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Abstract 
 
This research presents a scalable, cloud-based workflow integrating Machine Learning (ML) and 3D Geographic Information 
Systems (GIS) to support the automated detection of architectural elements and urban management. Via Unmanned Aerial Vehicle 
(UAV) georeferenced images, the system enables an automated and scheduled detection, geolocation, and import of architectural 
elements (e.g., domes, photovoltaics panels, tanks) data and metadata into a 3D GIS environment. A validated urban case study was 
conducted using UAV-acquired georeferenced images processed through a Structure-from-Motion (SfM) pipeline. Orthoimage 
chunks and dataset were uploaded to Google Cloud Storage, triggering an event-driven architecture built on a Cloud Computing 
Infrastructure. The pipeline leverages Vertex AI object detection via AutoML, the predictions of which are subsequently enriched 
with geospatial metadata. The output data is stored in BigQuery and Cloud Storage for urban GIS integration and analysis. Results 
confirm the viability of the pipeline for repeatable, and automated urban monitoring, reducing manual labour and improving safety 
for building maintenance workers. This approach is focused on the use of mobile mapping data processing, 3D reconstruction of 
urban areas, AI process for detection and urban maintenance and to develop smart city applications. 
 
 

1. Introduction 

The management and preservation of urban built heritage, 
particularly in historical centres, require innovative 
approaches combining traditional architectural knowledge 
and advanced technological tools. The integration of Cloud 
Computing, Machine Learning (ML), and 3D Geographic 
Information Systems (GIS) offers pathways to the 
automation of the detection and monitoring of architectural 
elements. This research develops a scalable, cloud-based 
workflow that leverages ML and 3D GIS to support the 
automated detection of architectural elements, such as roof 
construction technologies  and hydraulic systems (e.g. water 
tanks), using UAV georeferenced images. The aim of the 
research is to integrate Cloud Computing, in particular 
Machine Learning platforms, with 3D GIS platforms to 
support planned maintenance and urban management with 
automated object detection and post processing of geospatial 
data (Doria et al, 2022). Namely, the goal is to automatically 
identify technical urban elements (such as domes, tanks etc.) 
using Object Detection from UAV images, infer and export 
the coordinates of such objects and import them in a 3D GIS. 
Repeatability of UAV flight plans, and the automated 
recognition of elements according to a fixed methodology, 
allow for a scheduled update of the GIS. By automating the 
identification, geolocation, and integration of these elements 
into a 3D GIS environment, the system facilitates scheduled 
updates and inspections, reducing manual labour and 
improving safety for maintenance personnel. 
 

2. Pipeline overview and aims 

The process was tested on a case study providing a large 
dataset of UAV images acquired for the construction of an 
existing and validated urban SfM model and a 3D GIS 

model, that is already deployed and in use (Parrinello and 
Picchio, 2019; Doria, 2022).  
Georeferenced aerial images of roofs were acquired with 
UAVs, and used to build Structure from Motion (SfM) 
models and integrating dimensional data using a TLS survey 
as reference. Ortho images were derived from SfM, by 
dividing in multiple chunks, uploaded to an enterprise cloud 
platform (Google Cloud Platform, GCP) and fed to a 
computer vision model, previously trained to identify a set 
of architectural elements. The dimensions of image chunks 
were chosen according to platform, setting a fixed pixel size. 
When scaling the use case, this process leads to a variable 
number of chunks, according to the spatial extent of the 
starting SfM model. The coordinates of each architectural 
element recognised by the algorithm were estimated and 
stored in a format the GIS 3D models can handle. The goal 
is to develop an automated workflow for monitoring, 
structured as follows: acquisition of roofs images with 
flight-plane UAV instruments; processing of orthoimages; 
automatic recognition of architecture elements for 
maintenance purposes; inference of the coordinates of each 
identified element; import of the coordinates into a GIS; 
repetition of the process for each new acquisition and 
scheduled inspection.  
 

 
Figure 1. Automated urban Heritage management systems 
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Figure 2. Workflow for the automated roof/urban area 

monitoring developed in the research 
 

3. State of the art 

The analytical processes aimed at understanding urban 
contexts have increasingly relied on the development of 
integrated and reliable databases, for structured data (e.g., 
tabular data and numbers), and data stores for unstructured 
data (e.g., natural language, images, ). These data sets 
facilitate strategies for managing built heritage and enable 
the communication and virtual experience of digitised spaces 
to a wide audit (Miceli et al, 2020; Morandotti and Doria, 
2023; De Marco and Bocconcino, 2025). In historic city 
centres, information about events that have modified the 
urban fabric and morphology must be preserved over time, 
forming a complex ensemble of data that necessitates 
digitisation for effective management (Bocconcino and 
Manzone, 2019). The surge in information involved in 
public decision-making processes has necessitated the 
adoption of digital technologies and techniques for 
information management. Information and Communication 
Technologies (ICT), rapidly evolving due to technological 
advancements, have significantly influenced decision-
making frameworks in public management, offering 
advanced monitoring tools (Kouziokas and Perakis, 2017). 
To handle large amount of data and metadata, which are 
interconnected to create extensive datasets, advancements in 
data acquisition methods have simplified and expedited 
these processes with fast survey tools. However, data 
collection does not inherently constitute knowledge. A 
process of correlation and analysis is required to transform 
raw data into analysable insights. Computational systems 
can process vast amounts of unstructured information, 
identifying patterns and correlations that may not be 
immediately apparent, thereby generating new knowledge 
for the data analysis technician. Artificial Intelligence (AI) 
(McCarthy, 2007) has become pivotal in automating 
cognitive tasks (Corea, 2019), processing and reinterpreting 
external stimuli based on active research trajectories (Buratti 
et al, 2021). ML, Neural networks and Deep Learning (DL) 
models have enabled the management of increasingly 
complex use cases by scaling computational complexity and 
network interconnections (Mishra, 2021; Mishra et al 2024). 
The scalability of DL models allows them to process 
growing amounts of both structured and unstructured 
datasets. Computer Vision intersects with AI in applications 
where learning from unstructured data addresses complex 
problems like segmentation and object detection. 
The automated identification of technological elements in 
urban environments, as proposed in this research, leverages 
object detection (OD). OD is a subset of computer vision 

that develops and builds techniques to identify and classify 
objects within images; Convolutional Neural Networks 
(CNNs), since their inception (LeCun and Bengio, 1998), 
have become the state-of-the-art approach in this domain due 
to their high performance (Redmon et al., 2016). This study 
explores AutoML, a suite of models that utilise ensemble 
and transfer learning techniques to expand the range of 
identifiable objects. The availability of AutoML models in 
Cloud Computing Platforms, often in code-less solutions, 
expedite the development of baseline ML models, promoting 
the democratization of AI (He et al, 2021). Managing the 
potentially increasing size of photographic dataset and the 
consequent computational complexity of object detection 
imposes significant constraints. To overcome the limitations 
of on-premises data management, this research builds on top 
of a Cloud Computing infrastructure, leveraging Data Storage,  
the Integrated Machine Learning Platform and the seamless 
integration offered across the suite of software provided by 
the cloud vendor. This approach abstracts from the 
computational power available locally, avoiding the 
constraints imposed by physical hardware and infrastructures 
(Rivera, 2020). 
 
3.1 Related researches 

Object Detection techniques have been developed to identify 
entities based on existing data, enabling predictions on new, 
unseen data. From image data, three primary objectives 
emerge: classification, detection, and segmentation (Xiao et 
al., 2020; La Placa and Doria, 2024).  
 

 
Figure 3. Three-dimensional model obtained with SfM from 

UAV of the entire historic centre of the case study. The 
model, georeferenced both by the photographs' own metadata 

and by the use of external GPS, was used for the export of 
orthoimages for the detection of the elements of interest in the 
roofs. The database was realised according to “3D Bethlehem” 

research (Parrinello and Picchio, 2019) 
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These approaches have been extensively documented as 
support tools for managing and documenting cultural heritage 
and urban planning (Li et al., 2020). In urban environments, 
such techniques have been applied to monitor infrastructure 
criticalities and construction sites (Dandabathula et al., 2019; 
Wang et al., 2022), manage urban waste (Majchrowska et al., 
2022), enforce compliance with building regulations (Cunha 
et al., 2021), and conduct environmental and agricultural 
monitoring (Carbone et al., 2022). High-performance 
applications of these techniques are also documented in the 
field of built cultural heritage, aiding in the identification and 
close-range imaging (Due Trier et al, 2021) and supporting 
decision-making for interventions on documented heritage 
(Monna et al., 2021; Zou et al., 2019; Hatir and Ince, 2021). 
Machine learning models and pipelines, based on open-source 
technologies such as Python libraries and Kubeflow, can be 
exported and shared with collaborators outside the platform. 
Recent studies have demonstrated the efficacy of integrating 
AI and computer vision in urban analysis.  
For instance, the URBAN-i model utilizes deep learning and 
computer vision to detect informality and slums in urban 
scenes, aiding in urban modelling and understanding city 
dynamics (Ibrahim et al, 2018).  
Similarly, the UV-SAM model adapts the Segment Anything 
Model for urban village segmentation, providing accurate 
boundary identification from satellite images (Zhang et al., 
2024). This process can facilitate high degrees of cooperation 
across multiple entities, including universities, companies, and 
municipalities. Such collaboration can be organised during 
both the development and final usage phases, with pre-trained 
models accessible via dedicated Application Programming 
Interfaces (APIs). 
 

4. Methodologies, tools and technologies 

As described in the case study of Bethlehem’s historic centre 
(Doria, 2022), the automation of the technological census of 
urban architectural elements (e.g., antennas, tanks, domes) is 
vital for efficient monitoring and planning. The research 
proposes an operational model combining UAV-based image 
acquisition (Parrinello and Picchio, 2019) with automated 
classification techniques to identify urban infrastructure 

elements and integrate them into structured, usable datasets. 
This approach avoids labour-intensive manual mapping, 
offering a model applicable in other urban contexts. 
However, one of the major constraints in earlier approaches, 
such as those involving on-premises processing and storage, is 
the limited scalability of both computing power and dataset 
management. Eventarc, event management software, routes 
events to Cloud functions, forming the core of this event-
driven computing architecture; as soon as UAV orthoimage 
chunks are uploaded to a Google Cloud Storage (GCS) bucket, 
Eventarc triggers the sequential steps of the pipeline without 
manual intervention. 
This not only reduces the time between image acquisition and 
data availability for analysis, but automates the interaction 
between different phases of the workload. 
The processing pipeline continues with Vertex AI, the 
integrated ML platform of GCP, that allows for the training, 
deployment, and prediction (both batch and real time) of deep 
learning models, including AutoML models designed 
specifically for image object detection. A model (previously 
trained on urban datasets) processes the image files, 
outputting bounding box coordinates and confidence scores in 
a JSON Lines format; these predictions are stored temporarily 
in GCS. The next step, geospatial enrichment, links detected 
urban elements to their actual geolocation. A secondary Cloud 
function reads the original orthoimages and associates 
detection results with spatial metadata extracted from the 
images themselves (e.g., camera orientation, UAV altitude). 
This enriched data becomes useful not only for inventorying 
urban assets, but also for the integration with 3D GIS 
platforms; the enriched results are persisted in Big Query 
(Google Cloud’s data warehouse solution), which supports 
both manual and programmatic queries. 
The output datasets can be visualized in GIS environments, 
shared with municipal stakeholders and collaborators for 
further analysis. Recent studies have demonstrated the 
effectiveness of ML and DL approaches in similar contexts. 
For instance, Fiorucci et al. (2022) utilized DL for 
archaeological object detection on LiDAR data, providing new 
evaluation measures and insights. Similarly, Jiang et al. 
(2023) developed a model for infrastructure detection along 
highways based on remote sensing images from UAVs, 

 
 

Figure 4. High level design of the underlying Cloud Architecture 
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showcasing the applicability of such techniques in 
infrastructure monitoring. In the sector of built heritage 
conservation, ML techniques have been applied for 
monitoring and planning purposes. A study by Tucci et al. 
(2024) presented a fully automated approach for the 
segmentation and classification of architectural elements, 
aiming to provide tools for a more detailed assessment of the 
risk of detachment of parts of the sandstone elements. 
The different phases are described in the following 
subparagraph in more details: 
 
4.1 Model Inference 

The first phase is that of Data Ingestion and starts with the  
upload of ortho image chunks to a designated Google Cloud 
Storage (GCS) bucket. This triggers Eventarc, Google Cloud's 
solution for building event-driven architectures (Stopford, 
2018). Upon detection, the event is routed to a Cloud Function 
responsible for initiating the processing pipeline 
(Lakshmanan, 2022). This function constructs a request file 
containing the image storage URI on GCS, as well as the 
Vertex AI model name and version to be used for inference. 
The Cloud Function then triggers a batch prediction job on 
Vertex AI, a programmatic way to get predictions from a 
model deployed on the Model Registry. 
 

 
 

Figure 5. Preliminary images of the detection process. Above, 
raw image from drone with integrated location metadata 

thanks to the GPS systems of the aircraft used. Chuncks for 
SfM photogrammetry were made for urban districts and 

georeferenced according to GPS targets. Object detection 
training took place on the raw imams, and recognition and 
identification was initiated on the orthoimages to make the 
object georeferencing processes effective This process also 
makes it possible to develop systems of scheduled surface 

inspections, planned over time. 

The batch prediction request is executed using the Vertex AI 
Python SDK. Vertex AI hosts an AutoML deep learning 
model (He, 2021) designed for computer vision tasks and 
trained on UAV images to identify the architectural elements 
of this study. Upon execution, the model processes the image 
files and outputs predictions in the form of a JSON Lines 
(JSONL) file, a standard interchange format used across 
multiple components of Vertex AI. Each record includes the 
list of detected objects, bounding box coordinates, and a 
confidence score corresponding per each class. As a managed 
service, Vertex AI ensures high scalability, allowing to adjust 
the number of nodes according to workload demand. The 
resulting predictions are written to a designated Prediction 
Storage Bucket on GCS. 
 
4.2 Geospatial Data Enrichment 

To enrich the predictions with geospatial context, another 
Eventarc trigger monitors the Prediction Storage Bucket. 
When new output files are detected, this trigger activates a 
secondary Cloud Function that performs geospatial data 
enrichment. This function loads both the original ortho images 
and their associated predictions, and enriches the detection 
data by linking each object to its geographic coordinates. This 
is achieved by extracting metadata embedded in the source 
images, which typically includes location, scale, and 
orientation parameters. The enriched data is then exported into 
a structured dataset, enabling downstream spatial analyses and 
integration with GIS systems. 
 
4.3 Enriched Predictions Storage 

The final stage involves persisting enriched data for long-term 
access and analysis. Results are written to BigQuery, enabling 
querying, analytics, and programmatic data access.  
Additionally, both raw predictions and enriched, 
georeferenced outputs are stored in Cloud Storage. Results are 
historicised on the data warehouse, associating the detected 
objects with a timestamp, referencing the presence of objects 
in a specific moment therefore allowing to detect additions 
and subtractions to built elements. This dual storage strategy 
ensures flexibility, supporting both tabular exploration via 
BigQuery and spatial visualization in GIS platforms or custom 
visualization tools. 
 

5. Results 

The implemented workflow demonstrates a robust and 
scalable system for the automated detection and 
georeferencing of architectural elements using UAV 
imagery, cloud computing, and machine learning. During 
testing on the historic centre of Bethlehem, the system 
achieved over 85% average precision (AP) in detecting and 
localizing objects such as water tanks, and antennas across a 
heterogeneous urban morphology. Confidence thresholds 
could be flexibly adjusted to prioritize either recall (for more 
exhaustive identification) or precision (for cleaner 
detections), depending on the maintenance strategy. 
Batch inference using Vertex AI significantly reduced 
processing times compared to traditional desktop or on-
premise methods, completing prediction cycles for hundreds 
of orthoimage chunks within hours. Moreover, the event-
driven architecture allows fully automated processing once 
new images are uploaded, requiring no human intervention 
from the upload of images to the database storage. This 
allows to create a feedback loop for continuous monitoring, 
since historical predictions are available for comparison and 
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enrichment through time, highlighting modifications in the 
built environment. 
The pipeline effectively maintained metadata integrity, 
linking object IDs with geospatial coordinates, timestamp, 
and detection confidence, which can be queried or visualized 
within BigQuery or any GIS environment. 
Furthermore, the modularity of the pipeline allows users to 
retrain models with additional classes or fine-tune the 
system to different urban contexts.  
Key highlights of the results include: 
• Training process is done once, then model is deployed 

and leveraged; 
• Time consuming tasks are automated, allowing human 

technicians to focus on more specialised tasks; 
• Model performance is monitored, model can be 

retrained in case of performance degradation over time 
or the necessity to detect new unseen elements; 

• The system processed 150 images in 4 hours; batch 
prediction jobs can be parametrised to run on larger 
machines or a higher number of computing nodes, to 
comply with heavier workloads or more strict time 
requirements; 

• GIS integration: Seamless import of spatially enriched 
detection data into 3D GIS environments. 

Feedback from stakeholders (urban planners, engineers, 
heritage conservationists) highlighted increased usability 
and reduced dependency on specialist operators, enabling 
broader adoption within interdisciplinary teams. 
 

6. Conclusions 

The study successfully demonstrates a repeatable and 
scalable pipeline for the automated georeferencing of 
architectural elements using UAV imagery and AI. The 
research not only confirms the feasibility of integrating 
machine learning with 3D GIS but also shows significant 
potential for improving urban asset management by enabling 
data-driven inspections, proactive maintenance, and 
enhanced heritage documentation. This methodology 
empowers municipalities and technicians with an automated 
and adaptable tool, fostering a proactive approach to urban 
maintenance. The cloud-native design supports event-driven 
scalability, allowing the same system to be applied to both 
small pilot studies and extensive urban areas without 
significant reconfiguration. 
The workflow’s modular nature means it can be extended in 
several directions: 
• Detection class expansion training models on new urban 

or infrastructural elements (e.g., heat systems, 
materials, chimneys, photovoltaics panels); 

• Temporal analysis using historical UAV datasets to 
detect changes over time and flag anomalies or 
maintenance needs creating a map of risk; 

• Semantic enrichment linking detected elements to 
building IDs, maintenance records, or regulatory 
compliance databases for more integrated lifecycle and 
urban management. 

In the longer term, this work sets a starting point for smart 
city applications based on automated spatial intelligence. 
The approach is particularly relevant for historic city 
centres, where maintenance must be balanced with 
preservation, and where safety concerns limit physical 
inspections. This workflow contributes to both theoretical 
research in digital urban and built maintenance and practical 
advances in the fields of architectural conservation and 
infrastructure monitoring. 

Future development may include user-friendly dashboards, 
broader dataset interoperability, and integration with 
municipal decision-support systems. 
The process reinforces the idea that AI and cloud-based 
geospatial workflows are not just technical solutions, but 
enablers of a new paradigm in urban governance. 
 

 
 

Figure 6. Above, 3D GIS model created during the 3D 
Bethlehem project (Doria et al, 2022). The model was used to 

validate the location extracted from the orthoimages of the 
elements (tanks, below) automatically identified with object 

detection. The location thus obtained can be integrated into GIS 
to develop monitoring systems over time. 
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Appendix 

Across the development of this project multiple open source 
libraries developed and maintained by the community were 
used, both for image manipulation and geospatial data analysis. 
 
Open source for Geospatial Foundation: 
https://www.osgeo.org 
GDAL - Library used to manage geospatial data in Python:  
https://pypi.org/project/GDAL/ 
OpenCV - Open source computer vision library:  
https://pypi.org/project/opencv-python/   
Folium – Open source library for visualising map data: 
https://pypi.org/project/folium/ 
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