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Abstract

The Diameter at Breast Height (DBH) and Tree Height (TH) are key morphological parameters of roadside tree, their accurate
measurement is conducive to quantifying various ecological benefits of trees. Compared with traditional field survey or laser
scanning methods, using low-cost street view images as an alternative data source is a promising measurement method. However,
existing methods rely on preset reference systems or manual interpretation, which results in poor generalization and low efficiency.
Recently, Visual Language Models (VLMs) have shown potential in mimicking human visual reasoning, but their direct application
fails to address 3D measurement tasks. To tackle this, we propose a VLM-based Tree 3D Measurement Network, named VLM-
TMN. Our key idea is to adjust VLMs to focus on the semantic and geometric information of trees to achieve effective measurement.
Specifically, it contains several designs: 1) A Depth Projector Module integrating explicit depth supervision and implicit depth
encoding to enhance geometric understanding. 2) A Magnifying Glass Strategy that amplifies visual perception by dynamically
focusing on critical tree regions. Built upon LLaVA-7B, our method reduces DBH measurement errors from 24.39 cm to 7.08 cm
RMSE, achieving a 7.57% improvement over standard supervised fine-tuning approaches and significantly outperforming existing
methods (7.08 cm < 15 cm). The results demonstrate how VLM-TMN can be effectively repurposed for urban ecological parameter

quantification, providing a cost-effective solution for sustainable city planning.

1. Introduction

Roadside trees are an important part of the urban ecosystem.
Diameter at Breast Height (DBH) and Tree Height (TH) are the
most important morphological parameters of trees, and their ac-
curate measurement can be used to quantify various ecological
benefits of vegetation, serve in urban planning, and provide
decision-making support for sustainable urban construction.

In the past, field surveys using mobile devices (e.g., altimeters,
LiDARSs) have provided accurate roadside tree measurements,
but their high costs and labor demands hindered widespread ap-
plication. Recently, with the rapid expansion of geographic big
data, some scholars have begun to use low-cost, high-coverage
street view images as an alternative data source. As a pioneer,
Wang et al. (Wang et al., 2018) used absolute size reference ob-
jects in the image to measure trees using the proportional rela-
tionship between pixels. Although this approach is accurate, the
measurement process still relies on human interpretation of the
images. After that, Choi et al. (Choi et al., 2022) and Liu et al.
(Liu et al., 2023a) proposed automated algorithms that provide
absolute scale by fixing the camera’s pose and height, or by es-
timating depth, and predicted tree masks to replace the manual
interpretation process. However, these methods are based on
pre-set reference systems, and this measurement benchmark
presents significant vulnerabilities in complex urban scenes. To
this day, efficient and accurate measurement of trees from im-
ages remains a challenge.

When human experts make visual measurements, they will act-
ively reason and find reference clues (e.g., the sign height)
rather than relying on predetermined standardized objects. Re-
cently, Visual Language Models (VLMs) (Liu et al., 2023b,
Yang et al., 2023) have been designed to simulate this active
human thinking process. Benefiting from this technology, our
goal is to unleash the reasoning capabilities of VLMs to achieve

efficient image-based tree 3D measurements. However, directly
applying these vision paradigms to 3D measurement tasks is not
effective. The geometric semantic association of objects is the
key information for visual measurement, but VLMs lack depth
information guidance during training, resulting in their inability
to understand spatial geometry. In addition, due to the limit of
fine-grained semantic expression of visual encoders, VLMs are
difficult to focus on key visual areas based on text input.

To solve this problem, we propose a VLM-based Tree 3D Meas-
urement Network, named VLM-TMN. Our key idea is to adjust
the VLMs to focus on the semantic and geometric information
of the object to achieve effective measurement. Specifically, it
contains several designs. 1) We introduced the Depth Projector
Module to extract geometric information through explicit depth
supervision and implicit depth coding. 2) To force VLMs to
pay attention to the visual details of trees, we designed a mag-
nifying glass strategy that enhances the visual perception of the
model by magnifying key areas and expanding the visual fea-
tures of the image. We use Llava-7B (Liu et al., 2023b) as our
baseline, and we improved its DBH measurement root mean
squared error (RMSE), from 24.39 cm to 7.08 cm. In addition,
compared to using Supervised Fine-Tuning (SFT) for VLMs,
our design brings +7.57% improvements in RMSE, and makes
VLM-TMN far exceed existing methods (7.08 cm < 15 cm).

In summary, our contributions are as follows.

o We propose VLM-TMN, which releases the visual reason-
ing capabilities of VLMs to estimate morphological para-
meters of trees from images.

e We designed a Depth Projector Module and a Magnifying
Glass Strategy to adjust the VLMs to focus on semantic
and geometric cues, respectively.
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e Extensive experiments demonstrate the strength of our
methods. Compared with existing methods, VLM-TMN
achieves accurate and robust parameter computation.

2. Related Work
2.1 Tree Measurment Methods

Diameter at breast height (DBH) and tree height (TH) are the
key morphological parameters of trees (Yang et al., 2020). De-
pending on the datasource, existing methods can be categorized
as follows.

Conventional Measurement Techniques. Traditional meth-
ods rely on manual field measurements by means of a tape
measure or optical instruments. DBH is usually measured using
a circumference ruler or a wheel rule (West, 2009), while TH
measurements are mostly carried out using a Blume-Leiss alti-
meter (Villasante and Fernandez, 2014) based on the principle
of triangulation. These methods require a lot of manpower for
data recording, which is time-costly and severely limits the ef-
ficiency of the measurements.

LiDAR-driven Approaches. With the development of laser
scanning equipment (Yang et al., 2024), researchers have be-
gun to utilize these efficient and accurate digital measurement
tools to enhance the efficiency of tree measurement. For ex-
ample, Airborne laser scanning systems (ALS), with their large
acquisition range and high acquisition efficiency, are frequently
used for tree height measurements in forestry (Giannetti et
al., 2018). However, due to canopy shading, this top-down
scanning method of airborne laser scanning systems makes
it difficult to achieve accurate DBH measurement (Mielcarek
et al., 2020). In contrast, the use of top-down ground sta-
tion laser scanning as well as mobile and backpack laser scan-
ning systems (Estornell et al., 2021, Campbell et al., 2023) are
more often used to measure precise geometric features of indi-
vidual trees. They use Simultaneous Localization And Mapping
(SLAM) or depth completion technology (Long et al., 2024) to
achieve real-time mapping and provide accurate measurements
of tree parameters (Pierzchata et al., 2018). Despite the excel-
lent accuracy, the high equipment cost limits its wide applica-
tions (Wu et al., 2023).

Vision-based Methods. Street-view image is a cost-effective
data source with significant scalability potential. However, the
inherent scale ambiguity in monocular images poses funda-
mental challenges for vision-based measurement applications.
(Wang et al., 2018) pioneered an approach employing stand-
ardized urban objects as reference scales, assuming coplanar
alignment between targets and references for pixel-to-metric
conversion via ImageJ software (Schneider et al., 2012, Rueden
et al., 2017). Subsequent work by (Hu et al., 2023) expanded
the reference database and applied the methodology to analyze
roadside tree distributions in Hangzhou. While effective, these
techniques remain constrained by manual intervention require-
ments. Recent automated implementations (Choi et al., 2022,
Liu et al., 2023a) leverage deep learning for tree instance seg-
mentation, deriving dimensional estimates from pixel counts.
These methods necessitate stringent camera calibration para-
meters and level imaging conditions to establish pixel-ground
truth relationships. Such engineered constraints limit method-
ological generalizability across diverse scenarios. Moreover,
performance is intrinsically tied to segmentation quality, with

complex urban environments exacerbating error propagation in
purely appearance-based measurement systems.

In summary, efficient and accurate measurement of trees from
images remains a challenge. To solve this, we mimic the hu-
man thought process by unleashing the visual reasoning capab-
ilities of VLMs to achieve efficient image-based tree 3D meas-
urements.

2.2 Vision Language Model

The Large Language Model (LLM) is a text processing model
designed to understand and generate human language (Devlin
et al., 2019). Benefiting from billions of learnable parameters
and vast amounts of text data, LLM can understand complex
patterns in linguistic data and perform a wide range of tasks,
including text summarization, translation, sentiment analysis,
and more (Naveed et al., 2023).

Building on the success of LLMs, many studies have begun to
explore how LLMs can jointly process visual and text informa-
tion. In 2023, OpenAl released GPT-4V (Achiam et al., 2023),
which incorporated image inputs into LLM to build the first
Visual Language Model (VLM). Subsequently, LLaVA (Liu et
al., 2023b), a series of visual language models were success-
ively proposed. They align 2D images to the language model
through image encoders and projection layers. Other models
such as BLIP2 (Li et al., 2023), Qwen (Bai et al., 2023) use
a more complex QFormer architecture to guide the compres-
sion of visual features using textual cues. These models build
massive multimodal linguistic image datasets to fine-tune in-
structions to existing LLM models by means of GPT-4 gen-
eration or manual collection. Numerous studies have shown
that VLM models are capable of constructing worldviews from
massive amounts of data, which permits the models to emulate
the human mindset for visual understanding. As a result, VLM
has shown excellent performance in segmentation, classifica-
tion, and caption of images (Zhang et al., 2024).

However, VLMs performs poorly in some spatial
comprehension-based tasks (Cheng et al., 2024). Due to
the inherent differences between modalities, it is difficult for
VLM to capture accurate spatial information directly from
images, such as determining the absolute distance between
objects. In addition, in order to align the image modalities
with the text modalities, most of the existing methods choose
the CLIP (Radford et al., 2021) as the encoder of the image.
However, the globally aligned training method of CLIP, limits
the fine-grained semantic understanding ability of VLMs (Kaul
et al., 2024). To address this problem, we propose a Depth
Projector Module and a Magnifying Glass Strategy to adjust
the VLMs to focus on the semantic and geometric information
of the object for effective measurement.

3. Method

Our goal is to unleash the reasoning capabilities of VLMs to en-
able efficient image-based tree measurements. Fig.1 shows the
overall process of VLM-TMN. Specifically, it takes an image
and the corresponding bounding box of the measuring tree as
input, the bounding box can come from the output of any object
detection network. Our network consists of three parts: Visual
Encoder, Depth Projector, and Text Encoder. These modules
map the input to the unified text feature space. Then, we use
Llava-7B as the backbone to process these multimodal features
and output the morphological parameters of each tree.
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Figure 1. Overview of VLM-TMN architecture.

3.1 Visual Encoder

Native VLMs usually use the pre-trained CLIP (Radford et al.,
2021) model as the visual encoder to extract image features.
CLIP can map text and visual features to the same space, but
the fine-grained visual semantics of CLIP are poorly expressed,
making it difficult for VLMs to focus on the key areas of the im-
age from text input, thus causing illusions. To solve this prob-
lem, we propose a magnifying glass strategy. First, we use the
same image encoder to encode the image feature F',, it con-
tains contextual cues to the overall scene. Then, to force the
VLM to focus on the measuring object, we apply explicit crop-
ping. Specifically, given a bounding box, we first expand the
bounding box range by 10 pixels as the cropping range, and
then crop and enlarge this area to the original image size to
obtain an enhanced image. After that, we input the enhanced
image into the same visual encoder to get the visual enhance-
ment features F'.. To reduce computing consumption, we com-
press the F'. into 16 tokens and concatenate them with the F',,
to perform visual feature extraction. This strategy allows us to
improve the performance of the model without introducing any
learnable parameters.

3.2 Depth Projector

As discussed before, accurate spatial perception is critical to 3D
measurement tasks. However, the original VLMs lack depth
guidance during the training process, which limits the meas-
urement performance of the model. To solve this problem, a
natural idea is to introduce a depth estimation model and use
the estimated depth map as an additional input. However, ad-
ditional input requires the design of additional depth feature
extraction and feature fusion modules to ensure that the depth
features can be mapped to the text modality. In contrast, we
introduce a novel Depth Projector Module that directly extracts
spatial information from image features. Specifically, we set
F'. as query vectors, then use a Cross-Attention Block to search
implicit depth clues from F',. After that, we map these depth
clues into text feature space through an MLP layer to get F'4.
The overall process is shown in Eq.1.

F; = MLP(CrossAttn(F., F,))) (1)

Since F', and F'. are aligned with the text features, it is easy
to map the implicit depth features F'; to the text modality. In
addition, to ensure the accuracy of depth clues, we also intro-
duced explicit depth supervision to force F'4 to predict the cor-
responding distance from each tree to the camera center.

3.3 Text Encoder

Research has shown that an appropriate prompt can guide the
thought process of VLMs. So, we designed a prompt to de-
scribe the tree measurement task. First, we use the box to de-
scribe the measuring tree and inform the model about the con-
cepts of DBH and TH (i.e., Note: the DBH is the diameter of
the tree trunk 1.3 meters above the ground.). In addition, to
help the model pay attention to the visual and geometric in-
formation, we set "The cropped and enlarged image of this tree
is also given after the whole image, please pay attention to the
shape information of this tree.” in the prompt. We also em-
bed the F4 as the word (DEPT H), and replace it into the text
input, which further facilitates LLM’s understanding of spatial
distance information. After that, we input these prompts into
the pre-trained CLIP text encoder to get F';. Finally, we con-
nect the F',,, F., F'q, F'; together and input it into the backbone
to measure each tree.

3.4 Loss Function

The loss function of the whole model consists of two parts.
First, to ensure the validity of the Depth Project Module, we
explicitly supervise the Depth Token as shown in Eq 2.

Ly =||d —d| @

Where, d is the depth from the camera to this tree decoded by
the depth token and d is the corresponding ground truth. Then,
we also supervised the estimated morphology parameters, as
shown in Eq 3.

Lo = ||dbh — dbh|| + ||th — th| 3)

The complete loss function can be expressed in Eq 4. « is the
weight factor, which we set to 0.1 based on experience.

L=ali+ L» 4

4. Experiment
4.1 Dataset

To evaluate our method, we constructed a benchmark data-
set based on the WHU-RSTree dataset collected by Dong et
al. (Zhen Dong, 2023). It is a multimodal urban tree in-
stance segmentation dataset comprising approximately 68 km



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

7.06cm, 3.80m

.

8.00cm, 3.86m

Pred

29.00cm, 9.50m 27.00cm, 9.40m 24.00cm, 11.60m 17.00cm, 9.46m

Figure 2. The quantitative results of VLM-TMN. For ease of reading, we marked the tree morphology computation results in the order
of "DBH, TH” at the bottom of the image.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-1-W5-2025-69-2025 | © Author(s) 2025. CC BY 4.0 License. 72



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W5-2025
13th International Conference on Mobile Mapping Technology (MMT 2025)
“Mobile Mapping for Autonomous Systems and Spatial Intelligence”, 20-22 June 2025, Xiamen, China

Table 1. Results on benchmark dataset. Quantitative comparisons with existing image-based measurement methods, | denotes this
metric lower is better. The best results are in bold.

RMSE |

NRMSE |

Method Pipeline DEA Hleight BB Height Time Cost |
Wang et al. Manual interpretation 1.9 cm 0.5m / / 0.67 h
Choi et al. Detection + Segmentation 15 cm 328 m 0.44 0.24 /

Ours Detection + VLM-TMN 7.1 cm 23m 0.23 0.17 0.27 s

Table 2. Quantitative comparisons results, | denotes this metric lower is better. The best results are in bold.

: RMSE | RRMSE | REL |
Time Cost | —pn Height DBH Height DBH Height
Wio All 0.24s 24.39%m 937m 0.80 0.73 112 0.82
W/o Depth & Visual 0.24s 7.66cm 2.41m 0.25 0.19 0.22 0.17
W/o Depth 0.265 7.47cm 2.37m 0.24 0.18 0.22 0.18
Whole Pipeline 0.27s 7.08cm 2.25m 0.23 0.17 0.21 0.16

of point cloud data and 12,447 panoramic images collected
from Nanjing, China. It includes annotations for more than
20,000 individual trees, covering instance segmentation, tree
species, and morphological parameters. After our filtering and
processing, we constructed a total of 19,613 datasets containing
images, object detection boxes, and corresponding tree morpho-
logical parameters.

4.2 Implementation details

First, we split the dataset into training, validation, and test sets
in a ratio of 8:1:1. Our model was trained on 1 NVIDIA RTX
4090 GPU using the PyTorch platform. The training batch size
was 8. Each image we cropped to 224 x 224 as input, the initial
learning rate was set to 0.0001, and a total of 100,000 iterations
were performed to complete the training.

4.3 Evaluation metrics

As a measurement task, we use root mean squared error
(RMSE), normalized root mean squared error (NRMSE), and
mean relative error (REL) as evaluation metrics.

4.4 Results on benchmark dataset

We only used existing Image-based methods for comparison.
Since none of the comparison methods have open source code,
we directly report the metrics in their papers. The results are
shown in Tab 1. As can be seen from the table, compared
with the method proposed by Wang et al. (Wang et al., 2018),
which relies on manual interpretation, VLM-TMN has higher
efficiency. Compared with the automated method proposed by
Choi et al. (Choi et al., 2022), VLM-TMN achieves better
measurement accuracy due to its consideration of both visual
and depth information of objects.

It is also worth mentioning that the comparison methods all
choose ideal unobstructed photos for index evaluation, and the
dataset we evaluate is derived from real street-acquired images
with a large number of occlusions. Fig 2 illustrates the qualit-
ative results of our method. In addition to ideal images, VLM-
TMN achieves robust estimation in challenging scenarios, such
as distant, small, or partially occluded trees. Overall, our
method is more robust and accurate than existing methods.

4.5 Ablation study

We also conducted ablation experiments as shown in Tab 2.
Specifically, we removed the depth projector module, the visual
magnifying glass strategy, and the supervised fine-tuning, re-
spectively. When all modules are removed, the model will de-
generate into the original Llava-7B model. We can see from
Tab.1, our design allows VLMs to have the 3D measurement
capabilities. In addition, our proposed magnifying strategy and
depth projector module effectively improve the performance (+
%7.57 RMSE) compared to simply fine-tuning the VLMs, and
removing any components will cause performance degradation.

5. Conclusion and Future Work

In this paper, we propose VLM-TMN, unlike primitive meas-
urements, our approach estimates roadside tree morphology
parameters quickly and accurately from low-cost images by un-
leashing the inference potential of VLMs. To overcome the
lack of spatial comprehension and limited fine-grained percep-
tion of the original model, we propose two novel modules.
First, we design the magnifying glass strategy to force the net-
work to focus on the fine-grained details of the objects through
simple cropping and resize operations. Second, we introduce
the Depth Projector Module, which gives the model spatial per-
ception capability by means of implicit depth coding and expli-
cit distance supervision. Experiments on benchmark datasets
show that compared to using Supervised Fine-Tuning (SFT) for
VLMs, our design brings +7.57% improvements in RMSE, and
makes VLM-TMN achieve DBH with NRMSE of 0.23 and TH
of 0.17, which significantly outperforms existing methods (0.44
and 0.24, respectively).

There are also some limitations in our work, for example, the
performance may be degraded when facing some unseen scen-
arios. The emergence of Deepseek-R1 (Guo et al., 2025) gives
us a new solution strategy. In our future work, we plan to use
reinforcement learning and chain of thought to mine the world-
view of VLMs, so that the model can think for itself according
to different scenarios, and improve the model utility and gener-
alization ability.
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