
Improving Image Alignment in vineyard environment with deep learning image matching  
 

 

 Andrea Maria Lingua 1, Stefania Manca1, Francesca Gallitto1, Filiberto Chiabrando2 

 
1 DIATI, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Italy– (andrea.lingua, stefania.manca, 

francesca.gallitto@polito.it) 
2DAD, Politecnico di Torino, Viale Mattioli 39, 10125, Italy – filiberto.chiabrando@polito.it 

 

 

Keywords: Deep Image Matching vineyard, vSLAM, UAV, fine-tuning. 

 

Abstract  

 

Globalisation has accelerated the spread of invasive agricultural pests, including Popillia japonica Newman, introduced to Italy in 

2014. This species has caused severe damage to vineyards, highlighting the need for efficient detection methods. Manual identification, 

though accurate, is time-consuming and labour-intensive. This study explores a computer vision (CV)-based approach using Near-

Infrared (NIR) imagery captured by Uncrewed Aerial Systems (UAS) to detect adult Popillia specimens. Conducted in two vineyards 

in northern Italy, the project aims to develop a standardised and replicable monitoring protocol. CV-based detections are validated by 

entomologists and integrated into a Geographic Information System (GIS) to generate prescription maps for targeted drone-based 

pesticide application. 

However, traditional feature extraction and matching (FEM) algorithms, such as SIFT, SURF, and ORB, struggle in vineyard 

environments due to repetitive structures (seriality of fixed components, such as poles, supports, etc) and limited NIR texture. These 

limitations hinder image alignment, especially in the absence of geodetic-grade GNSS and high-precision IMU data. To address this, 

the study replaces FEM methods with deep image matching (DIM) techniques like SuperPoint and DISK for feature extraction, paired 

with SuperGlue for graph-based matching. Applied within a visual SLAM (vSLAM) framework, these deep learning models 

significantly improve image connectivity and alignment. Experimental results, supported by a fine-tuned SuperPoint model trained on 

vineyard datasets from the DANTE2 project, demonstrate up to 90% alignment improvement over conventional methods. This work 

presents a robust, scalable solution for accurate pest mapping in viticulture, contributing a fine-tuned PyTorch model to the scientific 

community. 

 

 

1. Introduction  

Globalisation and climate change have significantly accelerated 

the spread of invasive pests, threatening agricultural systems and 

global food security. A prime example is the Popillia japonica 

Newman beetle (Figure 1), native to Japan but inadvertently 

introduced into Europe and North America. Since its detection in 

Northern Italy in 2014, this species has caused substantial 

damage, particularly in vineyards, due to its voracious feeding 

habits and rapid population growth. Adult beetles skeletonize 

leaves and damage fruit, while larvae feed on root systems, 

resulting in extensive crop loss and economic burden. Traditional 

monitoring and containment efforts are labour-intensive and 

often inadequate for timely intervention. 

To enhance pest surveillance and management, increasing 

attention has been directed toward automated, image-based 

detection systems supported by Computer Vision (CV) and 

Artificial Intelligence (AI). Among available technologies, 

image-based approaches are especially promising due to their 

accessibility, scalability, and capacity for morphological species 

identification. However, real-world conditions such as repetitive 

vineyard structures, visually complex natural backgrounds and 

insects size (very close images within a distance of 2-3 m are 

required), where insects exhibit colour and texture similarities 

with foliage, pose significant challenges for conventional image 

matching techniques. Compounding this, Popillia japonica 

exhibits a highly reflective green exoskeleton that shares spectral 

similarity with foliage in the visible spectrum, complicating 

visual differentiation using RGB imagery and the. 

To mitigate these challenges, this study explores using near-

infrared (NIR) imagery acquired via Uncrewed Aerial Systems 

(UAS, Longhi V. et al, 2024). NIR imaging improves contrast 

between the beetles and the vegetation: plants exhibit high 

reflectivity in the NIR band, whereas the beetles appear 

significantly darker due to their low NIR reflectance (Figure 2). 

(Matrone f. et al, 2024) demonstrates that also point clouds can 

be used for classification problems and defines procedures for 

Enhancing explainability of deep learning models. 

  

 
Figure 1.An adult insect of Popillia Japonica on a vine plant. 

 

In complex agricultural environments, cellular and 

telecommunication networks are often lacking, resulting in the 

unavailability of internet connectivity. Consequently, GNSS 

receivers embedded in UAS cannot receive RTK corrections, 

which are essential for high-precision definition of external 

orientation parameters of acquired images. To overcome this 

limitation, it is sometimes necessary to deploy dedicated GNSS 

base stations acting as master units; however, this approach is 

expensive and requires expert users. As an alternative, accurate 

photogrammetric reconstruction of the sweeping paths is 

required to enable reliable insect identification. 
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It is therefore necessary to follow the standard photogrammetric 

workflow, which involves aligning the images to form a 

photogrammetric block, identifying ground control points 

(GCPs), and subsequently orienting the entire block. However, 

image alignment often presents challenges, as conventional 

image matching and feature extraction algorithms (SIFT, ORB, 

SURF, …) tend to perform poorly in such very complex 

environments. 

 

 
Figure 2.An example of an NIR image of Popillia insects in the 

studied vineyards. 

 

There are numerous applications of artificial intelligence in 

precision agriculture (Pádua, L. et al., 2022, Baldaccini, M. et al., 

2024, Ramyaa, R. et al., 2024,  Tsouros, D. et al., 2023, Williams, 

T. et al., 2022) addressing a wide range of thematic aspects, such 

as vineyard growth assessment, health status monitoring, and the 

detection of diseases like downy mildew, using both visible 

spectrum and multispectral (including near-infrared) imagery. 

However, the existing literature lacks studies focusing on 

integrating photogrammetric techniques in this context, 

particularly concerning the critical issue of image alignment and 

external orientation parameter estimation. 

To effectively register and align NIR images over time and across 

different acquisition angles, the Deep Image Matching 

algorithms (Morelli L. et al., 2024) could potentially allow 

possible solutions using e.g. SuperPoint/SuperGlue (also with 

lightglue version, De Tone D. et al., 2018, Sarlin P. E. et al., 

2020) or DISK/SuperGlue (Tyszkiewicz M.J. et al., 2020). 

This contribution focuses on enhancing the reliability of image 

alignment in vineyard environments through the application of 

deep image matching (DIM) techniques. It demonstrates how 

SuperPoint/SuperGlue and DISK/SuperGlue can overcome the 

limitations of more traditional feature-matching methods (SIFT–

like), using Bunfdle Block Adjustment and a vSLAM approach. 

 

2. Study area 

In the past year, the authors have proposed a study (Longhi et al., 

2024) to evaluate a CV algorithm's effectiveness in identifying 

adult Popillia specimens using Near-Infrared sensors on 

Uncrewed Aerial Systems (UAS).  

The project, conducted in two vineyards in northern Italy, intends 

to establish a replicable and standardised data acquisition 

protocol for future monitoring activities. Manual counting 

performed by entomologists validates insects detected by the CV-

based method. In a GIS environment, prescription maps are 

generated in near real-time to identify where the vineyard is most 

affected and to guide the drone spraying treatment only on the 

areas in which the threshold is exceeded. For a correct 

spatialization of the insect locations, the exterior orientation 

parameters of NIR images have to be known: in the absence of a 

geodetic GNSS antenna and an accurate IMU on board of drone, 

a Structure from Motion procedures has to be applied to realize 

the image alignment, the Ground Control Point plotting and the 

bundle block adjustment. 

At the beginning of the project, two areas of comparable sizes for 

each vineyard were chosen and classified based on the type of 

treatment they would receive. The two areas have similar 

surfaces (about 1 ha in Briona and Ghemme) and were defined 

based on a 3D model generated by aerial photogrammetry at the 

beginning of the project (time 0 [T0] acquisition) using DJI 

mat4rice 300 and P1 digital camera (Table 1). The vineyard in 

Briona is located on flat ground, while the one in Ghemme is on 

a slope, a feature to consider when planning a UAV survey. 

 

 
Figure 3.The study area: in the bottom right picture, Ghemme 

and Briona towns are highlighted by red circles. 

 

As previously noted, the imagery was captured in the Near-

Infrared (NIR) spectral band. Data was collected via aerial 

surveys using a DJI Mavic 2 Pro drone equipped with a Sentera 

single NIR sensor (see Table 1). The acquisition protocol was 

specifically designed to include flights with the camera tilted at 

approximately 45°, oriented perpendicularly to the vine rows. 

Flights were conducted at a low altitude, between 2 and 3 meters 

above the canopy level, and at a speed of roughly 2 m/s. Since 

Popillia japonica tends to remain still in the early morning hours 

and becomes active only after sunrise, all image acquisition 

missions were scheduled between 6:00 and 8:00 a.m. These flight 

parameters enabled the collection of high-resolution, close-range 

images of the pest (Brusco et al., 2023) 

 

UAS DJI Matrice 300 DJI Mavic 2 Pro 

Sensor Zenmuse P1 - RGB Sentera Single - NIR 

Resolution 8192 × 5460 1248 × 950 

Focal Length 35 mm 4.14 mm 

Pixel Size 4.39 × 4.39 µm 3.75 × 3.75 µm 

Flying altitude 26.7 m 2.5 m 

GSD 4.1 mm/pix 2.2 mm/pix 

Table 1. Main specifications of sensors and UAS. 

 

This study is framed within the DANTE project, which aims to 

develop a precision agriculture framework for monitoring and 

treating Popillia japonica using UAS technologies. The method 

used for extract and spatialise the insects has been described in 

(Longhi V. et al, 2024). 

 

      

      

      

      

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025 
13th International Conference on Mobile Mapping Technology (MMT 2025)  

“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20–22 June 2025, Xiamen, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W5-2025-61-2025 | © Author(s) 2025. CC BY 4.0 License.

 
62



 

3. Problem 

In a recent study (Longhi et al., 2024), the authors investigated 

the effectiveness of a computer vision (CV) algorithm for 

detecting adult specimens of Popillia japonica using Near-

Infrared (NIR) imagery acquired via Uncrewed Aerial Systems 

(UAS). Conducted across two vineyards in northern Italy, the 

study aimed to establish a replicable and standardised protocol 

for pest monitoring, integrating UAS-based imaging, CV-driven 

insect identification, and GIS-based prescription mapping. Insect 

detections, validated through manual counting by entomologists, 

were spatially analysed to generate targeted treatment maps that 

direct drone-based pesticide application only to vineyard sub-

areas exceeding infestation thresholds.  

A key challenge in this workflow lies in accurately 

georeferencing the detected insect positions within the vineyard. 

In the absence of a geodetic-grade GNSS receiver and a high-

precision Inertial Measurement Unit (IMU) onboard the drone, 

direct recovery of the exterior orientation parameters (EOPs) for 

the captured NIR images is not feasible. Therefore, Structure-

from-Motion (SfM) techniques must be employed to reconstruct 

the camera poses and 3D scene geometry. This process relies 

heavily on the detection and matching of robust visual key points 

across overlapping images.  

However, traditional feature extraction and matching (FEM) 

algorithms, such as SIFT, SURF, and ORB, often fail to perform 

reliably under these conditions. The vineyard environment poses 

multiple challenges: a) repetitive and self-similar structures (e.g., 

vine rows, support poles, trellis systems), b) limited texture in 

NIR spectral bands, and c) low inter-image baseline variation due 

to the drone’s flight altitude and trajectory. These factors result 

in insufficient and ambiguous key point matches, leading to 

disconnected image blocks, failed bundle block adjustments, and 

ultimately, incomplete or imprecise 3D reconstructions. As 

demonstrated in Figure 4, these issues are particularly evident 

when in the process are employing conventional SfM pipelines, 

such as those implemented in traditional SfM software generally 

based on SIFT-like approach. 

 

  
Figure 4. 2 examples of bad solution of image alignment using 

CV feature extraction and matching 

 

As illustrated in the following Figure 5, two examples of NIR 

image alignment are provided for the vineyards of Gemme and 

Briona. In both cases, approximately 1300 images were 

collected. As is outlined in the images there are large parts of 

vineyard without aligned images (more than 45%), consequently 

a large amount of data is missed and according to this results the 

proposed monitoring methodology of the Popilla Japonica 

failed.  

 

4. Methodology 

4.1 Result and discussion of direct application of DIM 

algorithm in vineyard environment 

To overcome these limitations, in the present research different 

DIM techniques were analysed and tested. Hereafter a list of the 

employed techniques with a short description is reported: 

 

1- Superpoint+Superglue. Superpoint is a fully convolutional 

neural network designed for real-time interest point detection and 

descriptor extraction in images. It was introduced in 2018 

(DeTone et al., 2018) The method uses a self-supervised training 

strategy, beginning with synthetic data where a detector is trained 

on simple geometric shapes. Through a process called 

homographic adaptation, this model is fine-tuned on real images 

without requiring manually labeled keypoints. SuperPoint 

outputs both keypoint locations and corresponding descriptors in 

a single forward pass. Superglue is a deep learning model 

introduced in 2020 (Sarlin et al., 2020), designed to match sets of 

local features between pairs of images by jointly finding 

correspondences and rejecting non-matchable points. The model 

takes as input the key points and descriptors extracted from two 

images and processes them through an attentional graph neural 

network. 

 

 

 
Figure 5. An example of lack of image alignment in a vineyard 

(Briona, up and Ghemme, down) 

 

2- Superpoint+Lightglue. Lightglue builds on the groundwork 

established by Superglue, refining key architectural elements to 

improve efficiency and accuracy (Lindenberger et al., 2023). It 

introduces an adaptive strategy that dynamically adjusts the 

model’s computational depth according to the complexity of the 

image pair. For image pairs with high visual similarity, the model 
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can accelerate processing by halting computations early, whereas 

more challenging pairs are given deeper processing to maintain 

precise matching. 

3- Superpoint+Lightglue Fast implements a particular settings of 

Lightglue with Flash attention (Dao T. et al., 2022) and lower 

adaptive thresholds. 

4- Disk + Superglue 

Disk (DIScrete Keypoints) is a deep learning model introduced 

in 2020 (Tyszkiewicz et al., 2020), the model addresses the 

challenge of learning local feature frameworks in an end-to-end 

fashion, which is often difficult due to the discrete nature of 

selecting and matching sparse keypoints. To overcome this, Disk 

leverages principles from reinforcement learning, specifically 

policy gradients, to optimize the detection and matching of key 

points directly for the number of correct matches. 

The results have been compared with more traditional FEM 

algorithms (well known): 

 

5- SIFT+kornia matcher 

6- SIFT-like commercial software; 

 

All the tests (1-5) were conducted using the Deep Image 

Matching toolbox developed by Fondazione Bruno Kessler 

(FBK), including the open-source DIM codes, with 3 strategies 

S1, S2, LR): 

- strategies S1 and S2 simulate the FEM step of the vSLAM 

solution, supposing that there is an overlap between 

sequential images of 1 image (only 1 pair for each image) 

or 2 (2 pairs for each image, 3 images are concatenated); 

- the strategy LR selects the possible pairs using a 

preliminary matching with subsampled low-res images. 

 

There is the exception of the final case (6), for which a 

commercial SIFT-like software was employed only with 

automatic pair selection based on generic preselection. 

The six algorithms and the three strategies have been applied in 

4 cases 

 

A. 20 images with a good solution of commercial SIFT-like 

software (algorithm 6), figure 6 and Table 2; 

B. 20 images with a poor solution of commercial SIFT-like 

software (algorithm 6), figure 7 and Table 3; 

C. an entire vineyard (1274 images) with a good solution of 

commercial SIFT-like software (algorithm 6), figure 9 and 

Table 4; 

D. an entire vineyard (1214 images) with a poor solution of 

commercial SIFT-like software (algorithm 6), figure 10 

and Table 5. 

Cases A and B have been developed to evaluate the various 

algorithms in detail, with matching plotting graphs and single 

pair analysis to understand the causes of good or poor solutions; 

cases C and D have been applied to check the results in a whole 

vineyard area. 

The default parameters of processing of DIM-FBK have been 

used except the maximum number of selected points, which was 

set without any limitation. For SuperPoint algorithms, we used 

the pretrained model  superpoint_v1.pth (De Tone D., et 

al., 2018). Tables 1, 2, 3, 4, 5 and 6 contain the results of 

numerous processes in terms of: 

 

(a) used strategy, S; 

(b) number of aligned images, Al. im. and %; 

(c) number of good ties Points, Tie Pts; 

(d) mean residual of reprojection errors, mean res [m] 

(e) max residual of reprojection errors, max res [m]; 

(f) average tie points multiplicity, mt. 

 

In Table 2 (Case A), which represents a scenario with good initial 

alignment, the commercial SIFT-like software performs 

optimally, generating the highest number of tie points (23,269), 

and achieving the lowest mean reprojection error of 0.36 µm. 

This indicates that under favourable imaging conditions with 

sufficient texture and geometric structure, traditional SIFT-based 

pipelines yield highly reliable results in both image alignment 

and geometric accuracy. 

 
Figure 6. case A: 20 images with a good solution of commercial 

sift-like software (20/20 aligned images) 

 

 
Figure 7. case B: 20 images with a poor solution of commercial 

sift-like software (11/20 aligned images) 

 

  
Figure 8. Superpoint/superglue applied to the vineyard images 

 

Among the deep learning-based methods, DISK combined with 

LightGlue produces the densest match set, with tie points 

exceeding 48,000, although it comes with a slightly higher mean 

reprojection error (1.1–1.2 µm), suggesting a potentially noisier 

result that would benefit from outlier filtering. Superpoint 

combined with Superglue and LightGlue yields moderate tie 

point counts (ranging from 7,000 to 11,000) and consistent 

reprojection errors around 1.2–1.4 µm, demonstrating strong 

robustness and stability even if not surpassing the classical 

solution in this optimal context. The matching times for these 

learning-based models remain within an acceptable range (3.1 to 

3.8), underscoring their practical feasibility. Overall, this case 

confirms that while deep learning approaches are competitive, 
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SIFT remains the most effective under optimal vineyard imaging 

conditions. 

In Table 3 (Case B), representing a more challenging scenario 

with poor initial alignment, the limitations of the SIFT-like 

method become apparent. It aligns only 11 out of 20 images and 

produces fewer tie points (8,350), underscoring its vulnerability 

in environments with low texture and visually ambiguous NIR 

content. In contrast, the deep learning methods demonstrate 

superior resilience: both Superpoint + Superglue and Superpoint 

+ LightGlue manage to align 17 out of 20 images and yield tie 

point counts between approximately 4,800 and 6,100, albeit with 

slightly higher reprojection errors (1.2–1.4 µm). This trade-off is 

acceptable given the improvement in image connectivity and 

overall reconstruction integrity. DISK + LightGlue shows 

inconsistent performance, with only 3 images aligned under the 

S1 strategy but significantly better results (11–13 aligned images 

and over 18,000 tie points) under the S2 and LR strategies, 

indicating its heavy dependence on effective pair selection 

mechanisms. The increase in reprojection error for DISK (1.6–

1.7 µm) under poor conditions may stem from overmatching in 

visually repetitive or low-texture areas. Thus, Table 3 highlights 

the robustness and adaptability of deep learning-based matchers 

in degraded imaging contexts, with Superpoint + LightGlue 

standing out as a balanced and reliable performer, and DISK 

showing high potential when guided by intelligent pairing 

strategies. 

 
 

S 

(a) 

Al. 

im. 

(b) 

Tie Pts 

(c) 

Mean 

res 

[m] 

(d) 

Max 

res 

[m] 

(e) 

Mt 

(f) 

SIFT-like - 20 23269 0.36 6.5 2.4 

SIFT+ Kornia S1 

S2 
LR 

20 

20 
20 

5343 

5672 
4689 

0.51 

0.57 
0.51 

4.0 

3.46 
3.9 

3.0 

3.3 
3.3 

Superpoint+ 

superglue 

S1 

S2 
LR 

20 

20 
20 

9787 

11201 
8897 

1.2 

1.4 
1.2 

3.9 

4.0 
3.9 

3.4 

3.3 
3.3 

Superpoint+ 

lightglue 

S1 

S2 
LR 

20 

20 
20 

7259 

10369 
11473 

1.3 

1.4 
1.3 

4.1 

4.3 
4.5 

3.4 

3.3 
3.3 

Superpoint+ 

lightglueFast 

S1 

S2 

LR 

20 

20 

20 

7273 

9039 

4913 

1.3 

1.3 

1.2 

4.1 

4.3 

3.8 

3.4 

3.3 

3.1 

DISK+ 

lightglue 

S1 

S2 

LR 

20 

20 

20 

48173 

49069 

48733 

1.1 

1.2 

1.1 

4.8 

4.3 

4.2 

3.7 

3.8 

3.8 

Table 2. case A: 20 images case with good initial solution 

 
 

S 

(a) 

Al. 

im. 
(b) 

Tie Pts 

(c) 

Mean 

res 

[m] 

(d) 

Max 

res 

[m] 

(e) 

Mt 

(f) 

SIFT-like L 11 8350 0.4 6.1 2.2 

SIFT+ Kornia S1 

S2 
LR 

10 

11 
11 

1758 

1443 
1142 

0.7 

1.0 
0.7 

3.8 

3.9 
3.4 

2.9 

3.2 
3.3 

Superpoint+ 

superglue 

S1 

S2 
LR 

17 

17 
17 

1844 

4784 
5002 

1.2 

1.4 
1.4 

3.5 

4.2 
3.9 

2.2 

2.9 
2.8 

Superpoint+ 

lightglue 

S1 

S2 

LR 

17 

17 

17 

4835 

5908 

6134 

1.3 

1.4 

1.3 

4.1 

4.1 

4.0 

2.6 

2.7 

2.8 

Superpoint+ 

lightglueFast 

S1 

S2 

LR 

17 

17 

17 

4952 

5356 

5559 

1.3 

1.3 

1.3 

4.2 

3.7 

4.1 

2.3 

2.7 

2.6 

DISK+ 

lightglue 

S1 

S2 

LR 

3 

11 

13 

2886 

18832 

25367 

1.1 

1.7 

1.6 

3.6 

3.9 

4.1 

2.4 

3.3 

3.8 

Table 3. case B: 20 images case with poor initial solution 

These results were confirmed by the application to the entire 

vineyard, as summarized in Tables 4 and 5. The significant 

improvement in alignment completeness using DIM algorithms 

is clearly evident, with values ranging from approximately 72–

79% of images successfully aligned, compared to 48–57% 

obtained using SIFT-like algorithms, representing an 

improvement of about 150%. A significant portion of the images, 

approximately 1/4 still fail to align, resulting in substantial gaps 

in vineyard coverage. 

 
Figure 9. Case C: the whole vineyard of Briona with good 

initial solution (27.07.02024). 

 
Figure 10. Case D: the whole vineyard of Briona with poor 

initial solution (02.08.2024). 

 

Total 

images: 
1369 

S 

(a) 

Al. im.,% 

(b) 

Tie 
Pts 

[kp] 

(c) 

Mea

n res 

[m] 

(d) 

Max 

res 

[m] 

(e) 

Mt. 

(f) 

SIFT-like - 1341, 98% 1380 0.15 6.39 3.4 

SIFT+ 
Kornia 

S1 
S2 

LR 

1180, 86% 
1245, 91% 

1310, 96% 

315 
353 

307 

0,76 
0,85 

0,76 

4,80 
4,15 

4,68 

3,3 
3,6 

3,6 

Super 

point+ 
superglue 

S1 

S2 
LR 

1240, 91% 

1320, 96% 
1355, 99% 

607 

739 
603 

1,56 

1,82 
1,59 

4,68 

4,80 
4,68 

3,5 

3,4 
3,4 

Super 

point+ 
lightglue 

S1 

S2 
LR 

1220, 89% 

1325, 97% 
1342, 98% 

443 

687 
770 

1,69 

1,82 
1,77 

4,92 

5,16 
5,40 

3,6 

3,5 
3,5 

Superpoi

nt+lightg

lue Fast 

S1 

S2 

LR 

1215, 89% 

1310 ,96% 

1340, 98% 

442 

592 

329 

1,69 

1,65 

1,56 

4,92 

5,16 

4,56 

3,6 

3,5 

3,3 

DISK+ 

lightglue 

S1 

S2 

LR 

1211, 88% 

1330, 97% 

1350, 99% 

2917 

3263 

3289 

1,43 

1,56 

1,43 

5,76 

5,16 

5,04 

3,9 

4,0 

4,0 

Table 4. case C: a whole vineyard with good initial solution 

 

The processing times for the entire vineyard (Case C and Case 

D) were measured and normalised against the execution time of 

the commercial SIFT-like software, with the results summarised 

in Table 6. It can be observed that: 

 

- the SuperPoint + SuperGlue pipeline is approximately 2–5 

times slower than the SIFT-like algorithms; 

- the DISK + LightGlue algorithm exhibits substantially 

higher processing times, ranging from 4 to over 20 times 

slower, particularly during the matching phase, likely 

attributable to the large number of tie-points extracted; 
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- SuperPoint combined with LightGlue and LightGlueFast 

exhibits processing times comparable to those of SIFT-like 

algorithms (albeit marginally higher), particularly when 

constrained to the S2 strategy; 

- Applying DIM algorithms, the residual (d) and (e) increase 

in relevant way (2 tims about)  but remain entirely 

acceptable for precision agriculture applications, 

particularly for insect detection, using the threshold of about 

2.5 m for the mean residual. 

Considering the results summarised in Tables 6 and 7, in terms 

of both performance gains and computational efficiency, 

SuperPoint-based approaches (especially when paired with the 

LightGlue matcher) emerge as the most advantageous solutions 

under the S2 strategy (sequential, overlap 2) for vSLAM 

implementations. 

 

Total 
images: 

1210 

S 

(a) 

Al. im., % 

(b) 

Tie 

Pts 

[kp] 
(c) 

Mea
n res 

[m] 

(d) 

Max 
res 

[m] 

(e) 

Mt 

(f) 

SIFT-like L 693, 56% 693 0,16 11,2 3,2 

SIFT+ 

Kornia 

S1 

S2 

LR 

592, 48% 

665, 54% 

702, 57% 

104 

87 

73 

1,05 

1,50 

1,25 

4,56 

4,68 

4,08 

3,2 

3,5 

3,6 

Super 
point+ 

superglue 

S1 
S2 

LR 

920, 74% 
950, 77% 

965, 78% 

309 
493 

580 

1,56 
1,82 

1,82 

4,20 
5,04 

4,68 

2,3 
3,0 

2,9 

Super 
point+ 

lightglue 

S1 
S2 

LR 

922, 73% 
952, 77% 

980, 79% 

382 
470 

601 

1,69 
1,82 

1.75 

4,92 
4,92 

4,80 

2,7 
2,8 

2,9 

Super 
point+light

glueFast 

S1 
S2 

LR 

915, 74% 
947, 76% 

975, 78% 

386 
492 

598 

1,69 
1,65 

1,68 

5,04 
4,44 

4,92 

2,4 
2,8 

2,7 

DISK+ 

lightglue 

S1 

S2 
LR 

406, 33% 

710, 57% 
810, 72% 

391 

2116 
2837 

1,43 

2,21 
2,08 

4,32 

4,68 
4,92 

2,5 

3,5 
4,0 

Table 5. case D: a whole vineyard with a poor initial solution 

 

Algorithm/strategy S1 S2 LR 

SIFT-like -- -- 1,00 

SIFT+ Kornia 0,86 0,86 1,53 

Superpoint+ superglue 2,44 4,56 4,67 

Superpoint+ lightglue 0,72 1,00 1,97 

Superpoint+ lightglueFast 0,69 0,97 1,75 

DISK+ lightglue 3,42 5,50 20,83 

Table 6. Processing time in both cases C and D 

 

 

5. Methods for retraining the SuperPoint model in 

vineyard environment 

To try to improve the performance, the self-supervised fine-

tuning of a pretrained SuperPoint network has been realised by 

enforcing two consistency objectives over a pair of images: the 

original frame and a randomly warped counterpart. 

Notably, this self-supervised framework obviates the need for 

any a priori ground-truth correspondences; the network learns 

keypoint and descriptor consistency solely from the original–

warped image pairs without requiring pre-matched point 

annotations. 

Let I be an input image and Iw = H(I) its homographically 

transformed version, where H is a random perturbation matrix. 

Both images are passed through the shared SuperPoint encoder, 

yielding: 

 

- Detection heatmaps semi(I)∈ℝ⁶⁵×H×W and semi(Iw). 

- Descriptor volumes desc(I)∈ℝ²⁵6×H×W and desc(Iw). 

 

It is possible to compute: 

 

1. Detection Loss 

   £det = MSE(semi(I)₀:₆₃, H⁻¹(semi(I_w)₀:₆₃)) enforcing that the 

first 64 channels (keypoint scores) are consistent under the 

inverse warp. 

2. Descriptor Loss 

   £desc = MSE(desc(I), H⁻¹(desc(I_w))) enforcing that the dense 

feature vectors agree under the same spatial transformation. 

 

The total loss is a weighted sum: 

   £total = λ₁ £det + λ₂ £desc. 

 

Gradients of £total are back-propagated to update all SuperPoint 

parameters, thus adapting both the keypoint detector and 

descriptor extractor to the target domain. In this application, we 

used: λ₁ =0.55 and λ2 = 0.45.  

The self-supervised fine-tuning has been practically realised with 

1000 images randomly extracted from the about 2600 images for 

the 2 vineyards, using a notebook in Google Colab, generating 
the SuperpointVineyardModel_v1.pth. 

The processing time for fine tuned was about 20 hours. 

 

 

5.1 Results and discussion of the new retrained model 

This model has been applied to case D, trying to improve the 

completeness of the results using the Superpoint algorithms with 

the sequential strategy with overlap 2, obtaining the Fine Tuned 

(FT) solution. The result, summarised in Table 7, was compared 

with the S2 solutions of superglue algorithms obtained with the 

general-purpose pretrained model superpoint_v1.pth (De Tone 

D., et al., 2018). 

 

Total images: 

1210 

S 

(a) 

Al. im., % 

(b) 

Tie 
Pts 

[kp] 

(c) 

Mea

n res 

[m] 

(d) 

Max 

res 

[m] 

(e) 

Mt 

(f) 

Superpoint+ 

superglue  

S2 

FT 

950, 77% 

1090, 88% 

493 

860 

1,82 

1.79 

5,04 

5.82 

3,0 

3.2 

Superpoint+ 
lightglue 

S2 
FT 

952, 77% 
1124, 91% 

470 
950 

1,82 
1.89 

4,92 
5.01 

2,8 
3.0 

Superpoint+ 

lightglueFast 

S2 

FT 

947, 76% 

1115, 90% 

492 

940 

1,65 

1.76 

4,44 

4.51 

2,8 

3.0 

Table 7. The results using the retrained (RT) model compared 

with S2 solution in Table 5 

 

It can be observed that: 

 

- The number of tie points increases significantly, by 

approximately a factor of two; 

- the proportion of successfully aligned images increases 

markedly from 76–77% to 88–91%; 

- This corresponds to a relative improvement of 

approximately 18% compared to the non–fine-tuned 

solution; 

- only 9–12% of images remain unaligned; 

- the residual (d) and (e) increase slightly but remain entirely 

acceptable for precision agriculture applications, 

particularly for insect detection, considering the threshold of 

about 2.5 m for the mean residual and 7 m for maximum 

residual. 

Processing times increase by approximately 40%, owing to the 

extraction of roughly twice as many tie points compared to the 

non–fine-tuned solution.  
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6. Conclusions 

The application of DIM algorithms in a precision agriculture 

environment for investigating infestation by the invasive species 

Popillia japonica in vineyard has demonstrated clear efficacy. 

Where imaging conditions are optimal, traditional SIFT-based 

methods deliver the best results, achieving full alignment, the 

highest tie point counts, and the lowest reprojection errors. 

However, deep learning methods like DISK + LightGlue and 

Superpoint variants also perform well, offering a viable 

alternative with good robustness and only slightly lower 

accuracy. 

Traditional SIFT-like approaches struggle significantly under 

poor imaging conditions with low texture and repetitive patterns. 

Deep learning-based methods (DIM), especially Superpoint + 

LightGlue and Superpoint + Superglue, demonstrate superior 

alignment completeness and resilience, making them better 

suited for challenging real-world vineyard monitoring. DISK + 

LightGlue performs well but relies heavily on advanced pairing 

strategies to be effective. 

DIM algorithms enable the alignment of over 75 % of images 

even under challenging conditions, representing a 150 % 

improvement compared to SIFT-like solutions. Employing the 

original pretrained model and a sequential strategy with overlap-

2, SuperPoint-based approaches emerge as the optimal solution 

in terms of both alignment performance and computational 

efficiency, especially when paired with LightGlue matchers. 

The authors have developed an original fine-tuning procedure to 

optimise both keypoint detection and descriptor extraction, 

producing a retrained model that achieves over 90 % image 

alignment in complex scenarios, demonstrating the solution’s 

efficacy and efficiency. 
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