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Abstract

This research presents a scalable, cloud-based workflow integrating Machine Learning (ML) and 3D Geographic Information
Systems (GIS) to support the automated detection of architectural elements and urban management. Via Unmanned Aerial Vehicle
(UAV) georeferenced images, the system enables an automated and scheduled detection, geolocation, and import of architectural
elements (e.g., domes, photovoltaics panels, tanks) data and metadata into a 3D GIS environment. A validated urban case study was
conducted using UAV-acquired georeferenced images processed through a Structure-from-Motion (SfM) pipeline. Orthoimage
chunks and dataset were uploaded to Google Cloud Storage, triggering an event-driven architecture built on a Cloud Computing
Infrastructure. The pipeline leverages Vertex Al object detection via AutoML, the predictions of which are subsequently enriched
with geospatial metadata. The output data is stored in BigQuery and Cloud Storage for urban GIS integration and analysis. Results
confirm the viability of the pipeline for repeatable, and automated urban monitoring, reducing manual labour and improving safety
for building maintenance workers. This approach is focused on the use of mobile mapping data processing, 3D reconstruction of

urban areas, Al process for detection and urban maintenance and to develop smart city applications.

1. Introduction

The management and preservation of urban built heritage,
particularly in historical centres, require innovative
approaches combining traditional architectural knowledge
and advanced technological tools. The integration of Cloud
Computing, Machine Learning (ML), and 3D Geographic
Information Systems (GIS) offers pathways to the
automation of the detection and monitoring of architectural
elements. This research develops a scalable, cloud-based
workflow that leverages ML and 3D GIS to support the
automated detection of architectural elements, such as roof
construction technologies and hydraulic systems (e.g. water
tanks), using UAV georeferenced images. The aim of the
research is to integrate Cloud Computing, in particular
Machine Learning platforms, with 3D GIS platforms to
support planned maintenance and urban management with
automated object detection and post processing of geospatial
data (Doria et al, 2022). Namely, the goal is to automatically
identify technical urban elements (such as domes, tanks etc.)
using Object Detection from UAV images, infer and export
the coordinates of such objects and import them in a 3D GIS.
Repeatability of UAV flight plans, and the automated
recognition of elements according to a fixed methodology,
allow for a scheduled update of the GIS. By automating the
identification, geolocation, and integration of these elements
into a 3D GIS environment, the system facilitates scheduled
updates and inspections, reducing manual labour and
improving safety for maintenance personnel.

2. Pipeline overview and aims

The process was tested on a case study providing a large
dataset of UAV images acquired for the construction of an
existing and validated urban SfM model and a 3D GIS

model, that is already deployed and in use (Parrinello and
Picchio, 2019; Doria, 2022).

Georeferenced aerial images of roofs were acquired with
UAVs, and used to build Structure from Motion (SfM)
models and integrating dimensional data using a TLS survey
as reference. Ortho images were derived from SfM, by
dividing in multiple chunks, uploaded to an enterprise cloud
platform (Google Cloud Platform, GCP) and fed to a
computer vision model, previously trained to identify a set
of architectural elements. The dimensions of image chunks
were chosen according to platform, setting a fixed pixel size.
When scaling the use case, this process leads to a variable
number of chunks, according to the spatial extent of the
starting SfM model. The coordinates of each architectural
element recognised by the algorithm were estimated and
stored in a format the GIS 3D models can handle. The goal
is to develop an automated workflow for monitoring,
structured as follows: acquisition of roofs images with
flight-plane UAV instruments; processing of orthoimages;
automatic recognition of architecture elements for
maintenance purposes; inference of the coordinates of each
identified element; import of the coordinates into a GIS;
repetition of the process for each new acquisition and
scheduled inspection.
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Figure 1. Automated urban Heritage management systems
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Figure 2. Workflow for the automated roof/urban area
monitoring developed in the research

3. State of the art

The analytical processes aimed at understanding urban
contexts have increasingly relied on the development of
integrated and reliable databases, for structured data (e.g.,
tabular data and numbers), and data stores for unstructured
data (e.g., natural language, images, ). These data sets
facilitate strategies for managing built heritage and enable
the communication and virtual experience of digitised spaces
to a wide audit (Miceli et al, 2020; Morandotti and Doria,
2023; De Marco and Bocconcino, 2025). In historic city
centres, information about events that have modified the
urban fabric and morphology must be preserved over time,
forming a complex ensemble of data that necessitates
digitisation for effective management (Bocconcino and
Manzone, 2019). The surge in information involved in
public decision-making processes has necessitated the
adoption of digital technologies and techniques for
information management. Information and Communication
Technologies (ICT), rapidly evolving due to technological
advancements, have significantly influenced decision-
making frameworks in public management, offering
advanced monitoring tools (Kouziokas and Perakis, 2017).
To handle large amount of data and metadata, which are
interconnected to create extensive datasets, advancements in
data acquisition methods have simplified and expedited
these processes with fast survey tools. However, data
collection does not inherently constitute knowledge. A
process of correlation and analysis is required to transform
raw data into analysable insights. Computational systems
can process vast amounts of unstructured information,
identifying patterns and correlations that may not be
immediately apparent, thereby generating new knowledge
for the data analysis technician. Artificial Intelligence (AI)
(McCarthy, 2007) has become pivotal in automating
cognitive tasks (Corea, 2019), processing and reinterpreting
external stimuli based on active research trajectories (Buratti
et al, 2021). ML, Neural networks and Deep Learning (DL)
models have enabled the management of increasingly
complex use cases by scaling computational complexity and
network interconnections (Mishra, 2021; Mishra et al 2024).
The scalability of DL models allows them to process
growing amounts of both structured and unstructured
datasets. Computer Vision intersects with Al in applications
where learning from unstructured data addresses complex
problems like segmentation and object detection.

The automated identification of technological elements in
urban environments, as proposed in this research, leverages
object detection (OD). OD is a subset of computer vision

that develops and builds techniques to identify and classify
objects within images; Convolutional Neural Networks
(CNNs), since their inception (LeCun and Bengio, 1998),
have become the state-of-the-art approach in this domain due
to their high performance (Redmon et al., 2016). This study
explores AutoML, a suite of models that utilise ensemble
and transfer learning techniques to expand the range of
identifiable objects. The availability of AutoML models in
Cloud Computing Platforms, often in code-less solutions,
expedite the development of baseline ML models, promoting
the democratization of AI (He et al, 2021). Managing the
potentially increasing size of photographic dataset and the
consequent computational complexity of object detection
imposes significant constraints. To overcome the limitations
of on-premises data management, this research builds on top
of a Cloud Computing infrastructure, leveraging Data Storage,
the Integrated Machine Learning Platform and the seamless
integration offered across the suite of software provided by
the cloud vendor. This approach abstracts from the
computational power available locally, avoiding the
constraints imposed by physical hardware and infrastructures
(Rivera, 2020).

3.1 Related researches

Object Detection techniques have been developed to identify
entities based on existing data, enabling predictions on new,
unseen data. From image data, three primary objectives
emerge: classification, detection, and segmentation (Xiao et
al., 2020; La Placa and Doria, 2024).
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Figure 3. Three-dimensional model obtained with SfM from
UAV of the entire historic centre of the case study. The
model, georeferenced both by the photographs' own metadata
and by the use of external GPS, was used for the export of
orthoimages for the detection of the elements of interest in the
roofs. The database was realised according to “3D Bethlehem”

research (Parrinello and Picchio, 2019)
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These approaches have been extensively documented as
support tools for managing and documenting cultural heritage
and urban planning (Li et al., 2020). In urban environments,
such techniques have been applied to monitor infrastructure
criticalities and construction sites (Dandabathula et al., 2019;
Wang et al., 2022), manage urban waste (Majchrowska et al.,
2022), enforce compliance with building regulations (Cunha
et al, 2021), and conduct environmental and agricultural
monitoring (Carbone et al., 2022). High-performance
applications of these techniques are also documented in the
field of built cultural heritage, aiding in the identification and
close-range imaging (Due Trier et al, 2021) and supporting
decision-making for interventions on documented heritage
(Monna et al., 2021; Zou et al., 2019; Hatir and Ince, 2021).
Machine learning models and pipelines, based on open-source
technologies such as Python libraries and Kubeflow, can be
exported and shared with collaborators outside the platform.
Recent studies have demonstrated the efficacy of integrating
Al and computer vision in urban analysis.

For instance, the URBAN-i model utilizes deep learning and
computer vision to detect informality and slums in urban
scenes, aiding in urban modelling and understanding city
dynamics (Ibrahim et al, 2018).

Similarly, the UV-SAM model adapts the Segment Anything
Model for urban village segmentation, providing accurate
boundary identification from satellite images (Zhang et al.,
2024). This process can facilitate high degrees of cooperation
across multiple entities, including universities, companies, and
municipalities. Such collaboration can be organised during
both the development and final usage phases, with pre-trained
models accessible via dedicated Application Programming
Interfaces (APIs).

4. Methodologies, tools and technologies

As described in the case study of Bethlehem’s historic centre
(Doria, 2022), the automation of the technological census of
urban architectural elements (e.g., antennas, tanks, domes) is
vital for efficient monitoring and planning. The research
proposes an operational model combining UAV-based image
acquisition (Parrinello and Picchio, 2019) with automated
classification techniques to identify urban infrastructure

elements and integrate them into structured, usable datasets.
This approach avoids labour-intensive manual mapping,
offering a model applicable in other urban contexts.

However, one of the major constraints in earlier approaches,
such as those involving on-premises processing and storage, is
the limited scalability of both computing power and dataset
management. Eventarc, event management software, routes
events to Cloud functions, forming the core of this event-
driven computing architecture; as soon as UAV orthoimage
chunks are uploaded to a Google Cloud Storage (GCS) bucket,
Eventarc triggers the sequential steps of the pipeline without
manual intervention.

This not only reduces the time between image acquisition and
data availability for analysis, but automates the interaction
between different phases of the workload.

The processing pipeline continues with Vertex Al the
integrated ML platform of GCP, that allows for the training,
deployment, and prediction (both batch and real time) of deep
learning models, including AutoML models designed
specifically for image object detection. A model (previously
trained on wurban datasets) processes the image files,
outputting bounding box coordinates and confidence scores in
a JSON Lines format; these predictions are stored temporarily
in GCS. The next step, geospatial enrichment, links detected
urban elements to their actual geolocation. A secondary Cloud
function reads the original orthoimages and associates
detection results with spatial metadata extracted from the
images themselves (e.g., camera orientation, UAV altitude).
This enriched data becomes useful not only for inventorying
urban assets, but also for the integration with 3D GIS
platforms; the enriched results are persisted in Big Query
(Google Cloud’s data warehouse solution), which supports
both manual and programmatic queries.

The output datasets can be visualized in GIS environments,
shared with municipal stakeholders and collaborators for
further analysis. Recent studies have demonstrated the
effectiveness of ML and DL approaches in similar contexts.
For instance, Fiorucci et al. (2022) utilized DL for
archaeological object detection on LiDAR data, providing new
evaluation measures and insights. Similarly, Jiang et al.
(2023) developed a model for infrastructure detection along
highways based on remote sensing images from UAVs,
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Figure 4. High level design of the underlying Cloud Architecture
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showcasing the applicability of such techniques in
infrastructure monitoring. In the sector of built heritage
conservation, ML techniques have been applied for
monitoring and planning purposes. A study by Tucci et al.
(2024) presented a fully automated approach for the
segmentation and classification of architectural elements,
aiming to provide tools for a more detailed assessment of the
risk of detachment of parts of the sandstone elements.

The different phases are described in the following
subparagraph in more details:

4.1 Model Inference

The first phase is that of Data Ingestion and starts with the
upload of ortho image chunks to a designated Google Cloud
Storage (GCS) bucket. This triggers Eventarc, Google Cloud's
solution for building event-driven architectures (Stopford,
2018). Upon detection, the event is routed to a Cloud Function
responsible  for initiating the processing pipeline

(Lakshmanan, 2022). This function constructs a request file
containing the image storage URI on GCS, as well as the
Vertex Al model name and version to be used for inference.
The Cloud Function then triggers a batch prediction job on
Vertex Al, a programmatic way to get predictions from a
model deployed on the Model Registry.

Figure 5. Preliminary images of the detection process. Above,
raw image from drone with integrated location metadata
thanks to the GPS systems of the aircraft used. Chuncks for
SfM photogrammetry were made for urban districts and
georeferenced according to GPS targets. Object detection
training took place on the raw imams, and recognition and
identification was initiated on the orthoimages to make the
object georeferencing processes effective This process also
makes it possible to develop systems of scheduled surface
inspections, planned over time.

The batch prediction request is executed using the Vertex Al
Python SDK. Vertex Al hosts an AutoML deep learning
model (He, 2021) designed for computer vision tasks and
trained on UAV images to identify the architectural elements
of this study. Upon execution, the model processes the image
files and outputs predictions in the form of a JSON Lines
(JSONL) file, a standard interchange format used across
multiple components of Vertex Al. Each record includes the
list of detected objects, bounding box coordinates, and a
confidence score corresponding per each class. As a managed
service, Vertex Al ensures high scalability, allowing to adjust
the number of nodes according to workload demand. The
resulting predictions are written to a designated Prediction
Storage Bucket on GCS.

4.2 Geospatial Data Enrichment

To enrich the predictions with geospatial context, another
Eventarc trigger monitors the Prediction Storage Bucket.
When new output files are detected, this trigger activates a
secondary Cloud Function that performs geospatial data
enrichment. This function loads both the original ortho images
and their associated predictions, and enriches the detection
data by linking each object to its geographic coordinates. This
is achieved by extracting metadata embedded in the source
images, which typically includes location, scale, and
orientation parameters. The enriched data is then exported into
a structured dataset, enabling downstream spatial analyses and
integration with GIS systems.

4.3 Enriched Predictions Storage

The final stage involves persisting enriched data for long-term
access and analysis. Results are written to BigQuery, enabling
querying, analytics, and programmatic data access.
Additionally, both raw predictions and enriched,
georeferenced outputs are stored in Cloud Storage. Results are
historicised on the data warehouse, associating the detected
objects with a timestamp, referencing the presence of objects
in a specific moment therefore allowing to detect additions
and subtractions to built elements. This dual storage strategy
ensures flexibility, supporting both tabular exploration via
BigQuery and spatial visualization in GIS platforms or custom
visualization tools.

5. Results

The implemented workflow demonstrates a robust and
scalable system for the automated detection and
georeferencing of architectural elements using UAV
imagery, cloud computing, and machine learning. During
testing on the historic centre of Bethlehem, the system
achieved over 85% average precision (AP) in detecting and
localizing objects such as water tanks, and antennas across a
heterogeneous urban morphology. Confidence thresholds
could be flexibly adjusted to prioritize either recall (for more
exhaustive identification) or precision (for cleaner
detections), depending on the maintenance strategy.

Batch inference using Vertex Al significantly reduced
processing times compared to traditional desktop or on-
premise methods, completing prediction cycles for hundreds
of orthoimage chunks within hours. Moreover, the event-
driven architecture allows fully automated processing once
new images are uploaded, requiring no human intervention
from the upload of images to the database storage. This
allows to create a feedback loop for continuous monitoring,
since historical predictions are available for comparison and
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enrichment through time, highlighting modifications in the

built environment.

The pipeline effectively maintained metadata integrity,

linking object IDs with geospatial coordinates, timestamp,

and detection confidence, which can be queried or visualized
within BigQuery or any GIS environment.

Furthermore, the modularity of the pipeline allows users to

retrain models with additional classes or fine-tune the

system to different urban contexts.

Key highlights of the results include:

e Training process is done once, then model is deployed
and leveraged;

e Time consuming tasks are automated, allowing human
technicians to focus on more specialised tasks;

e Model performance is monitored, model can be
retrained in case of performance degradation over time
or the necessity to detect new unseen elements;

e The system processed 150 images in 4 hours; batch
prediction jobs can be parametrised to run on larger
machines or a higher number of computing nodes, to
comply with heavier workloads or more strict time
requirements;

e  GIS integration: Seamless import of spatially enriched
detection data into 3D GIS environments.

Feedback from stakeholders (urban planners, engineers,

heritage conservationists) highlighted increased usability

and reduced dependency on specialist operators, enabling
broader adoption within interdisciplinary teams.

6. Conclusions

The study successfully demonstrates a repeatable and
scalable pipeline for the automated georeferencing of
architectural elements using UAV imagery and Al. The
research not only confirms the feasibility of integrating
machine learning with 3D GIS but also shows significant
potential for improving urban asset management by enabling
data-driven inspections, proactive maintenance, and
enhanced heritage documentation. This methodology
empowers municipalities and technicians with an automated
and adaptable tool, fostering a proactive approach to urban
maintenance. The cloud-native design supports event-driven
scalability, allowing the same system to be applied to both
small pilot studies and extensive urban areas without
significant reconfiguration.

The workflow’s modular nature means it can be extended in

several directions:

e  Detection class expansion training models on new urban
or infrastructural elements (e.g., heat systems,
materials, chimneys, photovoltaics panels);

e Temporal analysis using historical UAV datasets to
detect changes over time and flag anomalies or
maintenance needs creating a map of risk;

e Semantic enrichment linking detected elements to
building IDs, maintenance records, or regulatory
compliance databases for more integrated lifecycle and
urban management.

In the longer term, this work sets a starting point for smart
city applications based on automated spatial intelligence.
The approach is particularly relevant for historic city
centres, where maintenance must be balanced with
preservation, and where safety concerns limit physical
inspections. This workflow contributes to both theoretical
research in digital urban and built maintenance and practical
advances in the fields of architectural conservation and
infrastructure monitoring.

Future development may include user-friendly dashboards,
broader dataset interoperability, and integration with

municipal decision-support systems.

The process reinforces the idea that AI and cloud-based
geospatial workflows are not just technical solutions, but
enablers of a new paradigm in urban governance.
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Figure 6. Above, 3D GIS model created during the 3D
Bethlehem project (Doria et al, 2022). The model was used to
validate the location extracted from the orthoimages of the
elements (tanks, below) automatically identified with object
detection. The location thus obtained can be integrated into GIS
to develop monitoring systems over time.
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Appendix

Across the development of this project multiple open source
libraries developed and maintained by the community were
used, both for image manipulation and geospatial data analysis.

Open source for Geospatial Foundation:
https://www.osgeo.org

GDAL - Library used to manage geospatial data in Python:
https://pypi.org/project/ GDAL/

OpenCV - Open source computer vision library:
https://pypi.org/project/opencv-python/

Folium — Open source library for visualising map data:
https://pypi.org/project/folium/
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