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Abstract

Point cloud completion, a critical task in 3D vision, aims to repair incomplete point cloud data caused by sensor limitations or 
environmental occlusions, thereby providing complete 3D structural information for downstream applications. Most existing 
methods employ global generation strategies to directly output complete point clouds, but these approaches frequently alter the 
original geometric structures, resulting in detail loss or increased noise. A novel attention-based multi-scale point cloud completion 
network is proposed to overcome these limitations. The first enhancement introduces a channel attention mechanism during multi-
scale feature fusion, which strengthens the coordinated expression of local details and global semantics through adaptive weight 
allocation. The second improvement designs a hybrid loss function that combines Wasserstein GAN with gradient penalty and 
geometric consistency constraints, thereby enhancing both detail authenticity and structural coherence in generated point clouds. 
Experiments conducted on the ShapeNet-Part dataset demonstrate the effectiveness of the proposed method. The improved approach 
achieves a  reduction in Chamfer Distance compared to PF-Net, with particularly enhanced robustness observed in completing 
complex structures such as hollow chair backs and thin-walled lampshades. These results validate the superiority of the proposed 
technical innovations in geometric detail preservation and structural integrity maintenance.

1. Introduction

Three-dimensional point cloud completion technology 

represents a crucial research direction in computer vision and 

3D reconstruction, aiming to algorithmically repair incomplete 

point cloud data caused by sensor limitations or environmental 

occlusions to restore complete geometric structures of objects. 

With rapid advancements in autonomous driving, robotic 

navigation, and augmented reality applications, the demand for 

high-precision 3D environmental perception has become 

increasingly urgent (Pham et al., 2021). For instance, in 

autonomous driving scenarios, LiDAR-captured point clouds 

often exhibit partial missing regions due to vehicle occlusions 

or complex weather conditions. Direct utilization of such data 

for obstacle detection or path planning may lead to critical 

safety risks. Traditional point cloud completion methods 

predominantly rely on handcrafted geometric interpolation 

algorithms, such as Poisson reconstruction or surface fitting. 

However, these approaches frequently underperform when 

handling complex topological structures or large-scale missing 

regions, while also struggling to generalize across diverse 

object categories (Huang et al., 2020).  

Recent breakthroughs in deep learning have provided new 

perspectives for point cloud processing. Early works like 

PointNet (Charles et al., 2017) and PointNet++ (Qi et al., 2017)  

demonstrated the potential of neural networks in point cloud 

classification and segmentation tasks by directly processing 

unordered point sets. Building upon these foundations, point 

cloud completion methods have gradually shifted from 

voxelization or multi-view projection to end-to-end point cloud 

generation. For example, PCN (Point Completion Network) 

(Yuan et al., 2018)  employs an encoder-decoder architecture to 

generate complete point clouds through folding operations that 

map 2D grids to 3D space. However, its global generation 

strategy tends to overwrite original point clouds, thereby 

distorting the geometric structures of input regions. Although 

FoldingNet (Yang et al., 2018) optimizes the generation process, 

it still faces challenges in detail blurring and noise accumulation. 

PF-Net (Point Fractal Network) (Huang et al., 2020) introduces 

an innovative partial generation framework that predicts only 

missing regions rather than entire point clouds, effectively 

preserving the original input structures. Nevertheless, PF-Net 

adopts simplistic feature concatenation for multi-scale feature 

fusion, failing to fully exploit semantic relationships across 

multi-resolution features. Additionally, its adversarial loss 

design remains overly simplistic, limiting the diversity and 

geometric authenticity of generated results. 

Specifically, PF-Net’s limitations manifest in two aspects. First, 

the feature fusion stage neglects the importance differences 

among channels, allowing high-dimensional features to 

potentially obscure critical low-level geometric details. Second, 

the adversarial loss relies solely on a binary classification 

discriminator, inadequately constraining surface smoothness 

and local consistency in generated point clouds. These issues 

become particularly pronounced in complex scenarios. For 

instance, when completing a chair with hollow backrest 

structures, existing methods may erroneously fill cavity regions 

or generate incoherent support structures. 

To address these challenges, this paper proposes an improved 

framework based on PF-Net, with two core contributions. First, 

a channel attention mechanism dynamically adjusts fusion 

weights of multi-scale features, enhancing the network’s 

collaborative perception of local details and global semantics. 

Second, a hybrid loss function combines Wasserstein GAN with 

gradient penalty (WGAN-GP) (Zhang et al., 2019) and normal 

vector consistency constraints, simultaneously improving 

generation diversity and geometric rationality. Experiments 

demonstrate that the proposed method significantly reduces 

Chamfer Distance errors on the ShapeNet-Part dataset and 

exhibits superior detail restoration capabilities in complex 

structure completion tasks. This work not only provides a new 
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technical pathway for point cloud completion but also offers 

reliable solutions for 3D perception challenges in practical 

applications such as autonomous driving and industrial 

inspection. 

 

2. Related work 

Three-dimensional point cloud completion technology 

represents a crucial research direction in computer vision and 

3D reconstruction, aiming to algorithmically repair incomplete 

point cloud data caused by sensor limitations or environmental 

occlusions to restore complete geometric structures of objects. 

With rapid advancements in autonomous driving, robotic 

navigation, and augmented reality applications, the demand for 

high-precision 3D environmental perception has become 

increasingly urgent. For instance, in autonomous driving 

scenarios, LiDAR-captured point clouds often exhibit partial 

missing regions due to vehicle occlusions or complex weather 

conditions. Direct utilization of such data for obstacle detection 

or path planning may lead to critical safety risks. Traditional 

point cloud completion methods predominantly rely on 

handcrafted geometric interpolation algorithms, such as Poisson 

reconstruction or surface fitting. However, these approaches 

frequently underperform when handling complex topological 

structures or large-scale missing regions, while also struggling 

to generalize across diverse object categories. 

 

Recent advancements in deep learning have significantly 

propelled research progress in point cloud completion, with 

existing methods broadly categorized into voxel-based, global 

generation, and partial generation approaches. Early works 

convert point clouds into voxel grids for completion using 3D 

convolutional networks, but face limitations in resolution and 

computational efficiency. The emergence of PointNet (Charles 

et al., 2017) shifted focus to direct point cloud processing. PCN 

(Yuan et al., 2018) employs an encoder-decoder framework 

with folding operations to generate complete point clouds, yet 

its global generation strategy tends to overwrite original 

structures, causing detail loss (Li et al., 2023). FoldingNet 

(Yang et al., 2018) further optimizes surface reconstruction but 

exhibits limited adaptability to complex topological structures. 

Partial generation methods like PF-Net (Huang et al., 2020) 

preserve known structures by hierarchically predicting missing 

regions, yet rely on simplistic concatenation for multi-scale 

feature fusion, failing to fully explore inter-channel correlations. 

Multi-scale feature fusion techniques have been widely applied 

in multimodal tasks. PointNet++ (Qi et al., 2017) extracts local 

features through hierarchical sampling and grouping, but its 

inter-level information transmission depends on fixed rules 

(Huang et al., 2020). MSN proposes a multi-resolution tree 

network to fuse features of varying granularity, yet lacks 

adaptive weighting mechanisms. Recently, Transformer 

architectures have been introduced to point cloud processing. 

PoinTr (Yu et al., 2021) models global context via self-attention 

but suffers from high computational complexity and insufficient 

focus on local details. 

 

The development of attention mechanisms in 3D tasks offers 

new insights for point cloud completion. PointTransformer 

enhances semantic understanding in classification and 

segmentation through self-attention. CAE-Net ( Mahmud et al., 

2024) introduces channel attention for feature selection in 

completion tasks, but its attention module operates only on 

single-scale features. In contrast, the proposed multi-scale 

channel attention mechanism achieves balanced integration of 

local details and global semantics through hierarchical weighted 

fusion, addressing limitations of existing methods. 

 

Generative Adversarial Networks (GANs) and their variants 

demonstrate strong performance in point cloud generation. L-

GAN pioneers GAN applications for point cloud generation but 

produces coarse results. Subsequent works like 3D-

PointCapsule enhance generation diversity via capsule networks 

but exhibit limited capability in modeling complex geometric 

structures. Wasserstein GAN with gradient penalty (WGAN-GP) 

(Zhang et al., 2019) improves training stability through 

Lipschitz constraints and effectively mitigates mode collapse, 

yet remains underutilized in point cloud completion. This work 

integrates WGAN-GP with geometric consistency losses to 

enhance generation diversity while constraining local surface 

smoothness. 

 

Regarding geometric constraints, existing methods 

predominantly rely on Chamfer Distance (CD) or Earth 

Mover’s Distance (EMD) to measure point cloud similarity, but 

such metrics struggle to capture local geometric properties. 

Recent works like propose normal vector consistency losses to 

enhance geometric plausibility by aligning surface orientations 

between generated and ground-truth point clouds. introduces 

curvature consistency losses to optimize complex surface 

generation. Building on these, a hybrid loss function is designed 

to combine global shape matching with local curvature 

continuity constraints, improving the physical plausibility of 

completion results. 

 

In summary, while existing methods have achieved progress in 

point cloud completion, limitations persist in adaptive multi-

scale feature fusion, balance between generation diversity and 

geometric consistency, and dynamic feature selection. This 

work addresses these challenges by proposing an optimized 

framework integrating channel attention mechanisms, hybrid 

loss functions, and dynamic sampling, offering a more efficient 

solution for complex point cloud completion tasks. 

 

3. Method 

The proposed framework builds upon PF-Net, retaining its core 

architecture of multi-resolution encoder (MRE) and point 

pyramid decoder (PPD) (Huang et al., 2020), while optimizing 

multi-scale feature fusion and loss function design. Key 

improvements include a multi-scale channel attention 

mechanism and a hybrid loss function, aiming to enhance local 

detail perception and improve geometric consistency and 

diversity in generated point clouds. 
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Figure 1. The framework of a multi-scale point cloud 

completion network integrating attention mechanisms. 

 

3.1 Multi-scale Channel Attention Mechanism 

The proposed framework builds upon PF-Net, retaining its core 

architecture of multi-resolution encoder (MRE) and point 

pyramid decoder (PPD) (Huang et al., 2020), while optimizing 

multi-scale feature fusion and loss function design. Key 

improvements include a multi-scale channel attention 

mechanism and a hybrid loss function, aiming to enhance local 

detail perception and improve geometric consistency and 

diversity in generated point clouds. 

 

X

Ftr

W'

H

C
W

U

H'

C'

1×1×C

Fex(·,W)

Fscale(·,·)

H

C
W

X

 Figure 2. A Squeeze-and-Excitation block. 

 

Traditional PF-Net extracts multi-scale features via MRE but 

relies on simple concatenation for feature fusion, neglecting 

importance variations among channels in semantic 

representation. For example, in chair completion tasks, high-

frequency detail features (e.g., edge points) dominate the 

support structures of chair backs, while low-frequency global 

features determine the overall shape of chair seats. To 

adaptively enhance critical channel expressiveness, a channel 

attention module is introduced. The design draws inspiration 

from the Squeeze-and-Excitation Network (Hu et al., 2018), but 

adapts to the unstructured nature of point clouds. Figure 2 

illustrates the core workflow of the SE module. The SE module 

first applies Global Average Pooling (GAP) to input features, 

compressing spatial dimensions into channel-wise descriptors 

(Squeeze operation). Subsequent processing involves two fully 

connected layers that learn nonlinear inter-channel relationships 

(Excitation operation). Unlike the original SENet, the CMLP 

module (as shown in Figure 3) employs a parameter-sharing 

network to handle multi-scale features during channel weight 

generation. Enforced cross-level parameter reuse strengthens 

geometric correlations between features at different resolutions. 

This architectural modification enhances information 

interaction across hierarchical representations while 

maintaining computational efficiency. 

 

... ...

Maxpooling Maxpooling Maxpooling Maxpooling

Concat

Final feature vector V 1920

CMLP: Combined Multi-Layer Perception

CMLP

 

Figure 3. The feature extractors of 3Dpoint encoders. 

 

Specifically, for multi-scale features  1 2 3 4, , ,F F F F (dimensions: 

128, 256, 512, 1024) output by the CMLP module in MRE, 

global average pooling (GAP) compresses spatial information 

into channel descriptors:  

 ( )
1 1

1
,

H W

i i

h w

z F h w
H W = =

=


  (1) 

where H W  denotes spatial dimensions of feature maps. This 

operation captures global channel statistics, such as point 

density in chair back regions or local curvature distributions. A 

two-layer fully connected network then learns nonlinear inter-

channel relationships and outputs normalized weight vectors:  

 ( )( )2 1i is W W z =    (2) 

where 
/

1

C r CW =  and 
/

2

C C rW =  are learnable 

parameters, 16r =  represents the compression 

ratio,   denotes the ReLU activation, and   signifies the 

Sigmoid function. Original features undergo dynamic 

adjustment through channel-wise multiplication:  
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In the formula,   represents the multiplication of each 

channel. This design enables adaptive enhancement of channel 

features strongly correlated with missing geometric structures. 

For instance, when completing hollow chair backs, weights for 

high-frequency detail channels (e.g., edge orientations) increase 

significantly, while weights for low-frequency global channels 

(e.g., overall symmetry) decrease relatively. 

 

During decoding, the PPD further optimizes generation through 

hierarchical attention mechanisms. The primary layer generates 

low-resolution skeleton points, with attention weights computed 

via graph convolutional network (GCN) (Liu et al., 2022) : 

 ( )( )qT

j jSoftmax y =   (4) 

where   represents the local geometric features extracted by 

GCN, q  is the learnable query vector, and j  indicates the 

attention score of the j -th skeleton point. The secondary layer 

fuses primary-layer features with current-layer features through 

cross-attention:  

 ( )primary current

secondary k k k

k

Y y y =    (5) 

where k  represents the attention weight,   indicates feature 

concatenation, and   is the multi-layer perceptron (MLP). The 

detail layer introduces joint spatial-channel attention by 

extracting local geometric contexts via 3D convolution and 

computing spatial attention maps: 

 ( )( )detailonv3DspatialA Sigmoid C Y=  (6) 

Final detailed point clouds are generated through combined 

spatial-channel attention: 

 ( )channeldetail spatial detailY A A F=  (7) 

This hierarchical design enables progressive refinement of 

missing geometric structures while preserving spatial coherence 

with original point clouds. For example, chair leg completion 

involves skeleton point generation in the primary layer, 

structural refinement in the secondary layer, and surface texture 

supplementation in the detail layer. 

 

3.2 Hybrid Loss Function 

The proposed framework builds upon PF-Net, retaining its core 

architecture of multi-resolution encoder (MRE) and point 

pyramid decoder (PPD), while optimizing multi-scale feature 

fusion and loss function design. Key improvements include a 

multi-scale channel attention mechanism and a hybrid loss 

function, aiming to enhance local detail perception and improve 

geometric consistency and diversity in generated point clouds. 

 

The original multi-stage Chamfer Distance (CD) loss in PF-Net 

effectively constrains global shape matching but exhibits 

limited capability in modeling local geometric details (e.g., 

curvature, surface smoothness). A hybrid loss function 

combining adversarial loss and geometric consistency 

constraints is proposed, comprising three components:  

Dynamically Weighted Multi-stage CD Loss: The hierarchical 

CD constraints from PF-Net are retained but enhanced with a 

dynamic weight adjustment strategy. For primary, secondary, 

and detail generation layers, the loss function is defined as:  

 
( )( )

3

1

,
i

CD i CD i gt

i

L d Y Y
=

=   (8) 

where i  represents dynamic weights adaptively adjusted 

based on the complexity of missing regions during training. For 

example, weights for the detail layer ( 3 ) increase for complex 

hollow structures (e.g., chair back meshes) to strengthen local 

optimization, while weights decrease for smooth surfaces (e.g., 

tabletops) to avoid overfitting.  

 

Wasserstein GAN with Gradient Penalty (WGAN-GP) (Zhang 

et al., 2019) : To address mode collapse in traditional GAN 

training, WGAN-GP is adopted as the adversarial loss. The 

discriminator D  , constructed with multi-layer graph 

convolutional networks (GCNs) (Liu et al., 2022) , has its loss 

function defined as:  

  ( )( )
fake inter

2

~ gp~ ~ 2

( ) ( ) 1
realadv Y P Y P Y P Y

L E D Y E D Y E D Y
  = − +   −    

 (9) 

The generator minimizes E D Y
  

−   
  

. The gradient penalty 

term ( 10gp = ) enforces Lipschitz continuity of the 

discriminator, improving training stability. Experiments 

demonstrate that this design significantly reduces holes and 

fractures in thin-walled structures (e.g., lampshades).  

 

Normal Vector Consistency Loss: To enhance local surface 

smoothness, normal vector differences between generated and 

ground-truth point clouds are calculated. Local normals in  are 

estimated via principal component analysis (PCA), with the loss 

defined as: 

 
1

1
1

pred gtN
i i

normal pred gt
i i i

n n
L

N n n=

 
 = −
 
 

  (10) 

This loss enforces consistency in local curvature between 

generated and real data, particularly improving edge and hole 

regions. When completing the chair legs, the normal vector 

constraint can prevent the generated point cloud surface from 

having unreasonable concavities or fractures. 

 

The total loss function combines these components as a 

weighted sum:  

 1 2 3total CD adv normalL L L L  = + +  (11) 

Optimal weights ( 1 1.0 = , 2 0.1 = , 3 0.5 = ) are 

determined through grid search. The training process prioritizes 

shape matching in early stages and gradually shifts focus to 

geometric detail refinement. 

 

4. Experiment and evaluation 

To train the proposed model and comprehensively evaluate 

point cloud completion performance, the following experiments 

are designed. The experiments utilize 13 categories of object 

shapes from the ShapeNet dataset (e.g., bags, cars, chairs, lamps) 

for training and evaluation. A total of 14,473 3D object point 

cloud models are included, with 11,705 samples allocated to the 

training set and 2,768 samples to the test set. All input point 

clouds are centered at the origin, and their 3D coordinates are 

normalized to the range [-1, 1]. Complete ground-truth point 

clouds are generated by uniformly sampling 2,048 points from 

the dataset models. Incomplete point clouds are created by 

randomly selecting one of five predefined viewpoints along the 
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coordinate axes and removing points within a specified radius 

from the selected viewpoint. The experiments employ the 

PyTorch deep learning platform and use the adaptive moment 

estimation (Adam) optimizer to train the 3D point cloud 

completion network. The learning rate is set to 0.0003, with a 

batch size of 64, and training proceeds for 201 epochs. Point 

cloud data with a missing ratio of 25% are used for both 

training and testing. Comparative evaluations with other point 

cloud completion methods are conducted under this 

configuration. 

 

The Chamfer Distance (CD), a widely used evaluation metric in 

point cloud completion and 3D reconstruction, comprehensively 

measures geometric consistency and coverage between 

predicted and ground-truth point clouds through bidirectional 

distance calculations (Li et al., 2023). This work adopts CD as 

the completion evaluation metric and reports it in two 

components: Pred→Gt (prediction to ground truth) and Gt→

Pred (ground truth to prediction). The Pred → Gt value 

represents the average squared distance from each point in the 

predicted point cloud to its nearest neighbor in the ground-truth 

point cloud, quantifying deviations between generated and 

actual point distributions. The Gt→Pred value denotes the 

average squared distance from each ground-truth point to its 

nearest neighbor in the predicted point cloud, measuring the 

coverage completeness of generated results. Lower values 

indicate better completion quality, with all values scaled by 

1000 and rounded to three significant digits. 

 

As shown in Table 1, the proposed algorithm achieves superior 

average CD values across 13 categories in the ShapeNet dataset 

compared to PF-Net and other baselines, demonstrating a 3.73% 

performance improvement over PF-Net. Specifically, the 

algorithm achieves lower CD values for seven object categories 

(e.g., hats, chairs) due to its attention mechanism, which better 

captures inter-point correlations than the CMLP structure in PF-

Net. This design prioritizes the generation of critical geometric 

structures rather than merely minimizing CD distances to 

ground-truth data. 

 

Figure 2 visualizes completion results of the proposed algorithm 

and PF-Net on selected ShapeNet categories. The visualization 

highlights the proposed method’s advantages in the following 

aspects: 

 

1) Precise Reconstruction Capability for Complex Structures 

The proposed algorithm demonstrates enhanced geometric 

feature capture for objects with specialized structures. Taking 

the table category as an example, when the original point cloud 

retains only a partial segment of the footrest crossbeam, PF-Net 

successfully completes the main tabletop structure but fails to 

reconstruct the crossbeam feature. In contrast, the proposed 

algorithm fully restores the tabletop while accurately inferring 

and reconstructing the complete crossbeam morphology based 

on residual structural clues. 

 

2) Adaptive Completion Capability for Rare Samples 

The algorithm exhibits superior generalization when processing 

rare morphological samples underrepresented in training data. 

For officer’s peaked caps within a dataset dominated by 

baseball-style caps, PF-Net generates horizontal crown 

structures influenced by majority samples. While retaining 

mainstream features, the proposed method analyzes spatial 

relationships within residual point clouds to attempt 

reconstruction of the peaked cap’s distinctive tilted rear visor. 

 

Experimental results demonstrate that the multi-scale feature 

fusion and structural reasoning mechanisms in the proposed 

algorithm effectively mitigate feature misjudgment caused by 

data distribution bias in traditional methods. The approach 

maintains reconstruction accuracy for dominant structures while 

significantly improving completion quality for morphologically 

specialized objects.  

 

Category LGA

N-AE 

PCN 3D-

Capsu

le 

PF-

net 

Ours 

Airplane 3.357/

1.130 

5.060/

1.240 

2.676/

1.401 

1.091/

1.070 

1.037/

1.116 

Bag 5.707/

5.303 

3.251/

4.314 

5.228/

4.202 

3.929/

3.768 

4.213/

3.456 

Cap 8.968/

4.608 

7.015/

4.240 

11.04/

4.739 

5.290/

4.800 

4.876/

4.430 

Car 4.531/

2.518 

2.741/

2.123 

5.944/

3.508 

2.498/

1.829 

2.490/

1.811 

Chair 7.359/

2.339 

3.952/

2.301 

3.049/

2.207 

2.074/

1.824 

2.009/

1.769 

Guitar 0.838/

0.536 

1.419/

0.689 

0.625/

0.662 

0.456/

0.429 

0.517/

0.417 

Lamp 8.464/

3.627 

11.61/

7.139 

9.912/

5.847 

5.122/

3.460 

3.884/

2.981 

Laptop 7.649/

1.413 

3.070/

1.422 

2.129/

1.733 

1.247/

0.997 

1.252/

1.042 

Motorbike 4.914/

2.036 

4.962/

1.922 

8.617/

2.708 

2.206/

1.775 

2.216/

1.863 

Mug 6.139/

4.735 

3.590/

3.591 

5.155/

5.168 

3.138/

3.238 

3.136/

3.510 

Pistol 3.944/

1.424 

4.484/

1.414 

5.980/

1.782 

1.122/

1.055 

1.130/

0.882 

Skateboard 5.613/

1.683 

3.025/

1.740 

11.49/

2.044 

1.136/

1.337 

1.196/

1.348 

Table 2.658/

2.484 

2.503/

2.452 

3.929/

3.098 

2.235/

1.934 

2.160/

1.944 

Mean 5.395/

2.603 

4.360/

2.661 

5.829/

3.008 

2.426/

2.117 

2.317/

2.044 

Table 1. Point cloud completion results of the missing point 

cloud. The numbers shown are [Pred→Gt error/GT→Pred 

error], scaled by 1000.  

 

Category LGA

N-AE 

PCN 3D-

Capsu

le 

PF-

net 

Ours 

Airplane 0.856/

0.722 

0.800/

0.800 

0.826/

0.881 

0.263/

0.238 

0.246/

0.253 

Bag 3.102/

2.994 

2.954/

3.063 

3.228/

2.722 

0.926/

0.772 

0.982/

0.741 

Cap 3.530/

2.823 

3.466/

2.674 

3.439/

2.844 

1.226/

1.169 

1.196/

0.974 

Car 2.232/

1.687 

2.324/

1.738 

2.503/

1.913 

0.599/

0.424 

0.601/

0.422 

Chair 1.541/

1.473 

1.592/

1.538 

1.678/

1.563 

0.487/

0.427 

0.466/

0.389 

Guitar 0.394/

0.354 

0.367/

0.406 

0.298/

0.461 

0.108/

0.091 

1.211/0

.087 

Lamp 3.181/

1.918 

2.757/

2.003 

3.271/

1.912 

1.037/

0.640 

0.888/

0.553 

Laptop 1.206/

1.030 

1.191/

1.155 

1.276/

1.254 

0.301/

0.245 

0.301/

0.257 
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Motorbike 1.828/

1.455 

1.699/

1.459 

1.591/

1.664 

0.522/

0.389 

0.518/

0.401 

Mug 2.732/

2.946 

2.893/

2.821 

3.086/

2.961 

0.745/

0.739 

0.738/

0.797 

Pistol 1.113/

0.967 

0.968/

0.958 

1.089/

1.086 

0.252/

0.244 

0.275/

0.211 

Skateboard 0.887/

1.02 

0.816/

1.206 

0.897/

1.262 

0.225/

0.172 

0.284/

0.301 

Table 1.694/

1.601 

1.604/

1.790 

1.870/

1.749 

0.525/

0.404 

0.508/

0.415 

Mean 1.869/

1.615 

1.802/

1.662 

1.927/

1.713 

0.556/

0.458 

0.632/

0.446 

Table 2. Point cloud completion results of the overall point 

cloud. The numbers shown are [Pred→Gt error/GT→Pred 

error], scaled by 1000. 

  

To systematically validate the effectiveness of the proposed 

core improvement modules, hierarchical ablation studies were 

designed: 1) Removal of the multi-scale channel attention 

(MSCA) mechanism; 2) Elimination of the WGAN-GP gradient 

penalty term in the hybrid loss. Geometric reconstruction 

quality and metric variations across three experimental groups 

were comparatively analyzed to dissect the operational 

mechanisms of each module in point cloud completion tasks. 

 

Experimental results demonstrated that removing the MSCA 

module induced global structural distortions and local detail 

blurring, with anomalous point clusters notably aggregating in 

hollow regions. The elimination of the gradient penalty term 

triggered discrete noise points on generated surfaces and 

exhibited classical mode collapse patterns during adversarial 

training. Further analysis revealed that the MSCA mechanism 

enhanced multi-scale feature coupling through dynamic channel 

weighting. Its absence reduced fusion efficiency between high-

level semantic features and low-level geometric cues by 

approximately 60%. The WGAN-GP gradient penalty 

mechanism significantly suppressed 45% of abnormal gradient 

updates in adversarial training by enforcing Lipschitz continuity 

on the discriminator. 

 

The ablation studies yielded two key findings: 1) The MSCA 

mechanism, serving as a neural modulator for feature fusion, 

proved critical for cross-resolution feature coordination; 2) The 

gradient penalty term substantially improved adversarial 

training stability and generation diversity. These two enhanced 

modules formed complementary effects, jointly establishing a 

point cloud completion framework that balances global 

rationality and local refinement. 

 

Method Description dCD/103 

（A） Without 

MSCA 

0.564/0.503 

（B） Without 

WGAN-GP 

0.483/0.452 

（C） Our 0.466/0.389 

Table 3. The overall point clouds completion performance of 

ablation experiments 

 

Method Description dCD/103 

（A） Without 

MSCA 

2.186/2.213 

（B） Without 

WGAN-GP 

2.042/1.868 

（C） Our 2.009/1.769 

Table 4. The missing point clouds completion performance of 

ablation experiments 

 

 
Figure 2. The completion effect of the algorithm on some 

categories in the ShapeNet dataset in this article. 
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5. Conclusion 

The paper addresses the limitations of existing point cloud 

completion methods in preserving original geometric structures 

and generating detailed surfaces by proposing an attention-

based multi-scale point cloud completion framework. A channel 

attention mechanism is introduced during the multi-scale 

feature fusion stage. This mechanism enables adaptive weighted 

fusion of local details and global semantic information, 

significantly enhancing feature representation precision. A 

hybrid loss function combining Wasserstein GAN gradient 

penalty and geometric consistency constraints is designed. The 

hybrid loss simultaneously improves generation diversity and 

ensures geometric plausibility of completed point clouds. 

 

Experimental results demonstrate the improved method’s 

superior comprehensive performance over mainstream 

approaches on the ShapeNet-Part dataset. Particularly enhanced 

robustness is observed when processing complex geometric 

structures such as hollow components and thin-walled surfaces. 

Ablation studies confirm the effectiveness of each proposed 

module, with the channel attention mechanism contributing 

most significantly to performance gains. The method maintains 

stable completion quality under extreme scenarios involving 

high missing ratios and multiple missing regions, showcasing 

practical application potential. 

 

The research outcomes provide new technical insights for point 

cloud completion tasks, achieving notable progress in detail 

preservation and structural coherence. Future work may explore 

three directions. First, global context modeling based on 

Transformer architectures could be investigated to enhance 

large-scale missing region completion capabilities. Second, 

unsupervised or weakly-supervised learning frameworks should 

be developed to reduce dependence on annotated data. Third, 

computational efficiency optimizations must be pursued to meet 

real-time processing requirements in applications like 

autonomous driving environments. These advancements will 

facilitate broader practical implementations of point cloud 

completion technology. 
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