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Abstract

Globalisation has accelerated the spread of invasive agricultural pests, including Popillia japonica Newman, introduced to Italy in
2014. This species has caused severe damage to vineyards, highlighting the need for efficient detection methods. Manual identification,
though accurate, is time-consuming and labour-intensive. This study explores a computer vision (CV)-based approach using Near-
Infrared (NIR) imagery captured by Uncrewed Aerial Systems (UAS) to detect adult Popillia specimens. Conducted in two vineyards
in northern Italy, the project aims to develop a standardised and replicable monitoring protocol. CV-based detections are validated by
entomologists and integrated into a Geographic Information System (GIS) to generate prescription maps for targeted drone-based
pesticide application.

However, traditional feature extraction and matching (FEM) algorithms, such as SIFT, SURF, and ORB, struggle in vineyard
environments due to repetitive structures (seriality of fixed components, such as poles, supports, etc) and limited NIR texture. These
limitations hinder image alignment, especially in the absence of geodetic-grade GNSS and high-precision IMU data. To address this,
the study replaces FEM methods with deep image matching (DIM) techniques like SuperPoint and DISK for feature extraction, paired
with SuperGlue for graph-based matching. Applied within a visual SLAM (vSLAM) framework, these deep learning models
significantly improve image connectivity and alignment. Experimental results, supported by a fine-tuned SuperPoint model trained on
vineyard datasets from the DANTE2 project, demonstrate up to 90% alignment improvement over conventional methods. This work
presents a robust, scalable solution for accurate pest mapping in viticulture, contributing a fine-tuned PyTorch model to the scientific
community.

1. Introduction (Matrone f. et al, 2024) demonstrates that also point clouds can
be used for classification problems and defines procedures for
Globalisation and climate change have significantly accelerated Enhancing explainability of deep learning models.
the spread of invasive pests, threatening agricultural systems and
global food security. A prime example is the Popillia japonica
Newman beetle (Figure 1), native to Japan but inadvertently
introduced into Europe and North America. Since its detection in
Northern Italy in 2014, this species has caused substantial
damage, particularly in vineyards, due to its voracious feeding
habits and rapid population growth. Adult beetles skeletonize
leaves and damage fruit, while larvae feed on root systems,
resulting in extensive crop loss and economic burden. Traditional
monitoring and containment efforts are labour-intensive and
often inadequate for timely intervention.
To enhance pest surveillance and management, increasing
attention has been directed toward automated, image-based
detection systems supported by Computer Vision (CV) and
Artificial Intelligence (Al). Among available technologies,
image-based approaches are especially promising due to their
accessibility, scalability, and capacity for morphological species
identification. However, real-world conditions such as repetitive
vineyard structures, visually complex natural backgrounds and
insects size (very close images within a distance of 2-3 m are
required), where insects exhibit colour and texture similarities
with foliage, pose significant challenges for conventional image
matching techniques. Compounding this, Popillia japonica
exhibits a highly reflective green exoskeleton that shares spectral
similarity with foliage in the visible spectrum, complicating
visual differentiation using RGB imagery and the.
To mitigate these challenges, this study explores using near-
infrared (NIR) imagery acquired via Uncrewed Aerial Systems
(UAS, Longhi V. et al, 2024). NIR imaging improves contrast
between the beetles and the vegetation: plants exhibit high
reflectivity in the NIR band, whereas the beetles appear
significantly darker due to their low NIR reflectance (Figure 2).

] Figure 1.An adult insect of Ppillia Japonica on avine plant

In complex agricultural environments, cellular and
telecommunication networks are often lacking, resulting in the
unavailability of internet connectivity. Consequently, GNSS
receivers embedded in UAS cannot receive RTK corrections,
which are essential for high-precision definition of external
orientation parameters of acquired images. To overcome this
limitation, it is sometimes necessary to deploy dedicated GNSS
base stations acting as master units; however, this approach is
expensive and requires expert users. As an alternative, accurate
photogrammetric reconstruction of the sweeping paths is
required to enable reliable insect identification.
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It is therefore necessary to follow the standard photogrammetric
workflow, which involves aligning the images to form a
photogrammetric block, identifying ground control points

(GCPs), and subsequently orienting the entire block. However,
image alignment often presents challenges, as conventional
image matching and feature extraction algorithms (SIFT, ORB,
SURF, ...) tend to perform poorly in such very complex
environments.

Figure 2.An example of an NIR image of Popillia insects in the
studied vineyards.

There are numerous applications of artificial intelligence in
precision agriculture (Padua, L. et al., 2022, Baldaccini, M. et al.,
2024, Ramyaa, R. et al., 2024, Tsouros, D. etal., 2023, Williams,
T. etal., 2022) addressing a wide range of thematic aspects, such
as vineyard growth assessment, health status monitoring, and the
detection of diseases like downy mildew, using both visible
spectrum and multispectral (including near-infrared) imagery.
However, the existing literature lacks studies focusing on
integrating photogrammetric techniques in this context,
particularly concerning the critical issue of image alignment and
external orientation parameter estimation.

To effectively register and align NIR images over time and across
different acquisition angles, the Deep Image Matching
algorithms (Morelli L. et al., 2024) could potentially allow
possible solutions using e.g. SuperPoint/SuperGlue (also with
lightglue version, De Tone D. et al., 2018, Sarlin P. E. et al.,
2020) or DISK/SuperGlue (Tyszkiewicz M.J. et al., 2020).

This contribution focuses on enhancing the reliability of image
alignment in vineyard environments through the application of
deep image matching (DIM) techniques. It demonstrates how
SuperPoint/SuperGlue and DISK/SuperGlue can overcome the
limitations of more traditional feature-matching methods (SIFT—
like), using Bunfdle Block Adjustment and a vSLAM approach.

2. Study area

In the past year, the authors have proposed a study (Longhi et al.,
2024) to evaluate a CV algorithm's effectiveness in identifying
adult Popillia specimens using Near-Infrared sensors on
Uncrewed Aerial Systems (UAS).

The project, conducted in two vineyards in northern Italy, intends
to establish a replicable and standardised data acquisition
protocol for future monitoring activities. Manual counting
performed by entomologists validates insects detected by the CV-
based method. In a GIS environment, prescription maps are
generated in near real-time to identify where the vineyard is most
affected and to guide the drone spraying treatment only on the
areas in which the threshold is exceeded. For a correct
spatialization of the insect locations, the exterior orientation

parameters of NIR images have to be known: in the absence of a
geodetic GNSS antenna and an accurate IMU on board of drone,
a Structure from Motion procedures has to be applied to realize
the image alignment, the Ground Control Point plotting and the
bundle block adjustment.

At the beginning of the project, two areas of comparable sizes for
each vineyard were chosen and classified based on the type of
treatment they would receive. The two areas have similar
surfaces (about 1 ha in Briona and Ghemme) and were defined
based on a 3D model generated by aerial photogrammetry at the
beginning of the project (time 0 [TO] acquisition) using DJI
mat4rice 300 and P1 digital camera (Table 1). The vineyard in
Briona is located on flat ground, while the one in Ghemme is on
a slope, a feature to consider when planning a UAV survey.

. Novara 2 .. & Novara
i L / \\\
, 3 J
0oV 7 \\
won / ~
7 So
v ~
OGhemme

O Briona

Figure 3.The study area: in the bottom right picture, Ghemme
and Briona towns are highlighted by red circles.

As previously noted, the imagery was captured in the Near-
Infrared (NIR) spectral band. Data was collected via aerial
surveys using a DJI Mavic 2 Pro drone equipped with a Sentera
single NIR sensor (see Table 1). The acquisition protocol was
specifically designed to include flights with the camera tilted at
approximately 45°, oriented perpendicularly to the vine rows.
Flights were conducted at a low altitude, between 2 and 3 meters
above the canopy level, and at a speed of roughly 2 m/s. Since
Popillia japonica tends to remain still in the early morning hours
and becomes active only after sunrise, all image acquisition
missions were scheduled between 6:00 and 8:00 a.m. These flight
parameters enabled the collection of high-resolution, close-range
images of the pest (Brusco et al., 2023)

UAS DJI Matrice 300 DJI Mavic 2 Pro
Sensor Zenmuse P1 - RGB | Sentera Single - NIR
Resolution 8192 x 5460 1248 x 950
Focal Length 35 mm 4.14 mm
Pixel Size 4.39 x 4.39 um 3.75 % 3.75 um
Flying altitude 26.7m 25m
GSD 4.1 mm/pix 2.2 mm/pix

Table 1. Main specifications of sensors and UAS.

This study is framed within the DANTE project, which aims to
develop a precision agriculture framework for monitoring and
treating Popillia japonica using UAS technologies. The method
used for extract and spatialise the insects has been described in
(Longhi V. et al, 2024).
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3. Problem

In a recent study (Longhi et al., 2024), the authors investigated
the effectiveness of a computer vision (CV) algorithm for
detecting adult specimens of Popillia japonica using Near-
Infrared (NIR) imagery acquired via Uncrewed Aerial Systems
(UAS). Conducted across two vineyards in northern Italy, the
study aimed to establish a replicable and standardised protocol
for pest monitoring, integrating UAS-based imaging, CV-driven
insect identification, and GIS-based prescription mapping. Insect
detections, validated through manual counting by entomologists,
were spatially analysed to generate targeted treatment maps that
direct drone-based pesticide application only to vineyard sub-
areas exceeding infestation thresholds.

A key challenge in this workflow lies in accurately
georeferencing the detected insect positions within the vineyard.
In the absence of a geodetic-grade GNSS receiver and a high-
precision Inertial Measurement Unit (IMU) onboard the drone,
direct recovery of the exterior orientation parameters (EOPs) for
the captured NIR images is not feasible. Therefore, Structure-
from-Motion (SfM) techniques must be employed to reconstruct
the camera poses and 3D scene geometry. This process relies
heavily on the detection and matching of robust visual key points
across overlapping images.

However, traditional feature extraction and matching (FEM)
algorithms, such as SIFT, SURF, and ORB, often fail to perform
reliably under these conditions. The vineyard environment poses
multiple challenges: a) repetitive and self-similar structures (e.g.,
vine rows, support poles, trellis systems), b) limited texture in
NIR spectral bands, and c) low inter-image baseline variation due
to the drone’s flight altitude and trajectory. These factors result
in insufficient and ambiguous key point matches, leading to
disconnected image blocks, failed bundle block adjustments, and
ultimately, incomplete or imprecise 3D reconstructions. As
demonstrated in Figure 4, these issues are particularly evident
when in the process are employing conventional SfM pipelines,
such as those implemented in traditional SfM software generally
based on SIFT-like approach.

Figure 4. 2 examples of bad solution of image allgnment using
CV feature extraction and matching

As illustrated in the following Figure 5, two examples of NIR
image alignment are provided for the vineyards of Gemme and
Briona. In both cases, approximately 1300 images were
collected. As is outlined in the images there are large parts of
vineyard without aligned images (more than 45%), consequently
a large amount of data is missed and according to this results the
proposed monitoring methodology of the Popilla Japonica
failed.

4. Methodology

4.1 Result and discussion of direct application of DIM
algorithm in vineyard environment

To overcome these limitations, in the present research different
DIM techniques were analysed and tested. Hereafter a list of the
employed techniques with a short description is reported:

1- Superpoint+Superglue. Superpoint is a fully convolutional
neural network designed for real-time interest point detection and
descriptor extraction in images. It was introduced in 2018
(DeTone et al., 2018) The method uses a self-supervised training
strategy, beginning with synthetic data where a detector is trained
on simple geometric shapes. Through a process called
homographic adaptation, this model is fine-tuned on real images
without requiring manually labeled keypoints. SuperPoint
outputs both keypoint locations and corresponding descriptors in
a single forward pass. Superglue is a deep learning model
introduced in 2020 (Sarlin et al., 2020), designed to match sets of
local features between pairs of images by jointly finding
correspondences and rejecting non-matchable points. The model
takes as input the key points and descriptors extracted from two
images and processes them through an attentional graph neural
network.

o

Figure 5. An example of lack of image alignment in a vineyard
(Briona, up and Ghemme, down)

2- Superpoint+Lightglue. Lightglue builds on the groundwork
established by Superglue, refining key architectural elements to
improve efficiency and accuracy (Lindenberger et al., 2023). It
introduces an adaptive strategy that dynamically adjusts the
model’s computational depth according to the complexity of the
image pair. For image pairs with high visual similarity, the model
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can accelerate processing by halting computations early, whereas
more challenging pairs are given deeper processing to maintain
precise matching.

3- Superpoint+Lightglue Fast implements a particular settings of
Lightglue with Flash attention (Dao T. et al., 2022) and lower
adaptive thresholds.

4- Disk + Superglue

Disk (DlIScrete Keypoints) is a deep learning model introduced
in 2020 (Tyszkiewicz et al., 2020), the model addresses the
challenge of learning local feature frameworks in an end-to-end
fashion, which is often difficult due to the discrete nature of
selecting and matching sparse keypoints. To overcome this, Disk
leverages principles from reinforcement learning, specifically
policy gradients, to optimize the detection and matching of key
points directly for the number of correct matches.

The results have been compared with more traditional FEM
algorithms (well known):

5- SIFT+kornia matcher
6- SIFT-like commercial software;

All the tests (1-5) were conducted using the Deep Image
Matching toolbox developed by Fondazione Bruno Kessler
(FBK), including the open-source DIM codes, with 3 strategies
S1, 82, LR):

- strategies S1 and S2 simulate the FEM step of the vSLAM
solution, supposing that there is an overlap between
sequential images of 1 image (only 1 pair for each image)
or 2 (2 pairs for each image, 3 images are concatenated);

- the strategy LR selects the possible pairs using a
preliminary matching with subsampled low-res images.

There is the exception of the final case (6), for which a
commercial SIFT-like software was employed only with
automatic pair selection based on generic preselection.

The six algorithms and the three strategies have been applied in
4 cases

A. 20 images with a good solution of commercial SIFT-like
software (algorithm 6), figure 6 and Table 2;

B. 20 images with a poor solution of commercial SIFT-like
software (algorithm 6), figure 7 and Table 3;

C. an entire vineyard (1274 images) with a good solution of
commercial SIFT-like software (algorithm 6), figure 9 and
Table 4;

D. an entire vineyard (1214 images) with a poor solution of
commercial SIFT-like software (algorithm 6), figure 10
and Table 5.

Cases A and B have been developed to evaluate the various
algorithms in detail, with matching plotting graphs and single
pair analysis to understand the causes of good or poor solutions;
cases C and D have been applied to check the results in a whole
vineyard area.

The default parameters of processing of DIM-FBK have been
used except the maximum number of selected points, which was
set without any limitation. For SuperPoint algorithms, we used
the pretrained model superpoint vl.pth (De Tone D., et
al., 2018). Tables 1, 2, 3, 4, 5 and 6 contain the results of
numerous processes in terms of:

(a) used strategy, S;

(b) number of aligned images, Al. im. and %;

(c) number of good ties Points, Tie Pts;

(d) mean residual of reprojection errors, mean res [um]
(e) max residual of reprojection errors, max res [um];
(f) average tie points multiplicity, mt.

In Table 2 (Case A), which represents a scenario with good initial
alignment, the commercial SIFT-like software performs
optimally, generating the highest number of tie points (23,269),
and achieving the lowest mean reprojection error of 0.36 um.
This indicates that under favourable imaging conditions with
sufficient texture and geometric structure, traditional SIFT-based
pipelines yield highly reliable results in both image alignment
and geometric accuracy.

‘Figure 6. case A: 20 images with a good solution of commercial
sift-like software (20/20 aligned images)

Figure 7. case B: 20 images with a poor solution of commercial
sift-like software (11/20 aligned images)

]

il i

Figure 8. Superpoint/superglue applied to the ineyard images

Among the deep learning-based methods, DISK combined with
LightGlue produces the densest match set, with tie points
exceeding 48,000, although it comes with a slightly higher mean
reprojection error (1.1-1.2 um), suggesting a potentially noisier
result that would benefit from outlier filtering. Superpoint
combined with Superglue and LightGlue yields moderate tie
point counts (ranging from 7,000 to 11,000) and consistent
reprojection errors around 1.2-1.4 um, demonstrating strong
robustness and stability even if not surpassing the classical
solution in this optimal context. The matching times for these
learning-based models remain within an acceptable range (3.1 to
3.8), underscoring their practical feasibility. Overall, this case
confirms that while deep learning approaches are competitive,
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SIFT remains the most effective under optimal vineyard imaging
conditions.

In Table 3 (Case B), representing a more challenging scenario
with poor initial alignment, the limitations of the SIFT-like
method become apparent. It aligns only 11 out of 20 images and
produces fewer tie points (8,350), underscoring its vulnerability
in environments with low texture and visually ambiguous NIR
content. In contrast, the deep learning methods demonstrate
superior resilience: both Superpoint + Superglue and Superpoint
+ LightGlue manage to align 17 out of 20 images and yield tie
point counts between approximately 4,800 and 6,100, albeit with
slightly higher reprojection errors (1.2—1.4 um). This trade-off is
acceptable given the improvement in image connectivity and
overall reconstruction integrity. DISK + LightGlue shows
inconsistent performance, with only 3 images aligned under the
S1 strategy but significantly better results (11-13 aligned images
and over 18,000 tie points) under the S2 and LR strategies,
indicating its heavy dependence on effective pair selection
mechanisms. The increase in reprojection error for DISK (1.6—
1.7 pm) under poor conditions may stem from overmatching in
visually repetitive or low-texture areas. Thus, Table 3 highlights
the robustness and adaptability of deep learning-based matchers
in degraded imaging contexts, with Superpoint + LightGlue
standing out as a balanced and reliable performer, and DISK
showing high potential when guided by intelligent pairing
strategies.

Al Mean Max
S im' Tie Pts res res Mt
@ || © | Wm | wml | ®
(d) (e)
SIFT-like - 20 23269 0.36 6.5 24
SIFT+ Kornia | S1 | 20 5343 0.51 4.0 3.0
S2 | 20 5672 0.57 3.46 33
LR | 20 4689 0.51 3.9 3.3
Superpoint+ S1 | 20 9787 1.2 3.9 3.4
superglue S2 | 20 11201 14 4.0 3.3
LR | 20 8897 12 3.9 3.3
Superpoint+ S1 | 20 7259 13 4.1 3.4
lightglue S2 | 20 | 10369 1.4 43 33
LR | 20 11473 1.3 45 3.3
Superpoint+ S1 | 20 7273 13 4.1 3.4
lightglueFast S2 | 20 9039 13 43 33
LR | 20 4913 1.2 3.8 3.1
DISK+ S1 | 20 48173 11 4.8 3.7
lightglue S2 | 20 | 49069 1.2 43 3.8
LR | 20 | 48733 1.1 4.2 3.8

Table 2. case A: 20 images case with good initial solution

Mean Max
S " | TiePts res res Mt

@ ;| © | mm |wm | ®

() )
04 6.1

SIFT-like L 11 8350 . . 2.2
SIFT+ Kornia | S1 | 10 1758 0.7 3.8 29
S2 | 11 1443 1.0 3.9 3.2

LR | 11 1142 0.7 34 3.3

Superpoint+ S1 | 17 1844 1.2 35 2.2

superglue S2 | 17 4784 14 42 29

LR | 17 5002 14 3.9 2.8
Superpoint+ S1 | 17 4835 13 4.1 2.6
lightglue S2 | 17 5908 14 41 2.7

LR | 17 6134 1.3 4.0 2.8
Superpoint+ S1 | 17 4952 1.3 4.2 2.3
lightglueFast S2 | 17 5356 13 3.7 2.7

LR | 17 5559 1.3 4.1 2.6
DISK+ S1 3 2886 11 3.6 2.4
lightglue S2 | 11 | 18832 1.7 3.9 33

25367 1.6 4.1 3.8

Table 3. case B: 20 images case with poor initial solution

These results were confirmed by the application to the entire
vineyard, as summarized in Tables 4 and 5. The significant
improvement in alignment completeness using DIM algorithms
is clearly evident, with values ranging from approximately 72—
79% of images successfully aligned, compared to 48-57%
obtained using SIFT-like algorithms, representing an
improvement of about 150%. A significant portion of the images,
approximately 1/4 still fail to align, resulting in substantial gaps
in vineyard coverage.

g

Figure 9. Case C: the whole vineyard of Briona with good
initial solution (27.07.02024).

e e 2

L

Figure 10. Case D: the whole vineyard of Briona with poor
initial solution (02.08.2024).

Total ; Tie Mea Max
images: S Al. im.,% Pts nres res Mt.
e (@ (b) kpl | [um] | [um] | (P
© (d) (e)
SIFT-like - 1341,98% | 1380 | 0.15 6.39 34
SIFT+ S1 | 1180, 86% 315 0,76 4,80 33
Kornia S2 1245, 91% 353 0,85 4,15 3,6
LR | 1310, 96% 307 0,76 4,68 3,6
Super S1 | 1240, 91% 607 1,56 4,68 35
point+ S2 | 1320, 96% 739 1,82 4,80 34
superglue | LR | 1355, 99% 603 1,59 4,68 34
Super S1 | 1220, 89% 443 1,69 4,92 3,6
point+ S2 | 1325,97% 687 1,82 5,16 35
lightglue | LR | 1342, 98% 770 1,77 5,40 3,5
Superpoi S1 | 1215, 89% 442 1,69 4,92 3,6
nt+lighty | S2 | 1310,96% 592 1,65 5,16 35
lue Fast LR | 1340, 98% 329 1,56 4,56 33
DISK+ S1 1211, 88% 2917 1,43 5,76 39
lightglue S2 | 1330,97% | 3263 | 1,56 5,16 4,0
LR | 1350,99% | 3289 | 143 5,04 4,0

Table 4. case C: a whole vineyard with good initial solution

The processing times for the entire vineyard (Case C and Case
D) were measured and normalised against the execution time of
the commercial SIFT-like software, with the results summarised
in Table 6. It can be observed that:

- the SuperPoint + SuperGlue pipeline is approximately 2-5
times slower than the SIFT-like algorithms;

- the DISK + LightGlue algorithm exhibits substantially
higher processing times, ranging from 4 to over 20 times
slower, particularly during the matching phase, likely
attributable to the large number of tie-points extracted;
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- SuperPoint combined with LightGlue and LightGlueFast
exhibits processing times comparable to those of SIFT-like
algorithms (albeit marginally higher), particularly when
constrained to the S2 strategy;

- Applying DIM algorithms, the residual (d) and (e) increase
in relevant way (2 tims about) but remain entirely
acceptable for precision agriculture applications,
particularly for insect detection, using the threshold of about
2.5 um for the mean residual.

Considering the results summarised in Tables 6 and 7, in terms
of both performance gains and computational efficiency,
SuperPoint-based approaches (especially when paired with the
LightGlue matcher) emerge as the most advantageous solutions
under the S2 strategy (sequential, overlap 2) for vSLAM
implementations.

Total ) Tie Mea | Max
images: S Al.im., % Pts nres res Mt
o @ ®) kpl | [um] | [um] | (D
(© (d) (e)
SIFT-like L 693, 56% 693 0,16 | 1172 3,2
SIFT+ S1 592, 48% 104 1,05 4,56 3,2
Kornia S2 665, 54% 87 150 | 4,68 35
LR 702, 57% 73 1,25 4,08 3,6
Super S1 920, 74% 309 156 | 4,20 2,3
point+ S2 950, 77% 493 182 | 504 3,0
superglue LR 965, 78% 580 1,82 4,68 2,9
Super S1 922, 73% 382 169 | 4,92 2,7
point+ S2 952, 77% 470 182 | 4,92 2,8
lightglue LR 980, 79% 601 175 | 4,80 29
Super S1 915, 74% 386 1,69 5,04 24
point+light | S2 947, 76% 492 165 | 444 2,8
glueFast LR 975, 78% 598 1,68 | 4,92 2,7
DISK+ S1 406, 33% 391 1,43 | 432 25
lightglue S2 710, 57% 2116 2,21 4,68 3,5
LR 810, 72% 2837 2,08 4,92 4,0

Table 5. case D: a whole vineyard with a poor initial solution

It is possible to compute:

1. Detection Loss

£aet = MSE(semi(l)o:ss, H(semi(I_w)o:s3)) enforcing that the
first 64 channels (keypoint scores) are consistent under the
inverse warp.
2. Descriptor Loss

Edesc = MSE(desc(I), H ' (desc(I_w))) enforcing that the dense
feature vectors agree under the same spatial transformation.

The total loss is a weighted sum:
Etotal = M Edet + A2 Edesc.

Gradients of £wtal are back-propagated to update all SuperPoint
parameters, thus adapting both the keypoint detector and
descriptor extractor to the target domain. In this application, we
used: A =0.55 and A2 = 0.45.

The self-supervised fine-tuning has been practically realised with
1000 images randomly extracted from the about 2600 images for
the 2 vineyards, using a notebook in Google Colab, generating
the SuperpointVineyardModel vl.pth.

The processing time for fine tuned was about 20 hours.

5.1 Results and discussion of the new retrained model

This model has been applied to case D, trying to improve the
completeness of the results using the Superpoint algorithms with
the sequential strategy with overlap 2, obtaining the Fine Tuned
(FT) solution. The result, summarised in Table 7, was compared
with the S2 solutions of superglue algorithms obtained with the
general-purpose pretrained model superpoint_v1.pth (De Tone
D, etal., 2018).

Tie Mea Max

Total images: S Al im., % Pts nres res Mt

Table 6. Processing time in both cases C and D

5. Methods for retraining the SuperPoint model in
vineyard environment

To try to improve the performance, the self-supervised fine-
tuning of a pretrained SuperPoint network has been realised by
enforcing two consistency objectives over a pair of images: the
original frame and a randomly warped counterpart.

Notably, this self-supervised framework obviates the need for
any a priori ground-truth correspondences; the network learns
keypoint and descriptor consistency solely from the original—
warped image pairs without requiring pre-matched point
annotations.

Let | be an input image and lw = H(l) its homographically
transformed version, where H is a random perturbation matrix.
Both images are passed through the shared SuperPoint encoder,
yielding:

- Detection heatmaps semi(l) eR "W and semi(lw).
- Descriptor volumes desc(l) eR?8*H*W and desc(lw).

1210 () (b) [kp] | [um] | [um] | ()
Algorithm/strategy S1 S2 LR © | @d | (e
SIET-lke S B Y ) cuperge | £7 | 1000,509 | 860 | 170 | 562 | 32

: superglue , 88% . . .

SIFT+ Komia 086 | 086 | 1,53 Superpoint+ | S2 | 952,77% | 470 | 1,82 | 492 | 28
Superpoint+ superglue 244 | 456 | 4,67 lightglue FT | 1124,91% | 950 | 1.89 | 5.01 | 3.0
Superpoint+ lightglue 072 | 100 | 197 Superpoint+ | S2 | 947,76% | 492 | 1,65 | 444 | 28
Superpoint+ lightglueFast 0,69 | 097 1,75 lightglueFast | FT | 1115,90% | 940 | 1.76 | 451 | 3.0
DISK+ lightglue 342 | 5,50 20,83 Table 7. The results using the retrained (RT) model compared

with S2 solution in Table 5
It can be observed that:

- The number of tie points increases significantly, by
approximately a factor of two;

- the proportion of successfully aligned images increases
markedly from 76-77% to 88-91%;

- This corresponds to a relative improvement of
approximately 18% compared to the non—fine-tuned
solution;

- only 9-12% of images remain unaligned,

- theresidual (d) and (e) increase slightly but remain entirely
acceptable for precision agriculture applications,
particularly for insect detection, considering the threshold of
about 2.5 um for the mean residual and 7 um for maximum
residual.

Processing times increase by approximately 40%, owing to the
extraction of roughly twice as many tie points compared to the
non-fine-tuned solution.

This contribution has been peer-reviewed.
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6. Conclusions

The application of DIM algorithms in a precision agriculture
environment for investigating infestation by the invasive species
Popillia japonica in vineyard has demonstrated clear efficacy.
Where imaging conditions are optimal, traditional SIFT-based
methods deliver the best results, achieving full alignment, the
highest tie point counts, and the lowest reprojection errors.
However, deep learning methods like DISK + LightGlue and
Superpoint variants also perform well, offering a viable
alternative with good robustness and only slightly lower
accuracy.

Traditional SIFT-like approaches struggle significantly under
poor imaging conditions with low texture and repetitive patterns.
Deep learning-based methods (DIM), especially Superpoint +
LightGlue and Superpoint + Superglue, demonstrate superior
alignment completeness and resilience, making them better
suited for challenging real-world vineyard monitoring. DISK +
LightGlue performs well but relies heavily on advanced pairing
strategies to be effective.

DIM algorithms enable the alignment of over 75 % of images
even under challenging conditions, representing a 150 %
improvement compared to SIFT-like solutions. Employing the
original pretrained model and a sequential strategy with overlap-
2, SuperPoint-based approaches emerge as the optimal solution
in terms of both alignment performance and computational
efficiency, especially when paired with LightGlue matchers.
The authors have developed an original fine-tuning procedure to
optimise both keypoint detection and descriptor extraction,
producing a retrained model that achieves over 90 % image
alignment in complex scenarios, demonstrating the solution’s
efficacy and efficiency.
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