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Abstract

Fault detection in electric power facilities is a crucial component of power grid maintenance, with hidden faults posing greater
challenges compared to overt faults. Notably, hidden faults often coincide with localized heating, making infrared imaging an
effective detection modality. However, automatic identification of power equipment in infrared images remains challenging;
traditional methods are often inefficient and lack accuracy, while deep learning approaches are hindered by limited sample
availability and accuracy issues. Furthermore, the temperature-based criteria for diagnosing hidden faults lack robustness. To address
these challenges, this study proposes a comprehensive approach: first, employing the Segment Anything Model (SAM) for rapid
annotation of power facilities in infrared images; second, leveraging these annotations to iteratively optimize a U-Net model for
automated power equipment identification; and third, integrating temperature information to identify abnormal regions using
dynamic threshold segmentation, thereby locating potential fault components. Experimental validation was conducted on a
transmission line in Jiaxing City, Zhejiang Province, demonstrating a detection success rate exceeding 90%. The results indicate high
detection accuracy and efficiency, presenting a promising solution for intelligent inspection of electric power infrastructure.

1. Introduction

With the ongoing advancement of society and technology, the
global demand for electrical power resources continues to rise.
In the context of large-scale electrical infrastructure
construction, efficiently identifying and mitigating potential
safety hazards within complex environments, as well as
ensuring the safe and stable operation of electrical facilities, has
become a critical yet challenging issue in modern electrical
facility management (Impram, S. et al., 2020; Strielkowski, W.
et al., 2021). Traditionally, fault detection in electrical facilities
such as transmission lines relied heavily on manual inspections
and visual observation, where faults were identified through
human visual assessment. However, this approach suffers from
low efficiency, limited fault tolerance, and high human resource
consumption, rendering it inadequate to meet the increasing
demand for electrical resources and the high dependence on
electrical infrastructure (Dashti, R. et al., 2021).

To enhance fault detection and operational maintenance
efficiency, the application of unmanned aerial vehicles (UAVs)
for photographic inspection of electrical facilities has garnered
significant attention (Abro, G. et al., 2024; Barbedo, J. G. A,
2019). The prevalent UAV-based power inspection
methodology involves equipping UAVs with visible light
cameras to capture images of electrical infrastructure, followed
by image recognition techniques to analyze these images for
fault detection. Such methods are relatively mature and have
been widely adopted in various electrical institutions,
effectively identifying surface-level faults such as issues in
incoming and outgoing cable heads, insulation flashovers, fuse
drop-outs, and line trips caused by vegetation interference
(Susakova, T. et al., 2017).

However, these visible light-based approaches face significant
limitations—they are incapable of detecting covert faults within
electrical components, such as faults in voltage transformers,
current transformers, relay protection terminals, or coil heating
resulting from prolonged energization (Liao, W. et al., 2021;
Mateus, B. et al., 2024). These covert faults are often critical
precursors to more severe failures, including transmission line
short circuits, power outages, fires, and conductor breaks,
necessitating further investigation. Since covert faults typically
manifest as localized heating without visible surface changes,
they are indistinguishable from normal components in standard
visible light images. Conversely, infrared imaging captures
thermal infrared radiation and is highly sensitive to temperature
variations in targets (McManus, C. et al., 2016; Hou, F. et al.,

2022). Consequently, infrared thermography provides a
valuable means for detecting and analyzing temperature
anomalies in electrical equipment, enabling the identification of
thermally compromised components and facilitating early fault
detection.

Infrared imaging offers a promising approach for the detection
of covert faults in electrical facilities. However, practical
implementation faces several challenges, primarily the accurate
identification of electrical components within infrared images.
Traditional manual inspection methods are inefficient, labor-
intensive, and prone to inaccuracies, which hinder timely fault
detection (Cheng, F. et al., 2023; Hedayati, M. et al., 2024;
Sarabandi, K. et al.,, 2002). Consequently, numerous studies
have explored automatic identification techniques for electrical
facilities. For instance, Mira J. employed a HOG+SVM scheme
for efficient and accurate detection of olive fly larvae on edge
devices, detailing feature extraction and classification
workflows (Mira J., 2024). Wang G. applied Haar+AdaBoost to
detect longitudinal tears in conveyor belts under uneven
illumination, achieving a 3% error rate (Wang G., 2021). Zhang
et al. utilized Hough transform-based methods for power line
segmentation, combined with K-means clustering and Kalman
filtering for line tracking (Zhang, J. et al., 2012). Seikh et al.
enhanced line detection success rates to 83% through fine edge
map-based Hough transform techniques (Seikh, N. et al., 2022).
Despite these advances, traditional methods often suffer from
limited real-time performance, prolonged training durations,
and suboptimal accuracy.

With the advent of deep learning, significant improvements
have been achieved in automatic electrical facility recognition.
For example, Ma et al. improved the YOLO-based framework
for transmission line detection (Ma, W. et al., 2024), while
Zheng et al. enhanced Faster R-CNN with deformable
convolutions and transfer learning to detect power towers in
remote sensing imagery, increasing detection metrics by 0.2
points (Zheng, X. et al., 2020). Zhao et al. proposed PL-UNet,
specifically tailored for power line recognition, further
improving detection capabilities (Zhao, Q. et al., 2025). Nan G.
et al. employed AS-Unet++ to extract electrical facilities from
remote sensing data with higher accuracy (Nan G. et al., 2024),
and He et al. utilized an improved U-Net architecture for
efficient feature extraction (He, M. et al., 2023). Compared to
classical algorithms, deep learning approaches, especially U-Net
variants, have demonstrated superior precision and robustness
in target recognition, offering a feasible pathway toward fully
automated electrical facility identification. However, most
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existing studies focus on visible light images; research on
infrared imagery remains limited. Since dataset quality critically
impacts model performance (Zou, X. et al., 2019; Kaur, R. et
al., 2023; Manakitsa, N. et al., 2024), establishing representative
infrared datasets and targeted training paradigms are essential
for robust recognition.

Constructing such datasets is labor-intensive, especially due to
the complex geometries and overlapping structures typical of
electrical facilities, as illustrated in Figure 1, the shape of the
power facilities is very complex, and manual labeling takes a lot
of time. To address this, this study proposes utilizing the
Segment Anything Model (SAM) for rapid, accurate annotation
of infrared images, facilitating subsequent training of a U-Net-
based model for power facility recognition.

Figure. 1. Complex electric power facilities
A further challenge in infrared-based fault detection involves
defining temperature thresholds for identifying hidden faults.
The thermal behavior of electrical components is influenced by
load current, aging, ambient temperature, and environmental
factors (Islam, M. et al., 2024; Junior, O. et al., 2023). Normal
temperature fluctuations often overlap with early fault
signatures, complicating diagnosis—for example, a circuit
breaker measuring 85°C during summer heatwaves may be
normal or indicative of an early fault depending on contextual
factors such as load and ambient temperature. The relationship
between equipment aging and temperature is nonlinear; newly
installed units may temporarily exhibit anomalous temperatures
due to surface treatments, while aged components can display
altered thermal profiles caused by material degradation (Zhu,
M. et al., 2024). External environmental conditions, such as
sunlight exposure, wind speed, and thermal radiation from
adjacent equipment, further impact temperature measurements
accuracy (Wan, Q. et al., 2021).

Typically, early-stage faults manifest as localized temperature
anomalies—such as hotspots in cable joints or regional heating
in insulators—requiring dynamic and adaptive thresholding
strategies for effective detection. The key to accurate fault
diagnosis lies in establishing a temperature threshold model that
accounts for multi-dimensional factors, including historical
data, environmental conditions, and operational parameters, to
distinguish true faults from benign temperature variations..

In summary, this study employs the Segment Anything Model
(SAM) to facilitate rapid annotation of power facilities in
infrared imagery. Subsequently, an iterative optimization
approach is applied to refine the U-Net model using the
annotated data, enabling automated identification of power
facilities. Finally, by integrating temperature information, the
method utilizes threshold segmentation to detect abnormal
regions in infrared images, thereby identifying components with
hidden faults. The main contributions of this work are as
follows:

1. Developing a SAM-assisted rapid annotation framework for
power facilities in infrared images.

2. Proposing an iterative training strategy that combines SAM
annotations with U-Net optimization to achieve automatic
power facility recognition.

3. Establishing a dynamic temperature thresholding model for
effective discrimination of hidden faults in infrared thermal
images.

The structure of this study is as follows: Part 1 presents the
problems addressed in this paper and the current state of the
field. Part 2 provides a detailed description of the methodology
we propose. Part 3 focuses on the experiments, detailing the
performance of a real-world dataset processed using the
approach outlined in this paper. Part 4 consists of the
conclusions.

2. Methodology

This study proposes a method for fault detection in power
facilities using infrared thermal imaging. First, an infrared
image dataset of power facilities is generated utilizing the
Segment Anything Model (SAM) to facilitate -efficient
annotation. This dataset is then employed to train a U-Net
model for automatic recognition of power facilities.
Subsequently, by integrating temperature data and applying
threshold segmentation, abnormal regions within the infrared
images are identified, enabling the detection of concealed faulty
components. The overall workflow of the proposed approach is
illustrated in Figure 2.

Figure. 2. The technical route of this article

The first step of the process involves using the SAM algorithm
to segment the input thermal infrared image, illustrated in
Figure 2(a). Subsequently, the segmentation results are
manually confirmed and edited to produce accurate
segmentation outcomes (This process will be repeated multiple
times) , illustrated in Figure 2(b). After that, the UNet model is
trained using the thermal infrared images and the accurate
segmentation results as samples. Finally, the trained model is
applied to recognize any thermal infrared image, and the power
facility recognition results are output, illustrated in Figure 2(c).

2.1 SAM assisted
optimization of U-Net

labeling of power facilities and

2.1.1 The SAM

The Segment Anything Model (SAM), developed by Alexander
Kirillov et al. in 2023, is a foundational model designed for
general image segmentation tasks (Kirillov, A. et al., 2023). It
employs an encoder-decoder architecture similar to that of U-
Net, consisting of three primary components: an image encoder,
a prompt encoder, and a mask decoder. The overall structure of
SAM is depicted in Figure 3.
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Figure. 3. Structure of the SAM model.
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The image encoder in SAM is responsible for dimensionality
reduction and feature extraction from the input image. The
original image undergoes downsampling and is subsequently
processed through convolutional layers to generate multiple sets
of feature vectors. These features are further refined by multiple
Transformer encoder layers to produce an image embedding,
which is then passed to the decoder. The prompt encoder
encodes various forms of prompts, including points, bounding
boxes, text, and masks. The first three are categorized as sparse
prompts, while masks are considered dense prompts. Different
encoding strategies are employed for these prompt types,
resulting in a prompt embedding that captures spatial location,
category, and shape information. The mask decoder converts the
combined image features and prompt embeddings into the final
segmentation mask, comprising multiple upsampling and
convolutional layers. Specifically, the decoder fuses features
from the image encoder and prompt encoder, ensuring that both
image content and input prompts influence the segmentation.
The upsampling layers gradually restore the resolution of the
feature maps to match the original image size, followed by
convolutional operations that produce a probability mask
aligned with the original image dimensions.

SAM is designed to segment objects of interest based on
various prompts, such as single points, multiple points or
masks, bounding boxes, and textual descriptions. The model is
capable of generating valid segmentation masks even when
prompts are ambiguous, requiring an understanding of the
concept of "object" to perform accurate segmentation. This
enables SAM to segment objects not present in the training data,
demonstrating strong zero-shot generalization capabilities. The
authors trained SAM on approximately 11 million images with
1.1 billion mask annotations, which contributed to its robust
generalization performance in automatically segmenting objects
without prompts. However, the masks produced by SAM lack
semantic labels; thus, manual annotation or subsequent
semantic segmentation is necessary to assign meaningful class
labels to the segmented objects.

2.1.2  The U-Net

The U-Net model, introduced by Olaf Ronneberger et al. in
2015 (Ronneberger, O. et al., 2015), is a fully convolutional
neural network characterized by a distinctive U-shaped
architecture based on the Fully Convolutional Network (FCN).
Originally designed for biomedical image segmentation, it has
since become a fundamental architecture widely adopted in
various image segmentation tasks due to its superior
performance and robustness. The architecture of U-Net is
depicted in Figure 4 and features a symmetric structure
comprising an encoder, a decoder, and skip connections. The
encoder, positioned on the left, functions as a backbone feature
extractor, progressively reducing the spatial dimensions of the
input while increasing the number of feature channels.
Conversely, the decoder on the right aims to recover spatial
resolution through successive upsampling, enabling precise
localization. The skip connections directly concatenate feature
maps from encoder layers to their corresponding decoder layers,
facilitating the fusion of high-resolution spatial information
with high-level semantic features, thereby reducing information
loss and improving localization accuracy.
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Figure. 4. Structure of the U-Net.

The encoder employs a repeated pattern of two convolutional
layers, each with a 3x3 kernel, zero-padding, and ReLU
activation functions, followed by a 2x2 max pooling operation
with a stride of 2 for downsampling. Each downsampling step
doubles the number of feature channels, with four such steps
reducing the feature map size to 1/16 of the original spatial
dimensions. The decoder reconstructs the feature maps through
upsampling, utilizing 2x2 transposed convolution (or nearest-
neighbor upsampling) combined with convolutional layers of
3x3 kernels. Each upsampling step is followed by the
concatenation with corresponding encoder feature maps,
preserving spatial details. The convolutional layers in the
decoder serve dual purposes: reducing feature map
dimensionality and extracting salient features, with each pair of
3x3 convolutions followed by an activation. Upsampling halves
the number of feature channels at each stage, and a final 1x1
convolutional layer restores the number of channels to produce
the final semantic segmentation map. U-Net achieves high-
quality segmentation results even with limited training data,
making it particularly suitable for applications where annotated
datasets are scarce.

2.1.3 SAM assisted U-Net optimization

The optimization of the U-Net model, facilitated by the
Segment Anything Model (SAM), is an iterative process
designed to address the inefficiency associated with generating
infrared images of power facility samples. As illustrated in
Figure 5, this process comprises three primary steps: (1)
generating annotation samples using SAM; (2) iteratively
training the U-Net model with the generated samples; and (3)
manually refining and correcting the samples until the dataset
satisfies predefined quality and accuracy criteria.
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Figure. 5. Workflow of SAM assisted U-Net model
optimization
The iterative optimization of the U-Net model, assisted by the
Segment Anything Model (SAM), facilitates rapid construction
of an infrared image dataset of power facilities. Due to the
presence of unmasked regions that cannot be directly annotated,
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this process essentially reduces to a binary semantic
segmentation task—differentiating power facilities from all
other regions in the image, including background and other
categories. In this study, the U-Net architecture is employed,
with the training procedure designed to exclude pixels
belonging to non-power facility regions from the loss function
calculation. The detailed workflow is as follows:

1. Utilize SAM to segment targets within the images and
generate corresponding masks.

2. Based on the object masks produced by SAM, manually
annotate all masks within a small subset of images, as illustrated
in Figure 6. Each mask is assigned a uniform semantic label to
all its pixels.

3. Train the U-Net model using these annotated images.

4. Apply the trained U-Net to predict semantic labels for masks
in the remaining unannotated images. The predicted masks are
then manually inspected, and any mislabeling is corrected.
Corrected images are added to the training set for subsequent re-
training.

By iterating steps 3 and 4, a large dataset of images with
accurate masks and semantic labels can be efficiently generated.
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Figure. 6 Manually assigning SAM mask classification labels
2.2 Dynamic temperature threshold model

The implicit fault detection method proposed in this study
primarily relies on a temperature model. After estimating the
temperature of power line components from infrared images,
empirical thresholds are employed to identify potential hidden
faults. However, these fixed thresholds are subject to variability
under different environmental conditions, such as fluctuations
in ambient temperature and solar irradiance, which introduce
uncertainty and reduce the reliability of threshold-based fault
detection. To address this issue, a comprehensive temperature
model for electrical equipment is developed, incorporating
factors such as ambient temperature, solar radiation, and self-
heating effects. The model is expressed as follows:

TT - aoTE + alTp + azTS (1)

Where Tk denotes the ambient temperature, which can be
directly obtained from meteorological station forecasts; Tp
represents the self-heating of the electrical equipment, estimated
based on the statistical power consumption of the line and
typically considered a constant; and Ts indicates the
temperature induced by solar radiation, determined by
referencing solar radiation data from national environmental
and meteorological websites according to the time and location
of infrared data acquisition. In the model, ao, a1 and ax are
influence coefficients corresponding to ambient temperature,
solar radiation, and self-heating effects, respectively, and are

initially unknown.

The main reason why we use a linear model here is that the
model is very stable when there are not many data samples. We
also tried a nonlinear model and found that it is very prone to
overfitting, and its results are actually unreliable.

To determine the values of ao, a1 and axo measured temperature
data from all electrical facilities are substituted into the model,
and linear regression is employed to estimate these coefficients.
Once an accurate estimate of the equipment temperature is
obtained, an empirical threshold method is applied for implicit
fault detection. The thresholding approach primarily references
the algorithm proposed by Wang et al. (2020) (Wang, B. et al.,
2020), which compares the maximum temperature of the
electrical component with the normal temperature Tnorm.

If the temperature difference exceeds 1 K, further diagnostic
rules, as detailed in Table 1, are applied. In these rules, Tnom
represents the baseline temperature under normal conditions;
Tab denotes the average temperature of the abnormal region; Tt
is the warning temperature threshold, set as 1.2 times Tnorm ased
on historical data; and o indicates the proportion of pixels
within the abnormal region.

Discriminant Temperature

criteria conditions Fault
Thorm < Tab < T The overall The resistance of
A>T70% temperature rise of

the insulator is

the insulator is
very small

relatively small
Insulators

indicate the

presence of

There is a slight

Thorm < Tab <Tin . .
temperature rise in

A<30% . . L
' the insulator section | partial discharge
or contamination
There is a significant
> Insulators are
Tab > T temperature rise and a
. . damaged and
A<30% small temperature rise
. . may have cracks
in the insulator part
Tab > T The overall The insulator
A>T70% temperature rise of

has a serious

the insulator is .
malfunction

relatively large
Table 1. The fault recognition experience threshold (Wang, B.,
et al., 2020)

3. Experimental
3.1 Experimental dataset and environment

In the experimental section of this study, a DJI M3T unmanned
aerial vehicle(UAV) served as the flight platform, quipped with
a thermal infrared camera for capturing infrared imagery of
power lines. The UAV and its onboard camera are illustrated in
Figure 7, and the camera specifications are summarized in
Table 2.
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(b)

Figure. 7. Image of equipment
(a) DJI-M3T drone and (b) M3T dual-camera

Infrared Visible
Image 640x512pixels 8000x6000pixels
Resolution 1280%1024 pixels
Pixels Size 12 um 3.67um
Focus Length 40 mm 24 mm
Image Format R-JPEG (16 bit) JPEG(8 bit)
DFOV 40.6° 84°
GPS Info Yes Yes
Gimbal Info Yes Yes

Table 2 Technical specifications of M3T dual-camera

The M3T dual-camera system simultaneously captures visible
light and infrared images. In this experiment, a total of 3094
infrared images were obtained over 9 sorties, with some sample
images shown in Figure 8.
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Figure. 8. The infrared images
(a)The thumbs of infrared images (b)A infrared image

The experiments were conducted on Windows 10 using an
NVIDIA GeForce RTX 3060 12G GPU. The deep learning
framework was built on PyTorch 1.12 and CUDA 11.6. The U-
Net comes from Milesial's source code provided on GitHub.
The download link is:
https://github.com/milesial/Pytorch-UNet/tree/v1.0

3.2 SAM classification

A total of 750 images were randomly selected from the original
dataset comprising 3,094 images and manually annotated using
the SAM-assisted annotation method proposed in this study (the
annotation interface is shown in Fig. 6. The objective was to
accurately label power facilities—including transmission
towers, power lines, insulators, and various connecting wires—
to generate corresponding mask files. The annotation results are
illustrated in Fig. 9.

Figure. 9. Manual annotation results assisted by SAM , with the
infrared image on the left and the power facility mask on the
right

Due to the slender structure of power lines occupying minimal
pixels in infrared imagery, their classification performance was
relatively poor. In contrast, transmission towers and insulators
demonstrated significantly better classification results, owing to
their more prominent appearance in infrared images.
Additionally, some images contained power facilities that were
barely visible (as shown in Fig. 10). These images were
subsequently excluded from the dataset, resulting in a final set
of 725 valid images for further analysis.

Figure. 10. Unclear iage of power facilities removed

3.3 U-Net train

The 725 samples were trained using the U-Net architecture with
hyperparameters listed in Table 3.
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Hyperparameter Value
Epochs 5
BatchSize 8
Learning rate 0.01
Training size 580  (80%)
Test size 145 (20%)

Table 3 The hyperparameters for first training

After the initial training phase, the training loss curve is
presented in Figure. 11.

train
tag: Loss/train
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Figure. 11. The loss rate curve of the first training

The learning rate progression during training is visualized in
Figure. 12.
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Figure. 12. The learning rate curve for first training

Validation accuracy on the test set is shown in Figure. 13
test

tag: Dice/test
0.6
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20 60 100 140 180 220
Figure. 13. The accuracy curve of the first training

Representative segmentation results from the test set are
displayed in Figure. 14.

Fig. 14. Test image processing results after initial training
(a) Input image (b) True value (c) Predicted value

Despite suboptimal performance on the test set, we employed
the trained model to predict unlabeled images. Well-performing
predictions were manually selected and incorporated into the
training dataset through an iterative process repeated 10 times.
This data augmentation strategy ultimately expanded the
training dataset to 2773 samples, which was subsequently used
for retraining. The loss curve from the final training iteration is
presented in Figure. 15.

train
tag: Loss/train

0.34
03
0.26

0.22

0 100 200 300 400
Figure. 15. The loss rate curve of the final training

The learning rate curve for the final training iteration is
presented in Figure. 16
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Figure. 16. The learning rate curve for final training

The corresponding test set accuracy curve is shown in Figure.
17.
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test
tag: Dice/test

Figure. 17. The accuracy curve of the final training

Segmentation results obtained using the final trained model are
visualized in Figure. 18.

Fig. 18. Prediction result after the last training
(a) Input image (b) Prediction value

While the results exhibited certain limitations, including
incomplete power line detection and over-segmentation of
transmission towers, the identification accuracy for insulators
remained satisfactory. Given that most power line connections
are located near insulators, we concluded that these results
provide sufficient foundation for subsequent latent fault
analysis.

3.4 Hidden fault detection

The total 2773 images identified by SAM and predicted by U-
Net, along with their corresponding mask data, were input into
Equation (2-1) with parameters set as TE=19°C, TP=10°C,
and TS=12°C. The equipment temperature was calculated as the
mean value of the entire mask temperature distribution.
Through least squares fitting, the coefficients were determined
as a0=1.04, al=0.06, and a2=0.13. Subsequently, the fitted
results from Equation (2-1) were considered as the ideal
temperature reference.

Subsequently, anomaly detection was conducted on the hottest
regions within the 2,773 images and their masks, based on the
threshold criteria defined in Table 1. To mitigate the influence
of noise-induced temperature fluctuations, median filtering with
a 25x25 kernel was applied to the temperature data of all
images. This process identified four anomalies, as illustrated in
Figures 19, 20, 21, and 22.

Figure. 22. Detected abnormal temperature position 4

Among the analyzed images, three contained actual anomalies
(Figures 20, 21, and 22). The anomaly detected in Figure 19
was determined to be a false positive. Based on these results,
the proposed method achieved a preliminary detection recall of
100% and a precision rate of 75%.

3.5 Limitations

The current study has the following limitations:

(1)This research focuses more on addressing specific
engineering problems and does not propose significant
theoretical advancements in algorithmic innovation.

(2)The parameters used for abnormal temperature detection are
only validated in this specific case. Due to the lack of open-
source datasets, their effectiveness has not been verified on
other data.

4. Conclusion

This study presents a methodology for detecting hidden faults in
power infrastructure using thermal infrared imagery. The
approach integrates three key components:

(1) rapid annotation facilitated by the SAM model to efficiently
label power components in infrared images;

(2) iterative refinement of a U-Net architecture using annotated
data to enable automated component recognition; and

(3) anomaly detection through a combination of temperature
analysis and threshold segmentation to identify latent faults.
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Field validation was performed on a transmission line in Jiaxing
City, Zhejiang Province, where a DJI M3T UAV captured 3,094
thermal images. Of these, 725 images were manually annotated
with SAM, and subsequent data augmentation with the U-Net
model resulted in 2,773 images with integrated masks.
Threshold-based segmentation identified four anomalies, three
of which corresponded to confirmed faults within the test area.
Although one false positive was observed, the overall detection
performance achieved a recall of 100% and a precision of 75%.
These results demonstrate the effectiveness of the proposed
method for hidden fault detection in power infrastructure,
providing a promising tool for maintenance and safety
assurance.
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