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Abstract

Accurate image pose estimation within a predefined map is critical for applications such as autonomous driving and urban infra-
structure management. Conventional methods predominantly rely on feature correspondences, which often require the presence of
specific object categories or involve computationally intensive feature learning processes. Recently, 3D Gaussian Splatting (3DGS)
has emerged as a promising scene representation technique, offering high-fidelity novel view synthesis while preserving geomet-
ric accuracy. However, existing 3DGS-based pose estimation approaches are mainly tailored to small-scale indoor environments
with limited lighting variation. Moreover, they typically rely on iterative optimization, which is computationally demanding and
often fails to converge when the initial pose error is significant. This paper introduces OneStep-GSPE, a novel and efficient image
pose estimation framework designed for outdoor environments with coarse initial poses. By integrating dense LiDAR priors into
the 3DGS pipeline, the accuracy of Gaussian initialization is substantially improved, resulting in enhanced scene geometry recon-
struction. Furthermore, rendered depth maps are utilized to lift 2D correspondences into 3D space, establishing 2D-3D matches
for absolute pose estimation. The proposed method is category-agnostic and eliminates the need for iterative refinement, enabling
fast and precise pose estimation. Experiments conducted on the KITTI-360 dataset demonstrate the effectiveness and robustness.
OneStep-GSPE achieves a single-image pose estimation time of approximately 1.81 seconds, yielding over a 90% improvement in
computational efficiency compared to the baseline. The project page is publicly available.

1. Introduction

In the domains of autonomous driving, infrastructure manage-
ment, and high-definition (HD) map change detection, image
pose estimation within pre-existing maps has remained a per-
sistent research focus (Lambert and Hays, 2021; Zhanabatyrova
et al., 2023; Li et al., 2025), as illustrated in Figure 1. Current
image pose estimation methodologies can be broadly categor-
ized into three paradigms: Structure-from-Motion (SfM) point
cloud-based approaches, LiDAR point cloud-based approaches,
and emerging techniques employing implicit or hybrid scene
representations.

SfM-based methods predominantly depend on extensive im-
age collections with strong co-visibility constraints to recon-
struct 3D point clouds for camera pose estimation (Sarlin et
al., 2019). However, images collected by mobile devices are
often front-facing or sparsely sampled omnidirectional views,
which exhibit uneven spatial distribution and short baselines.
These limitations result in sparse and inaccurate reconstruc-
tions, ultimately degrading pose estimation performance. In
contrast, LiDAR point clouds provide broader scene coverage
and higher geometric fidelity (Li et al., 2023), making them a
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Figure 1. The illustration of the image pose estimation when the
camera is mounted on a vehicle.

clouds persists as a fundamental challenge. Current solutions
often require computationally intensive training procedures and
demonstrate limited generalization capabilities across diverse

valuable reference for image localization. LiDAR-based pose
estimation typically necessitates precise pixel-to-point corres-
pondences (Li and Hee Lee, 2021; Wang et al., 2022), driv-
ing the development of dual-encoder architectures for cross-
modal feature alignment. Nevertheless, the inherent modality
discrepancy between photometric images and geometric point
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data distributions (Kang et al., 2024).

Implicit and hybrid scene representation methods, such as Neural
Radiance Fields (NeRF) (Mildenhall et al., 2020) and 3D Gaus-
sian Splatting (3DGS) (Kerbl et al., 2023), have made signific-
ant progress in scene reconstruction. 3DGS integrates 3D scene
geometry with 2D image, offering high-fidelity novel view syn-
thesis capabilities and preserving rich geometric details. Con-
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sequently, image pose estimation based on 3DGS scene rep-
resentation has emerged as a promising approach. Currently,
most 3DGS-based image pose estimation methods are designed
for small-scale indoor environments with controlled illumina-
tion conditions. iComMa (Sun et al., 2024) incorporated im-
age matching to recover the relative pose between images and
optimizes image poses iteratively through joint rendering and
comparison. However, existing approaches impose requirements
on scene reconstruction quality and rely on iterative pose op-
timization to incrementally refine errors. When the initial pose
error is large, the iterative process often struggles to converge
and incurs high computational costs.

In this paper, OneStep-GSPE, a novel image pose estimation
method, is designed for outdoor scenarios, which efficiently es-
timates image poses from an initial coarse pose without iterative
refinement. By leveraging LiDAR point clouds and rendered
depth, this approach enhances scene reconstruction while im-
proving the robustness and accuracy of pose estimation. The
main contributions of this paper can be summarized as:

1. The LiDAR point cloud priors are integrated into 3D Gaus-
sian Splatting. The LiDAR priors ensure the position ac-
curacy, providing a foundation for robust image pose es-
timation.

2. The 2D matching points are transformed into 3D space,
and the image pose is estimated by converting 2D-2D cor-
respondences into 2D-3D correspondences, enabling ef-
ficient and accurate pose estimation without iterative up-
dates.

The remainder of this paper is organized as follows. Section 2
presents a review of image pose estimation based on implicit or
hybrid scene representations. Section 3 elaborates on the pro-
posed method in detail. The description of the dataset, imple-
mentation details, qualitative and quantitative results, and abla-
tion studies are given in Section 4. Finally, the conclusions and
future work are summarized in Section 5.

2. Related Works

Image pose estimation based on implicit representations origin-
ates from iNeRF (Yen-Chen et al., 2021), which fully lever-
ages NeRF for rendering novel images. iNeRF introduced an
object-level pose estimation approach based on inverse NeRF.
However, due to the extensive iteration requirement, Chen et al.
(2024) incorporated image matching, utilizing NeRF to render
depth maps and lifting 2D correspondences between rendered
and reference images into 3D space. The pose is then estim-
ated by PnP and RANSAC. To improve efficiency, Sarlin et
al. (2024) proposed a novel map representation that integrates
multi-view street-level and aerial images to construct a 2D neural
field map in a Bird’s Eye View (BEV) perspective. They fur-
ther designed a lightweight network that transforms monocu-
lar images into BEV feature maps and predicts image pose by
comparing these features with the neural field map. Zhang et
al. (2024) converted point clouds and images into NeRF rep-
resentations, rendering images at predefined locations and con-
structing a feature database that includes both local and global
descriptors for hierarchical pose estimation.

GaussianSplatting SLAM (Matsuki et al., 2024) is the first in-
door visual SLAM system built upon the 3DGS scene repres-
entation. Given an input RGB-D stream, the method first rep-

resents the scene using 3DGS. By deriving the partial derivat-
ives of 3DGS with respect to the image pose, it jointly optim-
izes the scene representation and camera poses, thereby achiev-
ing simultaneous 3DGS reconstruction and visual localization.
Subsequent works such as GS-SLAM (Yan et al., 2024) and
RTG-SLAM (Peng et al., 2024) introduced pruning and refine-
ment strategies for the 3D Gaussians to improve rendering effi-
ciency while maintaining real-time performance. DROID-Splat
(Homeyer et al., 2024) integrated depth prediction and camera
calibration modules to better balance robustness, speed, and ac-
curacy. CG-SLAM (Hu et al., 2025) proposed an uncertainty-
aware 3DGS by incorporating depth uncertainty, enabling the
selection of valuable Gaussians and further enhancing compu-
tational efficiency. RGB-D GS-ICP SLAM (Ha et al., 2025)
demonstrated that 3DGS and Generalized-ICP (GICP) (Segal
et al., 2009) can share the same Gaussians during both tracking
and mapping, thereby reducing redundant computation. iComMa
(Sun et al., 2024) proposed an indoor image pose estimation
method robust to large initial errors. It jointly optimizes the
root mean square error and the feature matching loss between
rendered and reference images via a gradient-based optimiza-
tion strategy. GSLoc (Botashev et al., 2024) also adopted gradi-
ent backpropagation through the rendering pipeline and utilizes
a coarse-to-fine optimization strategy to improve convergence.
However, most of these methods are tailored for small-scale in-
door RGB-D image pose estimation tasks and lack extensive
experimental validation in outdoor environments.

3DGS-ReLoc (Jiang et al., 2024) proposed a memory-efficient
3DGS representation by omitting spherical harmonic coefficients.
During outdoor visual localization, they retrieved the nearest
Gaussian submaps using a KD-Tree and renders a set of im-
ages. The most similar image is found via normalized cross-
correlation, after which a feature matching module estimates
2D correspondences. The rendered depth enables projecting
2D correspondences into 3D space. Finally, the image pose is
recovered using PnP. GS-CPR (Liu et al., 2024) estimated 2D
correspondences via a large visual foundation model and lever-
aged the 3DGS to refine the coarse image pose generated by
the regression model. GigaSLAM (Deng et al., 2025) integ-
rated the hierarchical sparse voxels and depth estimation model
into Gaussian-based visual SLAM framework, achieving robust
large-scale outdoor monocular pose estimation.

3. Methodology

The proposed OneStep-GSPE framework consists of two com-
ponents: offline 3DGS construction and online image pose es-
timation, as illustrated in Figure 2. In the offline stage, a 3DGS
model is constructed using LiDAR point clouds and viewpoint-
limited images to represent the scene, enabling novel view syn-
thesis. During online image pose estimation, given an initial
pose with potential errors, the method renders RGB images and
depth maps from the current viewpoint. Feature matching is
then performed between the rendered and reference images to
establish 2D correspondences. With the rendered depth, the
matched 2D keypoints are lifted into 3D space, forming 2D-
3D correspondences. This enables efficient and accurate image
pose estimation.

3.1 LiDAR Point Cloud Assisted 3DGS Construction

The 3D Gaussian ellipsoids (Zwicker et al., 2001), defined as
On = {G, | n =1,..., N}, serve as the fundamental primit-
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Figure 2. The pipeline of the OneStep-GSPE.
ives in 3DGS. The nth 3D Gaussian is defined as:
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where x € R? represents the position of a 3D point in the world
coordinate system, u? € R? is the mean, indicating the posi-
tion of the 3D Gaussian, and & € R3*? is the covariance matrix
of the 3D Gaussian.

Both the means g and covariance matrix X are set as learn-
able parameters to fit the scene adaptively. However, it is hard
to optimize the covariance matrix through random initialization
directly. Therefore, 3DGS re-parameterizes the covariance mat-
rix into a scaling matrix S = diag(s1, s2,53) € R3*? and a
rotation matrix R € SO(3), such that ¥ = RSSTRT. Ad-
ditionally, each 3D Gaussian includes an opacity a, € [0,1]
to represent occlusion relationships between ellipsoids and an-
isotropic spherical harmonic functions f, € R**!6 to express
color, which allows for rendering viewpoint-dependent colors
¢, € R3. In this paper, a third-order spherical harmonic func-
tion is used.

3DGS obtains images through the forward rendering of ellips-
oid splatting. Specifically, the 3D Gaussians in the world co-
ordinate system are first transformed into the camera coordin-
ate system through the viewing transformation, represented as
¢ : R® — R3. The viewing transformation is linear and can be
expressed as:

t=p(p)=Wp+d 2)

where W € R®*? is the rotation matrix in the viewing trans-
formation, d is the translation, and t represents the position of
the Gaussian in the camera coordinate system.

Subsequently, the 3D Gaussian in the camera coordinate system
is projected onto the image plane as a 2D Gaussian through the
projection transformation, formulated as ¢ : R®> — R?. The
process of obtaining the 2D Gaussians G2P is expressed as:

G2P = p(¢(Gn)). 3)

The projection transformation is nonlinear. Therefore, to facil-

Figure 3. Schematic diagram of the 3D Gaussian splitting. (Left)
the mapping from 3D Gaussians to 2D Gaussians. (Right) 2D
Gaussians blended onto the image plane.

itate optimization, it is approximated using an affine transform-
ation via Taylor expansion. This involves computing the Jac-
obian matrix J € R?*3, which represents the first-order partial
derivatives of the projection function P € R?*3, For the nth
Gaussian, its Taylor expansion at t,, is given by:

¢’ﬂ(t) =Ppn + Jn - (t — tn)7 (4)

where p, = ¢(t,) denotes the coordinates of t,, on the image
plane.

The position of the Gaussian in ray space can be expressed as:

M = On(o(iy) = I Wy +x0 +Jn(d —t,).  (5)

The covariance matrix of the 2D Gaussian &’ € R?*? is given
by:
¥ =JWEW'J". (©6)

Finally, images are generated using a-blending, as shown in
Figure 3. The entire Gaussian splatting process is differenti-
able and can be parallelized on the GPU, making the rendering
highly efficient.

By leveraging the photometric error between the rendered im-
age I, and the reference image I, defined as Ly = ||I, — Iy,
along with the structural similarity loss L p—ss7a, these learn-
able parameters are optimized through gradient backpropaga-
tion. The overall loss function L is formulated as follows:

L=(1~XL1+ALp-ssrm- N
where A is the balance factor.

In vanilla 3DGS, the Structure-from-Motion (SfM) is employed
to convert sequential images into sparse 3D point clouds, which
serve as the initial positions of the 3D Gaussians. However,
due to the sparsity of onboard images and their predominantly
forward-facing viewpoints, SfM fails to accurately reconstruct
sparse 3D points. To address this limitation, this paper proposes
integrating dense LiDAR point clouds into the 3DGS to jointly
initialize the positions of the 3D Gaussians, thereby improving
reconstruction quality and scene representation.

During 3DGS optimization, the Gaussian positions are continu-
ously refined through expansion and pruning. For instance,
when the gradient of the position becomes excessively large, an
existing Gaussian splits into two; conversely, if the opacity of a
Gaussian approaches zero, it is removed. By integrating dense
LiDAR point clouds, the 3DGS not only captures anisotropic
color but also achieves more accurate spatial positioning.
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3.2 Depth Lifting based One-Step Pose Estimation

The estimation of absolute pose in this paper involves rendering
the image I, and depth D, from the initial pose. First, image
matching is used to establish the 2D correspondence between
the rendered image I, and the reference image I;. Thanks to the
aforementioned 3DGS representation, which integrates LiDAR
point clouds, it can not only render RGB images but also gener-
ate accurate depth maps. Then, based on the rendered depth, the
2D correspondences are lifted to 3D space, establishing the 2D-
3D correspondences. The image poses in the world coordinate
system, T e SE(3), is finally solved using the PnP. The pose
estimation consists of the following stages: 1) image matching,
2) 2D-3D lifting, and 3) pose solving. The image pose estima-
tion based on the 3DGS can be represented as Equation 8:

T = PnP(I,, Lift(Render(T, K, ©), D)), (8)

where Lift() is the process of lifting from 2D to 3D, Render()
represents rendering process, T is the initial pose, K is the cam-
era intrinsic, © represents parameters of the 3DGS, and D is the
depth corresponding to the 2D feature points.

(1) Image Matching: Based on the 3DGS constructed in Sec-
tion 3.1, the image at the initial pose T could be rendered. The
relative pose between the rendered image I,- and the reference
target I; images could be estimated by feature matching. And
the 2D correspondences could be represented as [pi, q:], 7 €
M, as shown in Equation 9:

[pi, q:] = Matcher(Iy, I.), )
where Matcher() represents any image matching method, p;
is the keypoint in the reference image, and the corresponding
keypoint q; is from the rendered image. M is the number of
matching points.

(2) 2D-3D Lifting: Analogous to the rendering of RGB images,
the rendering of the depth D, can be expressed as:

N n—1
D, =Y andiGP ) [] (1-aCG®x®), (0
n=1 t=1

where d; represents the depth corresponding to each 3D Gaus-
sian in the camera coordinate system.

The process of lifting 2D points to 3D space is represented by
equation 11:

P, =T (K 'q), (11)

where 2; € D, is the depth corresponding to the point q;, and
T~ () indicates the transformation of a point from the camera
coordinates to the world coordinates.

(3) Pose Solving: After establishing the 2D-3D correspond-
ences, the optimal image pose is estimated using PnP (Lepetit
et al., 2009) and RANSAC, and the whole process can be ex-
pressed as:

T = arg min||p — (P, K, T)||2, (12)
TeSEQ3)

where 7 (P, K, T) represents the projection of the 3D point P
onto the image plane.

The pseudocode of the pose estimation is presented in Algorithm 1:

Algorithm 1 Pseudocode of image pose estimation

Input: Camera intrinsics K := {fz, fy, ¢z, ¢y }, depth D,., ref-
erence image I in the world coordinate system

Output: T (image pose in the world coordinate system)
1: for each pair of 2D matched points 7 = 1,2,..., N do
2: qu, Qv < keypoint q; in the current 1mage I
3 Pu, P < keypoint p; in the reference image I;

4: Depth P, « Dv][u]

5: Py« (qu—cz) * P./fo

6: Py (qu —cy) * P/ fy

7 if matching confidence w > 0 then
8 3D point < [Py, Py, P:]

9 2D pixels < [pu, po]
10: end if
11: end for

12: if total number of 2D pixels > 30 then

13: ’i‘, success status <— PnP(3D points, 2D pixels)
14: if successful then

15: return T
16: end if
17: end if

4. Experiments

4.1 Dataset and Evaluation Metrics

The 00 and 09 sequences of the KITTI-360 (Liao et al., 2023)
dataset are selected to evaluate the performance of the proposed
method. The left view of the stereo image is selected as the
input image, with a resolution of 376 x 1408. The sequences
are divided into a training set and a test set. For all sequence
images, one out of every eight images is selected and added
to the test set. The images and point clouds from the training
set are used to construct the 3DGS representation model, while
the test set is used to evaluate the rendering quality from novel
image synthesis and assess pose estimation accuracy.

The peak signal-to-noise ratio (PSNR), structural similarity in-
dex measure (SSIM), and learned perceptual image patch sim-
ilarity (LPIPS) are selected to evaluate the rendering perform-
ance of the 3DGS. This paper uses accuracy (success rate), av-
erage rotation error (ARE), and average translation error (ATE)
to evaluate the performance of pose estimation. The pose es-
timation result is considered accurate when the rotational error
between the estimated pose and the ground truth pose is less
than d1, and the translational error is less than d. The rotation
error is computed using the following formula:

tr(AR) — 1
Errorg = arccos(ir( 2) ), (13)
where AR denotes the relative rotation between the estimated
and the ground truth pose, and tr denotes the trace of the matrix.

The translation error is computed as follows:
Errory = ||At]]2, (14)

where At represents the translation difference between the es-
timated and the ground truth pose, and || - ||2 denotes the Euc-
lidean norm.

4.2 Implementation

The 3DGS are optimized using an NVIDIA RTX 4090 24GB
GPU. The dense LiDAR point clouds are used for Gaussian po-
sition initialization, with the color parameters initialized to 0.
The learning rates for position, opacity, scale, rotation, and SH
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coefficients are set to 0.000016, 0.05, 0.001, 0.001, and 0.0025,
respectively. Similar to the settings in 3DGS, the parameters at
the 30,000th iteration are chosen as the final model.

In this paper, image poses with initial errors are constructed
by randomly rotating around the z, y, and z axes within the
range of [—20,20] degrees, and by adding random perturba-
tions within [—1, 1] meters along the z, y, and z axes. These
erroneous poses are used as initial image poses, which are then
subjected to the pose estimation method.

Any image matching methods could establish the 2D corres-
pondences, where two of them are selected in this paper: Light-
Glue (Lindenberger et al., 2023), which is based on sparse key-
points, and LoFTR (Sun et al., 2021), which is based on dense
keypoints. Both methods implement 2D correspondence match-
ing using self-attention (Vaswani et al., 2017) and cross-attention
mechanisms. LightGlue uses sparse feature point matching, fol-
lowing the “keypoint extraction, feature descriptor extraction,
feature matching” paradigm and is highly efficient. LoFTR,
on the other hand, uses a keypoint-free paradigm and imple-
ments pixel-level dense matching with a coarse-to-fine match-
ing strategy, which is more robust in texture-poor scenarios. It
is noteworthy that the proposed OneStep-GSPE is compatible
with different types of image matching methods.

In this paper, LightGlue (Lindenberger et al., 2023) is employed
to establish accurate 2D correspondences between the rendered
and the reference image. The number of keypoints extracted is
set to 2048, and if the number of matching keypoints between
two images is fewer than 30, the match is considered a failure.

4.3 Baseline

The pose-gradient optimization-based method iComMa (Sun et
al., 2024) is selected for comparative experiments. This method
treats pose estimation as an inverse operation for 3DGS re-
construction. Given a 3DGS model of an indoor scene, the
3DGS parameters are fixed, and only the image pose is optim-
ized. iComMa first establishes 2D correspondences between
the rendered image and the reference image, while jointly min-
imizing the photometric error between the rendered and the ref-
erence image. It iteratively estimates the optimal pose by op-
timizing the relative pose increment between the current pose
and the optimal pose. This updated pose is then used to render
new images, proceeding to the next iteration until the maximum
number of iterations is reached. In this paper, the number of it-
erations is set to 300. The iComMa does not account for the
influence of lighting factors on pose optimization, resulting in
relatively poor estimation robustness in outdoor scenes.

4.4 Quantitative Results

The quantitative results in Table 1 indicate that integrating dense
LiDAR point cloud prior achieves better rendering results. For
both sequences, SSIM and PSNR show significant improve-
ments. In terms of the LPIPS, the images rendered by the 3DGS
are nearly indistinguishable from the ground truth images, with
the feature encoder almost unable to distinguish between them.

Table 2 reports the pose estimation accuracy, ARE, and ATE on
the test dataset. The same evaluation criteria are applied across
all methods, where cases with fewer than 30 matched points are
treated as failed matches. OneStep-GSPE achieves the best per-
formance, with rotation and translation errors below 0.1 degrees
and 2 cm, respectively. As shown in the table, OneStep-GSPE

Table 1. The novel image synthesis results of KITTI-360 dataset.

Method 00 Sequence 09 Sequence

SSIM+ PSNRt LPIPS| SSIMt PSNR?T LPIPS |
3DGS (SfM) 0.798 23.99 0.259 0.835 24.89 0.225
3DGS (LiDAR) 0.805 23.55 0.228 0.842 24.90 0.196

OneStep-GSPE (SfM+LiDAR)  0.811 2422 0.220 0.847 25.17 0.189

Table 2. The quantitative results of the evaluation dataset. The
accurate estimation is defined when the rotation and translation
error is smaller than §; = 1 degree and d2 = 0.1 m separately.

Method accuracy (% 1)  ARE (deg)({) ATE (m)(}) time per image (s)({)
iComMa 87.50 0.042 0.009 59.6
LoFTR 98.61 0.090 0.017 3.20
OneStep-GSPE 98.61 0.089 0.016 1.81

Table 3. Average time cost of pose estimation for single image.

Module Rendering  Matching PnP&RANSAC

137.6 0.7 0.6

Lifting

Time cost (ms) 42.2

- B S—
-+ AR

00 05 ) 25 0l0  ol15 020 025 03 03 03 o045 050
ranss

10 75
Rottion Error Threshold (degree) Translation Error Threshold (m)

(a) Different rotation thresholds  (b) Different translation thresholds
Figure 4. The success rate curves at different rotation and
translation thresholds.

is compatible with different image matching algorithms, and
both variants yield nearly identical quantitative results.

The table also presents a comparison of runtime. Pose estima-
tion for a single image requires two rendering and one matching
step, with rendering accelerated by GPU implementation, res-
ulting in high overall efficiency. Both LofTR and LightGlue
exhibit high matching efficiency, significantly outperforming
iComMa, which relies on iterative optimization. Consequently,
this work adopts the more efficient LightGlue, achieving an av-
erage runtime of approximately 1.81 seconds per image, rep-
resenting over 90% improvement in computational efficiency
compared to the iComMa baseline.

To further evaluate the effectiveness of OneStep-GSPE, differ-
ent rotation and translation thresholds are used to assess its per-
formance. The corresponding success rate curves on the KITTI-
360 dataset are shown in Figures 4. Under various thresholds,
OneStep-GSPE consistently outperforms the iComMa baseline
in most settings.

Finally, Table 3 provides a detailed breakdown of the time cost
for each component of OneStep-GSPE, averaged across the test
set. It is evident that the time required for pose computation is
nearly negligible.

4.5 Qualitative Results

The distribution of 3D Gaussians is illustrated in Figure 5. As
expected, the 3DGS representation constructed by the proposed
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(c) Rendered depths from initial pose

Figure 6. The rendered images and depths from the initial pose.

;’/7)

(d) Groud truth reference image

Figure 7. Visualization of the novel synthesis. The red box
highlights the rendering quality differences between the images.

method aligns well with the geometric structure of the scene.
In regions lacking geometric texture, the Gaussians tend to be
larger, whereas in areas rich in geometric detail, the Gaussians
are smaller and more densely distributed, effectively capturing
scene intricacies.

The sequence images in the KITTI-360 dataset are predomin-
antly front-facing, and the rendering quality is primarily eval-
uated under similar viewing conditions, with limited viewpoint
variation. Nevertheless, as highlighted in the red boxes of Fig-
ure 7, the rendered images produced using the proposed LiDAR
point cloud-integrated 3DGS initialization are visually much

Figure 8. The overlay comparison of the rendered images from
both the initial and estimated pose with the reference image. Left
is from the initial pose, while the right froms the estimated pose.

Figure 9. The 2D feature correspondences between rendered and
reference images.

closer to the reference images, compared to those initialized
using SfM-based 3DGS.

Figure 6 presents the RGB images and corresponding depth
maps rendered from the initial pose. The rendered depths align
well with the actual spatial structure of the scene, further val-
idating the effectiveness of incorporating LiDAR point cloud
priors into 3DGS initialization. These accurate depth maps
provide a reliable basis for subsequent pose estimation. To fur-
ther verify pose estimation accuracy, this paper overlays the im-
ages rendered from both the initial and estimated poses with the
reference image, as shown in Figure 8. The absence of ghost-
ing artifacts in the overlay confirms the high precision of the
estimated poses.

Figure 9 shows the matched keypoints between the rendered
and reference images using LightGlue, with green lines indic-
ating the correspondences. The high image quality of novel
views rendered from the reconstructed 3DGS allows the sys-
tem to tolerate significant initial pose errors. Even under large
initial errors, the rendered images remain sufficient for reliable
image matching, enabling the extraction of stable keypoint cor-
respondences and thus enhancing the robustness of the pose es-
timation process.

4.6 Compared to the Baseline
As shown in Table 2, iComMa demonstrates lower accuracy in

image pose estimation for outdoor scenes. This performance
degradation is primarily attributed to its strong reliance on the
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(c) OneStep-GSPE

Figure 10. The overlay comparison of the baseline iComMa and
proposed OneStep-GSPE.

quality of 3DGS scene reconstruction. In addition, the 2D im-
age matching in iComMa provides insufficient geometric con-
straints, often resulting in failure to converge to the globally
optimal pose during iterative optimization. Moreover, iComMa
does not explicitly account for illumination changes and view-
point variations common in outdoor environments. As illus-
trated in Figure 10b, even after 300 iterations, the rendered and
reference images remain misaligned, indicating a failure in pose
optimization.

In contrast, the proposed OneStep-GSPE eliminates the need
for iterative optimization and can efficiently and accurately es-
timate the correct pose. Notably, iComMa also consumes a sig-
nificant amount of GPU memory during optimization, whereas
the OneStep-GSPE enables fast computation, making it well-
suited for real-time pose estimation on mobile devices.

5. Conclusion

This paper presents OneStep-GSPE, an efficient image pose
estimation framework based on 3D Gaussian Splatting as the
scene representation. To improve the quality of novel view syn-
thesis and provide a more reliable foundation for pose estima-
tion, dense LiDAR point clouds are integrated for initializing
Gaussian positions. Furthermore, a lightweight depth-lifting
strategy is introduced to establish accurate 2D-3D feature cor-
respondences, enabling fast and precise pose estimation. The
proposed method is category-agnostic and avoids costly iterat-
ive optimization, making it both efficient and broadly applic-
able. Experiments on the KITTI-360 dataset demonstrate the
effectiveness, accuracy, and robustness of OneStep-GSPE in
real-world urban scenarios. In future work, we plan to incorpor-
ate a cross-modal coarse image pose estimation module to build
a closed-loop localization system, further improving its prac-
ticality for autonomous driving applications. Moreover, as an
emerging paradigm for scene representation, 3DGS shows great
potential for integration with traditional modeling approaches,

contributing to ubiquitous perception, large-scale 3D reconstruc-
tion, and digital twin-enabled smart city development.
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