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Abstract 
Fault detection in electric power facilities is a crucial component of power grid maintenance, with hidden faults posing greater 
challenges compared to overt faults. Notably, hidden faults often coincide with localized heating, making infrared imaging an 
effective detection modality. However, automatic identification of power equipment in infrared images remains challenging; 
traditional methods are often inefficient and lack accuracy, while deep learning approaches are hindered by limited sample 
availability and accuracy issues. Furthermore, the temperature-based criteria for diagnosing hidden faults lack robustness. To address 
these challenges, this study proposes a comprehensive approach: first, employing the Segment Anything Model (SAM) for rapid 
annotation of power facilities in infrared images; second, leveraging these annotations to iteratively optimize a U-Net model for 
automated power equipment identification; and third, integrating temperature information to identify abnormal regions using 
dynamic threshold segmentation, thereby locating potential fault components. Experimental validation was conducted on a 
transmission line in Jiaxing City, Zhejiang Province, demonstrating a detection success rate exceeding 90%. The results indicate high 
detection accuracy and efficiency, presenting a promising solution for intelligent inspection of electric power infrastructure. 
 

1. Introduction 

With the ongoing advancement of society and technology, the 
global demand for electrical power resources continues to rise. 
In the context of large-scale electrical infrastructure 
construction, efficiently identifying and mitigating potential 
safety hazards within complex environments, as well as 
ensuring the safe and stable operation of electrical facilities, has 
become a critical yet challenging issue in modern electrical 
facility management (Impram, S. et al., 2020; Strielkowski, W. 
et al., 2021). Traditionally, fault detection in electrical facilities 
such as transmission lines relied heavily on manual inspections 
and visual observation, where faults were identified through 
human visual assessment. However, this approach suffers from 
low efficiency, limited fault tolerance, and high human resource 
consumption, rendering it inadequate to meet the increasing 
demand for electrical resources and the high dependence on 
electrical infrastructure (Dashti, R. et al., 2021).   
To enhance fault detection and operational maintenance 
efficiency, the application of unmanned aerial vehicles (UAVs) 
for photographic inspection of electrical facilities has garnered 
significant attention (Abro, G. et al., 2024; Barbedo, J. G. A., 
2019). The prevalent UAV-based power inspection 
methodology involves equipping UAVs with visible light 
cameras to capture images of electrical infrastructure, followed 
by image recognition techniques to analyze these images for 
fault detection. Such methods are relatively mature and have 
been widely adopted in various electrical institutions, 
effectively identifying surface-level faults such as issues in 
incoming and outgoing cable heads, insulation flashovers, fuse 
drop-outs, and line trips caused by vegetation interference 
(Susakova, T. et al., 2017).   
However, these visible light-based approaches face significant 
limitations—they are incapable of detecting covert faults within 
electrical components, such as faults in voltage transformers, 
current transformers, relay protection terminals, or coil heating 
resulting from prolonged energization (Liao, W. et al., 2021; 
Mateus, B. et al., 2024). These covert faults are often critical 
precursors to more severe failures, including transmission line 
short circuits, power outages, fires, and conductor breaks, 
necessitating further investigation. Since covert faults typically 
manifest as localized heating without visible surface changes, 
they are indistinguishable from normal components in standard 
visible light images. Conversely, infrared imaging captures 
thermal infrared radiation and is highly sensitive to temperature 
variations in targets (McManus, C. et al., 2016; Hou, F. et al., 

2022). Consequently, infrared thermography provides a 
valuable means for detecting and analyzing temperature 
anomalies in electrical equipment, enabling the identification of 
thermally compromised components and facilitating early fault 
detection. 
Infrared imaging offers a promising approach for the detection 
of covert faults in electrical facilities. However, practical 
implementation faces several challenges, primarily the accurate 
identification of electrical components within infrared images. 
Traditional manual inspection methods are inefficient, labor-
intensive, and prone to inaccuracies, which hinder timely fault 
detection (Cheng, F. et al., 2023; Hedayati, M. et al., 2024; 
Sarabandi, K. et al., 2002). Consequently, numerous studies 
have explored automatic identification techniques for electrical 
facilities. For instance, Mira J. employed a HOG+SVM scheme 
for efficient and accurate detection of olive fly larvae on edge 
devices, detailing feature extraction and classification 
workflows (Mira J., 2024). Wang G. applied Haar+AdaBoost to 
detect longitudinal tears in conveyor belts under uneven 
illumination, achieving a 3% error rate (Wang G., 2021). Zhang 
et al. utilized Hough transform-based methods for power line 
segmentation, combined with K-means clustering and Kalman 
filtering for line tracking (Zhang, J. et al., 2012). Seikh et al. 
enhanced line detection success rates to 83% through fine edge 
map-based Hough transform techniques (Seikh, N. et al., 2022). 
Despite these advances, traditional methods often suffer from 
limited real-time performance, prolonged training durations, 
and suboptimal accuracy. 
With the advent of deep learning, significant improvements 
have been achieved in automatic electrical facility recognition. 
For example, Ma et al. improved the YOLO-based framework 
for transmission line detection (Ma, W. et al., 2024), while 
Zheng et al. enhanced Faster R-CNN with deformable 
convolutions and transfer learning to detect power towers in 
remote sensing imagery, increasing detection metrics by 0.2 
points (Zheng, X. et al., 2020). Zhao et al. proposed PL-UNet, 
specifically tailored for power line recognition, further 
improving detection capabilities (Zhao, Q. et al., 2025). Nan G. 
et al. employed AS-Unet++ to extract electrical facilities from 
remote sensing data with higher accuracy (Nan G. et al., 2024), 
and He et al. utilized an improved U-Net architecture for 
efficient feature extraction (He, M. et al., 2023). Compared to 
classical algorithms, deep learning approaches, especially U-Net 
variants, have demonstrated superior precision and robustness 
in target recognition, offering a feasible pathway toward fully 
automated electrical facility identification. However, most 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025 
13th International Conference on Mobile Mapping Technology (MMT 2025)  

“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20–22 June 2025, Xiamen, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W5-2025-35-2025 | © Author(s) 2025. CC BY 4.0 License.

 
35



 

existing studies focus on visible light images; research on 
infrared imagery remains limited. Since dataset quality critically 
impacts model performance (Zou, X. et al., 2019; Kaur, R. et 
al., 2023; Manakitsa, N. et al., 2024), establishing representative 
infrared datasets and targeted training paradigms are essential 
for robust recognition. 
Constructing such datasets is labor-intensive, especially due to 
the complex geometries and overlapping structures typical of 
electrical facilities, as illustrated in Figure 1, the shape of the 
power facilities is very complex, and manual labeling takes a lot 
of time. To address this, this study proposes utilizing the 
Segment Anything Model (SAM) for rapid, accurate annotation 
of infrared images, facilitating subsequent training of a U-Net-
based model for power facility recognition. 
 

 
Figure. 1.   Complex electric power facilities 

 
A further challenge in infrared-based fault detection involves 
defining temperature thresholds for identifying hidden faults. 
The thermal behavior of electrical components is influenced by 
load current, aging, ambient temperature, and environmental 
factors (Islam, M. et al., 2024; Junior, O. et al., 2023). Normal 
temperature fluctuations often overlap with early fault 
signatures, complicating diagnosis—for example, a circuit 
breaker measuring 85°C during summer heatwaves may be 
normal or indicative of an early fault depending on contextual 
factors such as load and ambient temperature. The relationship 
between equipment aging and temperature is nonlinear; newly 
installed units may temporarily exhibit anomalous temperatures 
due to surface treatments, while aged components can display 
altered thermal profiles caused by material degradation (Zhu, 
M. et al., 2024). External environmental conditions, such as 
sunlight exposure, wind speed, and thermal radiation from 
adjacent equipment, further impact temperature measurements 
accuracy (Wan, Q. et al., 2021).  
Typically, early-stage faults manifest as localized temperature 
anomalies—such as hotspots in cable joints or regional heating 
in insulators—requiring dynamic and adaptive thresholding 
strategies for effective detection. The key to accurate fault 
diagnosis lies in establishing a temperature threshold model that 
accounts for multi-dimensional factors, including historical 
data, environmental conditions, and operational parameters, to 
distinguish true faults from benign temperature variations.. 
In summary, this study employs the Segment Anything Model 
(SAM) to facilitate rapid annotation of power facilities in 
infrared imagery. Subsequently, an iterative optimization 
approach is applied to refine the U-Net model using the 
annotated data, enabling automated identification of power 
facilities. Finally, by integrating temperature information, the 
method utilizes threshold segmentation to detect abnormal 
regions in infrared images, thereby identifying components with 
hidden faults. The main contributions of this work are as 
follows:   
1. Developing a SAM-assisted rapid annotation framework for 
power facilities in infrared images.   
2. Proposing an iterative training strategy that combines SAM 
annotations with U-Net optimization to achieve automatic 
power facility recognition.   

3. Establishing a dynamic temperature thresholding model for 
effective discrimination of hidden faults in infrared thermal 
images. 
The structure of this study is as follows: Part 1 presents the 
problems addressed in this paper and the current state of the 
field. Part 2 provides a detailed description of the methodology 
we propose. Part 3 focuses on the experiments, detailing the 
performance of a real-world dataset processed using the 
approach outlined in this paper. Part 4 consists of the 
conclusions. 

2. Methodology 

This study proposes a method for fault detection in power 
facilities using infrared thermal imaging. First, an infrared 
image dataset of power facilities is generated utilizing the 
Segment Anything Model (SAM) to facilitate efficient 
annotation. This dataset is then employed to train a U-Net 
model for automatic recognition of power facilities. 
Subsequently, by integrating temperature data and applying 
threshold segmentation, abnormal regions within the infrared 
images are identified, enabling the detection of concealed faulty 
components. The overall workflow of the proposed approach is 
illustrated in Figure 2. 
 

 
Figure. 2.    The technical route of this article 

 
The first step of the process involves using the SAM algorithm 
to segment the input thermal infrared image, illustrated in 
Figure 2(a). Subsequently, the segmentation results are 
manually confirmed and edited to produce accurate 
segmentation outcomes (This process will be repeated multiple 
times) , illustrated in Figure 2(b). After that, the UNet model is 
trained using the thermal infrared images and the accurate 
segmentation results as samples. Finally, the trained model is 
applied to recognize any thermal infrared image, and the power 
facility recognition results are output, illustrated in Figure 2(c). 
 
2.1 SAM assisted labeling of power facilities and 
optimization of U-Net 

2.1.1 The SAM 
The Segment Anything Model (SAM), developed by Alexander 
Kirillov et al. in 2023, is a foundational model designed for 
general image segmentation tasks (Kirillov, A. et al., 2023). It 
employs an encoder-decoder architecture similar to that of U-
Net, consisting of three primary components: an image encoder, 
a prompt encoder, and a mask decoder. The overall structure of 
SAM is depicted in Figure 3. 
 

 
Figure. 3.    Structure of the SAM model. 

a 
b c 
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The image encoder in SAM is responsible for dimensionality 
reduction and feature extraction from the input image. The 
original image undergoes downsampling and is subsequently 
processed through convolutional layers to generate multiple sets 
of feature vectors. These features are further refined by multiple 
Transformer encoder layers to produce an image embedding, 
which is then passed to the decoder. The prompt encoder 
encodes various forms of prompts, including points, bounding 
boxes, text, and masks. The first three are categorized as sparse 
prompts, while masks are considered dense prompts. Different 
encoding strategies are employed for these prompt types, 
resulting in a prompt embedding that captures spatial location, 
category, and shape information. The mask decoder converts the 
combined image features and prompt embeddings into the final 
segmentation mask, comprising multiple upsampling and 
convolutional layers. Specifically, the decoder fuses features 
from the image encoder and prompt encoder, ensuring that both 
image content and input prompts influence the segmentation. 
The upsampling layers gradually restore the resolution of the 
feature maps to match the original image size, followed by 
convolutional operations that produce a probability mask 
aligned with the original image dimensions. 
SAM is designed to segment objects of interest based on 
various prompts, such as single points, multiple points or 
masks, bounding boxes, and textual descriptions. The model is 
capable of generating valid segmentation masks even when 
prompts are ambiguous, requiring an understanding of the 
concept of "object" to perform accurate segmentation. This 
enables SAM to segment objects not present in the training data, 
demonstrating strong zero-shot generalization capabilities. The 
authors trained SAM on approximately 11 million images with 
1.1 billion mask annotations, which contributed to its robust 
generalization performance in automatically segmenting objects 
without prompts. However, the masks produced by SAM lack 
semantic labels; thus, manual annotation or subsequent 
semantic segmentation is necessary to assign meaningful class 
labels to the segmented objects. 
 
2.1.2 The U-Net 
The U-Net model, introduced by Olaf Ronneberger et al. in 
2015 (Ronneberger, O. et al., 2015), is a fully convolutional 
neural network characterized by a distinctive U-shaped 
architecture based on the Fully Convolutional Network (FCN). 
Originally designed for biomedical image segmentation, it has 
since become a fundamental architecture widely adopted in 
various image segmentation tasks due to its superior 
performance and robustness. The architecture of U-Net is 
depicted in Figure 4 and features a symmetric structure 
comprising an encoder, a decoder, and skip connections. The 
encoder, positioned on the left, functions as a backbone feature 
extractor, progressively reducing the spatial dimensions of the 
input while increasing the number of feature channels. 
Conversely, the decoder on the right aims to recover spatial 
resolution through successive upsampling, enabling precise 
localization. The skip connections directly concatenate feature 
maps from encoder layers to their corresponding decoder layers, 
facilitating the fusion of high-resolution spatial information 
with high-level semantic features, thereby reducing information 
loss and improving localization accuracy. 

 
Figure. 4.   Structure of the U-Net. 

The encoder employs a repeated pattern of two convolutional 
layers, each with a 3×3 kernel, zero-padding, and ReLU 
activation functions, followed by a 2×2 max pooling operation 
with a stride of 2 for downsampling. Each downsampling step 
doubles the number of feature channels, with four such steps 
reducing the feature map size to 1/16 of the original spatial 
dimensions. The decoder reconstructs the feature maps through 
upsampling, utilizing 2×2 transposed convolution (or nearest-
neighbor upsampling) combined with convolutional layers of 
3×3 kernels. Each upsampling step is followed by the 
concatenation with corresponding encoder feature maps, 
preserving spatial details. The convolutional layers in the 
decoder serve dual purposes: reducing feature map 
dimensionality and extracting salient features, with each pair of 
3×3 convolutions followed by an activation. Upsampling halves 
the number of feature channels at each stage, and a final 1×1 
convolutional layer restores the number of channels to produce 
the final semantic segmentation map. U-Net achieves high-
quality segmentation results even with limited training data, 
making it particularly suitable for applications where annotated 
datasets are scarce. 
 
2.1.3 SAM assisted U-Net optimization 
The optimization of the U-Net model, facilitated by the 
Segment Anything Model (SAM), is an iterative process 
designed to address the inefficiency associated with generating 
infrared images of power facility samples. As illustrated in 
Figure 5, this process comprises three primary steps: (1) 
generating annotation samples using SAM; (2) iteratively 
training the U-Net model with the generated samples; and (3) 
manually refining and correcting the samples until the dataset 
satisfies predefined quality and accuracy criteria. 

 
Figure. 5. Workflow of SAM assisted U-Net model 

optimization 
The iterative optimization of the U-Net model, assisted by the 
Segment Anything Model (SAM), facilitates rapid construction 
of an infrared image dataset of power facilities. Due to the 
presence of unmasked regions that cannot be directly annotated, 
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this process essentially reduces to a binary semantic 
segmentation task—differentiating power facilities from all 
other regions in the image, including background and other 
categories. In this study, the U-Net architecture is employed, 
with the training procedure designed to exclude pixels 
belonging to non-power facility regions from the loss function 
calculation. The detailed workflow is as follows: 
1. Utilize SAM to segment targets within the images and 
generate corresponding masks.   
2. Based on the object masks produced by SAM, manually 
annotate all masks within a small subset of images, as illustrated 
in Figure 6. Each mask is assigned a uniform semantic label to 
all its pixels.   
3. Train the U-Net model using these annotated images.   
4. Apply the trained U-Net to predict semantic labels for masks 
in the remaining unannotated images. The predicted masks are 
then manually inspected, and any mislabeling is corrected. 
Corrected images are added to the training set for subsequent re-
training. 
By iterating steps 3 and 4, a large dataset of images with 
accurate masks and semantic labels can be efficiently generated. 
 

 
Figure. 6  Manually assigning SAM mask classification labels 

 
2.2 Dynamic temperature threshold model 

The implicit fault detection method proposed in this study 
primarily relies on a temperature model. After estimating the 
temperature of power line components from infrared images, 
empirical thresholds are employed to identify potential hidden 
faults. However, these fixed thresholds are subject to variability 
under different environmental conditions, such as fluctuations 
in ambient temperature and solar irradiance, which introduce 
uncertainty and reduce the reliability of threshold-based fault 
detection. To address this issue, a comprehensive temperature 
model for electrical equipment is developed, incorporating 
factors such as ambient temperature, solar radiation, and self-
heating effects. The model is expressed as follows: 
 

                             (1) 
 

Where TE denotes the ambient temperature, which can be 
directly obtained from meteorological station forecasts; TP 
represents the self-heating of the electrical equipment, estimated 
based on the statistical power consumption of the line and 
typically considered a constant; and TS indicates the 
temperature induced by solar radiation, determined by 
referencing solar radiation data from national environmental 
and meteorological websites according to the time and location 
of infrared data acquisition. In the model, a0, a1 and a20 are 
influence coefficients corresponding to ambient temperature, 
solar radiation, and self-heating effects, respectively, and are 

initially unknown. 
The main reason why we use a linear model here is that the 
model is very stable when there are not many data samples. We 
also tried a nonlinear model and found that it is very prone to 
overfitting, and its results are actually unreliable. 
To determine the values of  a0, a1 and a20 measured temperature 
data from all electrical facilities are substituted into the model, 
and linear regression is employed to estimate these coefficients. 
Once an accurate estimate of the equipment temperature is 
obtained, an empirical threshold method is applied for implicit 
fault detection. The thresholding approach primarily references 
the algorithm proposed by Wang et al. (2020) (Wang, B. et al., 
2020), which compares the maximum temperature of the 
electrical component with the normal temperature Tnorm. 
If the temperature difference exceeds 1 K, further diagnostic 
rules, as detailed in Table 1, are applied. In these rules, Tnorm 
represents the baseline temperature under normal conditions; 
Tab denotes the average temperature of the abnormal region; Tth 
is the warning temperature threshold, set as 1.2 times Tnorm  ased 
on historical data; and α indicates the proportion of pixels 
within the abnormal region. 
 

Discriminant 
criteria 

Temperature 
conditions Fault 

Tnorm < Tab < Tth 

A>70% 
The overall 

temperature rise of 
the insulator is 
relatively small 

The resistance of 
the insulator is 

very small 

Tnorm < Tab < Tth 

A<30% 

There is a slight 
temperature rise in 

the insulator section 

Insulators 
indicate the 
presence of 

partial discharge 
or contamination 

Tab > Tth 
A<30% 

There is a significant 
temperature rise and a 
small temperature rise 

in the insulator part 

Insulators are 
damaged and 

may have cracks 

Tab > Tth 
A>70% 

The overall 
temperature rise of 

the insulator is 
relatively large 

The insulator 
has a serious 
malfunction 

Table 1. The fault recognition experience threshold (Wang, B., 
et al., 2020) 

 
3. Experimental 

3.1 Experimental dataset and environment 

In the experimental section of this study, a DJI M3T unmanned 
aerial vehicle(UAV) served as the flight platform, quipped with 
a thermal infrared camera for capturing infrared imagery of 
power lines. The UAV and its onboard camera are illustrated in 
Figure 7, and the camera specifications are summarized in 
Table 2. 
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Figure. 7. Image of equipment 

(a) DJI-M3T drone and (b) M3T dual-camera 
 

 Infrared  Visible 
Image 

Resolution 
640×512pixels 

1280×1024 pixels 
8000×6000pixels 

Pixels Size 12 μm 3.67μm 
Focus Length 40 mm 24 mm 
Image Format R-JPEG (16 bit) JPEG(8 bit) 

DFOV 40.6° 84° 
GPS Info Yes Yes 

Gimbal Info Yes Yes 
Table 2 Technical specifications of M3T dual-camera  

 
The M3T dual-camera system simultaneously captures visible 
light and infrared images. In this experiment, a total of 3094 
infrared images were obtained over 9 sorties, with some sample 
images shown in Figure 8. 

 
Figure. 8. The infrared images 

(a)The thumbs of  infrared images (b)A infrared image 
 
The experiments were conducted on Windows 10 using an 
NVIDIA GeForce RTX 3060 12G GPU. The deep learning 
framework was built on PyTorch 1.12 and CUDA 11.6. The U-
Net comes from Milesial's source code provided on GitHub. 
The download link is: 
https://github.com/milesial/Pytorch-UNet/tree/v1.0 
 
3.2 SAM classification 

A total of 750 images were randomly selected from the original 
dataset comprising 3,094 images and manually annotated using 
the SAM-assisted annotation method proposed in this study (the 
annotation interface is shown in Fig. 6. The objective was to 
accurately label power facilities—including transmission 
towers, power lines, insulators, and various connecting wires—
to generate corresponding mask files. The annotation results are 
illustrated in Fig. 9. 

 
Figure. 9.  Manual annotation results assisted by SAM , with the 
infrared image on the left and the power facility mask on the 
right 
 
Due to the slender structure of power lines occupying minimal 
pixels in infrared imagery, their classification performance was 
relatively poor. In contrast, transmission towers and insulators 
demonstrated significantly better classification results, owing to 
their more prominent appearance in infrared images. 
Additionally, some images contained power facilities that were 
barely visible (as shown in Fig. 10). These images were 
subsequently excluded from the dataset, resulting in a final set 
of 725 valid images for further analysis. 
 

 
Figure. 10.  Unclear image of power facilities removed 

 
 
3.3 U-Net train 

The 725 samples were trained using the U-Net architecture with 
hyperparameters listed in Table 3. 
 
 

(a) (b) 

(a) 

(b) 
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Hyperparameter Value 
Epochs 5 
BatchSize 8 
Learning rate 0.01 
Training size 580   （80%） 
Test size 145    (20%） 

Table 3 The hyperparameters for first training 
 
After the initial training phase, the training loss curve is 
presented in Figure. 11. 

 
Figure. 11. The loss rate curve of the first training 

 
The learning rate progression during training is visualized in 
Figure. 12. 

 
Figure. 12. The learning rate curve for first training 

 
Validation accuracy on the test set is shown in Figure. 13 

 
Figure. 13. The accuracy curve of the first training 

 
Representative segmentation results from the test set are 
displayed in Figure. 14. 
 

 
Fig. 14. Test image processing results after initial training 

(a) Input image (b) True value (c) Predicted value 
 
Despite suboptimal performance on the test set, we employed 
the trained model to predict unlabeled images. Well-performing 
predictions were manually selected and incorporated into the 
training dataset through an iterative process repeated 10 times. 
This data augmentation strategy ultimately expanded the 
training dataset to 2773 samples, which was subsequently used 
for retraining. The loss curve from the final training iteration is 
presented in Figure. 15. 
 

 
Figure. 15. The loss rate curve of the final training 

 
The learning rate curve for the final training iteration is 
presented in Figure. 16 
 

 
Figure. 16. The learning rate curve for final training 

 
The corresponding test set accuracy curve is shown in Figure. 
17. 

(a) (b) (c) 
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Figure. 17. The accuracy curve of the final training 

 
Segmentation results obtained using the final trained model are 
visualized in Figure. 18. 

 
Fig. 18. Prediction result after the last training 

(a) Input image (b) Prediction value 
 
While the results exhibited certain limitations, including 
incomplete power line detection and over-segmentation of 
transmission towers, the identification accuracy for insulators 
remained satisfactory. Given that most power line connections 
are located near insulators, we concluded that these results 
provide sufficient foundation for subsequent latent fault 
analysis. 
 
3.4 Hidden fault detection 

The total 2773 images identified by SAM and predicted by U-
Net, along with their corresponding mask data, were input into 
Equation (2-1) with parameters set as TE=19℃ , TP=10℃ , 
and TS=12℃. The equipment temperature was calculated as the 
mean value of the entire mask temperature distribution. 
Through least squares fitting, the coefficients were determined 
as a0=1.04, a1=0.06, and a2=0.13. Subsequently, the fitted 
results from Equation (2-1) were considered as the ideal 
temperature reference. 
Subsequently, anomaly detection was conducted on the hottest 
regions within the 2,773 images and their masks, based on the 
threshold criteria defined in Table 1. To mitigate the influence 
of noise-induced temperature fluctuations, median filtering with 
a 25×25 kernel was applied to the temperature data of all 
images. This process identified four anomalies, as illustrated in 
Figures 19, 20, 21, and 22. 

 
Figure. 19. Detected abnormal temperature position 1 

 
Figure. 20.  Detected abnormal temperature position 2 

 
Figure. 21. Detected abnormal temperature position 3 

 
Figure. 22. Detected abnormal temperature position 4 

 
Among the analyzed images, three contained actual anomalies 
(Figures 20, 21, and 22). The anomaly detected in Figure 19 
was determined to be a false positive. Based on these results, 
the proposed method achieved a preliminary detection recall of 
100% and a precision rate of 75%. 
 
3.5 Limitations 

The current study has the following limitations: 
(1)This research focuses more on addressing specific 
engineering problems and does not propose significant 
theoretical advancements in algorithmic innovation. 
(2)The parameters used for abnormal temperature detection are 
only validated in this specific case. Due to the lack of open-
source datasets, their effectiveness has not been verified on 
other data. 
 

4. Conclusion 

This study presents a methodology for detecting hidden faults in 
power infrastructure using thermal infrared imagery. The 
approach integrates three key components:  
(1) rapid annotation facilitated by the SAM model to efficiently 
label power components in infrared images;  
(2) iterative refinement of a U-Net architecture using annotated 
data to enable automated component recognition; and  
(3) anomaly detection through a combination of temperature 
analysis and threshold segmentation to identify latent faults. 

(a) (b) 
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Field validation was performed on a transmission line in Jiaxing 
City, Zhejiang Province, where a DJI M3T UAV captured 3,094 
thermal images. Of these, 725 images were manually annotated 
with SAM, and subsequent data augmentation with the U-Net 
model resulted in 2,773 images with integrated masks. 
Threshold-based segmentation identified four anomalies, three 
of which corresponded to confirmed faults within the test area. 
Although one false positive was observed, the overall detection 
performance achieved a recall of 100% and a precision of 75%. 
These results demonstrate the effectiveness of the proposed 
method for hidden fault detection in power infrastructure, 
providing a promising tool for maintenance and safety 
assurance. 
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