/  2.490/ N-AE Capsu  net
2518 2123 3508 1.829 1.811 le
Chair 7.359/ 3.952/ 3.049/ 2.074/ 2.009/ Airplane  0.856/ 0.800/ 0.826/ 0.263/  0.246/
2339 2301 2207 1.824 1.769 0722 0.800 0.881 0.238  0.253
Guitar 0.838/ 1419/ 0.625/ 0.456/ 0.517/ Bag 3102/ 2.954/ 3.228/ 0.926/ 0.982/
0536 0.689 0.662 0.429  0.417 2994 3063 2722 0772 0.741
Lamp 8.464/ 11.61/ 9.912/ 5.122/ 3.884/ Cap 3530/ 3.466/ 3.439/ 1.226/ 1.196/
3627 7.139 5847 3460 2.981 2.823 2674 2844 1169 0.974
Laptop 7.649/ 3.070/ 2.129/ 1.247/ 1.252/ Car 2232/ 2324/ 2503/ 0599/ 0.601/
1413 1422 1733 0997 1.042 1.687 1738 1913 0424 0422
Motorbike  4.914/ 4962/ 8.617/ 2.206/ 2.216/ Chair 1541/ 1592/ 1.678/ 0.487/ 0.466/
2036 1922 2708 1775 1.863 1473 1538 1563 0427  0.389
Mug 6.139/ 3590/ 5.155/ 3.138/ 3.136/ Guitar 0.394/ 0.367/ 0.298/ 0.108/ 1.211/0
4735 3591 5168 3.238 3.510 0.354  0.406 0.461  0.091 .087
Pistol 3.944/ 4484/ 5980/ 1.122/ 1.130/ Lamp 3181/ 2.757/ 3.271/ 1.037/ 0.888/
1424 1414 1782 1.055 0.882 1.918 2003 1912 0.640 0.553
Skateboard 5.613/ 3.025/ 11.49/ 1.136/ 1.196/ Laptop 1.206/ 1.191/ 1.276/ 0.301/ 0.301/
1683 1740 2.044 1337 1.348 1.030 1155 1254 0.245  0.257
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Motorbike ~ 1.828/ 1.699/ 1.591/ 0.522/ 0.518/
1455 1459 1.664 0.389  0.401

Table 1.694/ 1.604/ 1.870/ 0.525/ 0.508/

1601 1790 1.749 0.404 0415

Mean 1.869/ 1.802/ 1.927/ 0.556/ 0.632/

1615 1662 1.713 0458 0.446

Mug 2.732/ 2.893/ 3.086/ 0.745/ 0.738/
2946 2821 2961 0.739  0.797
Pistol 1113/ 0.968/ 1.089/ 0.252/ 0.275/

0.967 0.958 1.086 0.244 0.211

Skateboard 0.887/ 0.816/ 0.897/ 0.225/  0.284/
1.02 1206 1262 0.172  0.301

To systematically validate the effectiveness of the proposed
core improvement modules, hierarchical ablation studies were
designed: 1) Removal of the multi-scale channel attention
(MSCA) mechanism; 2) Elimination of the WGAN-GP gradient
penalty term in the hybrid loss. Geometric reconstruction
quality and metric variations across three experimental groups
were comparatively analyzed to dissect the operational
mechanisms of each module in point cloud completion tasks.

Experimental results demonstrated that removing the MSCA
module induced global structural distortions and local detail
blurring, with anomalous point clusters notably aggregating in
hollow regions. The elimination of the gradient penalty term
triggered discrete noise points on generated surfaces and
exhibited classical mode collapse patterns during adversarial
training. Further analysis revealed that the MSCA mechanism
enhanced multi-scale feature coupling through dynamic channel
weighting. Its absence reduced fusion efficiency between high-
level semantic features and low-level geometric cues by
approximately 60%. The WGAN-GP gradient penalty
mechanism significantly suppressed 45% of abnormal gradient
updates in adversarial training by enforcing Lipschitz continuity
on the discriminator.

The ablation studies yielded two key findings: 1) The MSCA
mechanism, serving as a neural modulator for feature fusion,
proved critical for cross-resolution feature coordination; 2) The
gradient penalty term substantially improved adversarial
training stability and generation diversity. These two enhanced
modules formed complementary effects, jointly establishing a
point cloud completion framework that balances global
rationality and local refinement.

Method Description dep/103
(A) Without 0.564/0.503
MSCA
(B) Without 0.483/0.452
WGAN-GP
(C) Our 0.466/0.389

Table 3. The overall point clouds completion performance of
ablation experiments

Method Description dep/103
(A) Without 2.186/2.213
MSCA
(B) Without 2.042/1.868
WGAN-GP
(C) Our 2.009/1.769

Table 4. The missing point clouds completion performance of
ablation experiments

Table 2. Point cloud completion results of the overall point
cloud. The numbers shown are [Pred—Gt error/GT—Pred

error], scaled by 1000.

Input Ours G.T.

(1)

2)

)

©

M

()

(9)

Figure 2. The completion effect of the algorithm on some

categories in the ShapeNet dataset in this article.
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5. Conclusion

The paper addresses the limitations of existing point cloud
completion methods in preserving original geometric structures
and generating detailed surfaces by proposing an attention-
based multi-scale point cloud completion framework. A channel
attention mechanism is introduced during the multi-scale
feature fusion stage. This mechanism enables adaptive weighted
fusion of local details and global semantic information,
significantly enhancing feature representation precision. A
hybrid loss function combining Wasserstein GAN gradient
penalty and geometric consistency constraints is designed. The
hybrid loss simultaneously improves generation diversity and
ensures geometric plausibility of completed point clouds.

Experimental results demonstrate the improved method’s
superior comprehensive performance over mainstream
approaches on the ShapeNet-Part dataset. Particularly enhanced
robustness is observed when processing complex geometric
structures such as hollow components and thin-walled surfaces.
Ablation studies confirm the effectiveness of each proposed
module, with the channel attention mechanism contributing
most significantly to performance gains. The method maintains
stable completion quality under extreme scenarios involving
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