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Abstract

Urbanization’s vertical shift underscores the need for accurate building height estimation to support sustainable planning. Existing
methods, limited by low-resolution data and poor generalization, cannot resolve individual buildings. We propose a training-free
approach leveraging the foundation model Depth Anything V2 for relative depth estimation from high-resolution remote sensing
(RS) imagery. To address GPU memory constraints, RS images are cropped into overlapping patches, and their depth predictions
are unified using a height-weighted graph optimization with Levenberg–Marquardt refinement, prioritizing building-related errors.
A viewpoint bias filter, modeled as terrain variation, converts relative depth to height by subtracting a morphologically derived
DEM. Experiments on Google satellite imagery with 0.5 m resolution over 20 km² in Wuhan, validated against airborne LiDAR,
show an R² of 0.73 for building heights, significantly outperforming the state-of-the-art MLSBRN whose R² is only 0.25 and which
underestimates tall buildings. Without annotation or training, our scalable method accurately estimates individual building heights,
generalizes across complex urban morphologies, and provides a robust solution for 3D urban studies.

1. Introduction

Urbanization is increasingly characterized by vertical (3D) de-
velopment due to limited land resources, shifting from histor-
ical horizontal (2D) expansion (Wang et al., 2023). Buildings,
as the fundamental components of 3D urban morphology, have
become key indicators of urban development and the evolution
of spatial structures. For instance, numerous urban factors, such
as urban energy consumption and carbon emissions (Chen et al.,
2024), exhibit significant correlations with buildings. Limited
by data availability, most existing studies on urban expansion
have focused on exploring the horizontal expansion of urban
areas (Gong et al., 2020). In contrast, relatively few studies
have addressed vertical urban expansion, i.e., accurately es-
timating and characterizing building heights and their dynamic
changes.

In recent years, researchers have developed various methods to
extract building heights at different scales based on diverse re-
mote sensing data sources, including LiDAR, monocular op-
tical imagery, multi-view optical imagery, SAR, InSAR, and
street-view imagery. Generally, the level of detail in building
height extraction is proportional to the costs of data acquisition
and processing.

At the national scale, the high costs of airborne LiDAR,
multi-view stereo imagery, and high-precision SAR limit large-
scale, continuous building height estimation. Leveraging freely
available, globally distributed data such as Sentinel-1 SAR,
Sentinel-2 multispectral, and the ALOS Global Digital Surface
Model (AW3D30 DSM), researchers have achieved large-scale
height estimation (Li et al., 2020a, Li et al., 2020b, Frantz et
al., 2021). Li et al. demonstrated the effectiveness of Sentinel-
1 data for height estimation, developing a method based on the
novel VVH index to estimate building heights in seven major
U.S. cities at 500m resolution (Li et al., 2020b). However, due
to multiple echoes from complex spatial layouts and high re-
flectivity of certain metallic materials, Sentinel-1’s backscat-

ter coefficients are unreliable in some areas (Li et al., 2016).
Moreover, the estimated heights represent the average of build-
ings and non-buildings, failing to fully reflect actual building
heights. To address unreliable radar signals, Li et al. applied a
random forest model with hybrid data to map continental-scale
3D building structures (area, height, and volume) (Li et al.,
2020a). However, this method shows estimation biases in areas
with small building footprints, and its coarse 1000m resolution
cannot capture fine structural differences. Subsequent studies
improved height inversion resolution (Frantz et al., 2021, Wu
et al., 2023). Frantz et al. combined Sentinel-1 and Sentinel-
2 time-series data, using a machine learning regression model
to generate Germany’s building height map at 10m resolution
(Frantz et al., 2021). Wu et al. used a random forest model with
all-weather earth observation data (radar, optical, and nighttime
light) to estimate China’s 2020 building heights at 10m resolu-
tion (Wu et al., 2023). Morphological methods have also been
applied to process global open DSMs (e.g., AW3D 30). Huang
et al. estimated building heights from AW3D30 DSM, intro-
ducing a slope correction algorithm to mitigate terrain effects,
producing China’s height map at 30m resolution and analyzing
spatial patterns (Huang et al., 2022). He et al. combined GAIA,
WSF 2015, and AW3D 30 data to extract 3D building morpho-
logy (He et al., 2023). With advances in deep learning, Yadav
et al. proposed the T-SwinUNet network, utilizing Sentinel-
1 SAR and Sentinel-2 MSI time-series data to achieve 10m-
resolution height mapping with strong generalization (Yadav et
al., 2025). These methods enable grid-level height estimation
from national to global scales, but low-resolution data limits
their ability to accurately reflect individual building heights.

At the urban scale, point clouds from airborne LiDAR dir-
ectly provide high-precision 3D height information (Bisheng
et al., 2017, Park and Guldmann, 2019), but high acquisition
costs restrict application scope and update frequency. High-
resolution SAR imagery enables height estimation by relating
extracted features (e.g., double-bounce lines, layovers, shad-
ows) to building heights (Sun et al., 2022). Additionally,
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Figure 1. The proposed pipeline.

high-resolution optical imagery estimates heights by analyzing
shadow lengths and sun-sensor geometry, though accuracy is
limited when buildings are occluded or mixed with other ob-
jects, posing challenges in complex urban areas (Liasis and
Stavrou, 2016). Multi-view optical imagery mitigates this by
providing rich spatial information. For example, Liu et al. gen-
erated DSM from ZY-3 imagery using semi-global matching
(SGM) and computed normalized DSM (nDSM) via morpholo-
gical top-hat methods (Liu et al., 2017). Similarly, Wang et al.
used SGM and adaptive closing algorithms to estimate build-
ing heights in parts of Beijing from GF-7 imagery (Wang et al.,
2021). These studies highlight that DSM from traditional stereo
matching often suffer from insufficient matching features, com-
plex scenes, and occlusions, leading to height underestimation
(Wang et al., 2021). Zhang et al. proposed a constrained stereo
matching algorithm to estimate building heights in Yingde and
Xi’an from GF-7 imagery, improving high-rise height estima-
tion (Zhang et al., 2022). Cao and Huang used ZY-3 multi-view
imagery to estimate heights across 42 Chinese cities, employing
a multi-task deep network to regress relationships between ZY-
3 imagery and reference heights from Amap (Cao and Huang,
2021). Chen et al. used GF-7 imagery, integrating photogram-
metry and deep learning in the BHEPD model to reduce er-
rors and improve reliability across building types (Chen et al.,
2023a). These methods are effective in urban scenarios but are
limited by high data acquisition costs, hindering broader ap-
plication. Advances in deep neural networks enable learning
geometric features from monocular imagery. Studies have ex-
plored deep learning for height estimation from high-resolution
orthorectified imagery (Karatsiolis et al., 2021, Li et al., 2021).
For instance, Karatsiolis et al. proposed IMG2nDSM to infer
object heights from single RGB images, tested on Manchester
and DFC 2018 datasets (Karatsiolis et al., 2021). HTC-DC
Net combines classification and regression tasks with a ViT en-
coder to integrate local and global contexts, achieving state-of-
the-art performance (Chen et al., 2023b). Additionally, single-
building reconstruction from publicly available nadir monocu-
lar imagery relaxes data constraints, but data biases in deep
learning methods lead to poor generalization for mid- and high-
rise buildings, limiting accurate urban 3D morphology depic-
tion (Li et al., 2021, Li et al., 2024). Overall, height estimation
from monocular imagery is innovative but remains a complex
and challenging problem.

To address these challenges, we propose a novel framework
tailored for high-resolution Remote Sensing (RS) imagery that
leverages a state-of-the-art monocular relative depth estimation
model. Specifically, to manage the computational constraints
posed by the large size of RS images, which often exceed avail-
able computer memory, we divide the imagery into smaller,
overlapping patches that can be processed independently. These
patches are processed by a robust foundation model for relat-

ive depth estimation to generate depth, inspired by recent ad-
vancements in computer vision (Fu et al., 2024, Yang et al.,
2024), which excels in precise boundary delineation and gener-
alizes effectively across diverse scenes. Then, we introduce a
Height-Weighted Graph Optimization (HWGO) method. This
approach unifies the depth predictions from individual patches,
accounting for their varying scales and offsets, by modeling
the relationships between overlapping regions as a graph and
optimizing for consistency across the entire image. Finally,
the optimized depth maps are fused to produce a coherent,
high-fidelity building height map, enabling accurate and scal-
able height estimation while preserving fine-grained details. To
bridge the gap between relative depth (representing distances to
the viewpoint) and absolute building height (defined relative to
an orthographic baseline), we design a View Bias Filter (VBF)
to achieve the conversion from depth to height. This methodo-
logy effectively balances the trade-offs among computational
cost, processing scale, and prediction granularity, offering a
practical solution for large-scale urban mapping applications.

2. Methods

The overall framework of the method in this paper is shown in
Fig. 1, mainly consisting of three parts: Relative Depth Es-
timation, Height-Weighted Graph Optimization, and Relative
Height Extraction with View Bias Filter. Each part is described
in detail below.

2.1 Relative Depth Estimation

To estimate the relative depth of large-scale remote sensing
(RS) imagery, we employ the Depth Anything V2 (DAv2)
(Yang et al., 2024). This advanced depth estimation framework
leverages a two-stage training strategy to achieve robust and
generalizable performance. Initially, a teacher model is trained
using synthetic data, which provides controlled depth annota-
tions to establish a foundational understanding of depth cues.
Subsequently, the model is refined using large-scale real-world
imagery annotated with pseudo-labels, enhancing its ability to
generalize across diverse scenes. This approach ensures high-
quality depth predictions for a wide range of visual inputs.
However, DAv2 is primarily designed for natural images with
relatively small dimensions, typically 518×518 pixels, which
are processed efficiently on standard GPU hardware. In con-
trast, RS imagery often encompasses significantly larger spatial
extents, with resolutions reaching thousands of pixels in both
width and height. Directly applying the model to such large im-
ages is infeasible due to GPU memory constraints. To address
this limitation, we adopt a patch-based processing strategy, di-
viding the input RS imagery into manageable segments while
preserving spatial continuity.
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To enable depth estimation on large-scale RS imagery, we par-
tition the input image into a set of overlapping patches, de-
noted as ( X = xi | i = 1, . . . , n ), where each patch xi has a
fixed size of 1024×1024 pixels. To ensure seamless transitions
and mitigate boundary artifacts during subsequent depth fusion,
we incorporate a substantial overlap of 75% between adjacent
patches. This overlap facilitates the alignment of depth pre-
dictions across patches, as overlapping regions provide shared
spatial context for subsequent optimization. For each patch ( xi

), we apply the Depth Anything V2 model to compute a corres-
ponding depth map ( di ), resulting in a set of depth predictions
( D = di | i = 1, . . . , n ). Each depth map ( di ) represents the
relative depth of pixels within the patch, defined as the distance
from the pixel to the observation viewpoint under a perspective
projection model. However, due to variations in scene content
across patches (e.g., differences in terrain, vegetation, or man-
made structures), the depth predictions exhibit scale and offset
inconsistencies. These inconsistencies arise because the Depth
Anything V2 model estimates relative depths independently for
each patch without a unified global reference.

2.2 Height-Weighted Graph Optimization for Depth
Alignment

To address the scale and offset disparities among the depth
patches, we propose a Height-Weighted Graph Optimization
(HWGO) method to unify the depth predictions into a globally
consistent depth map. The optimization process aligns all depth
patches to a common reference frame, ensuring that the fused
depth map is coherent across the entire RS image.

Selection of a Global Baseline. We begin by randomly select-
ing one depth patch from the set D, denoted as dj , to serve as
the global baseline. This baseline patch defines the reference
scale and offset for the entire depth map. For all other patches
{di | i ̸= j}, we assume a linear transformation to align their
depth values to the global baseline. Specifically, the aligned
depth for patch i, denoted d

global
i , is computed as:

d
global
i = si · di + bi, (1)

where si is the scale factor and bi is the offset for patch i. The
goal of the optimization is to determine the optimal values of
{si | i ̸= j} and {bi | i ̸= j} that minimize discrepancies in the
overlapping regions of the depth patches.

Graph-Based Optimization Framework. We formulate the
alignment problem as a graph optimization task, where the
nodes represent the scale and offset parameters {si, bi | i ̸= j}.
The edges correspond to the overlapping regions between pairs
of patches, and the error function quantifies the discrepancy
between aligned depth values in these regions. For each pair
of overlapping patches (i, k), let Oik denote the set of pixels
in their overlapping region. The error for a pixel p ∈ Oik is
defined as the squared difference between the aligned depth val-
ues:

eik(p) = ((si · di(p) + bi)− (sk · dk(p) + bk))
2 . (2)

To prioritize regions with significant height variations, which
are critical for applications such as building height extraction,
we introduce a height-weighted error function. Specifically, we
define a threshold δ = 10m, based on empirical analysis, to
emphasize errors in regions where the relative depth difference

exceeds this threshold. The weight for each pixel ( p ) is com-
puted as:

w(p) =

{
whigh if |di(p)− dk(p)| > δ

wlow otherwise
, (3)

where whigh > wlow ensures that regions with larger depth dis-
parities, typically corresponding to elevated structures, contrib-
ute more significantly to the optimization. The total error func-
tion for the graph is the weighted sum of squared errors across
all overlapping regions:

E =
∑
(i,k)

∑
p∈Oik

w(p) · eik(p), (4)

Optimization Using Levenberg-Marquardt. To minimize the
error function E, we employ the Levenberg-Marquardt (LM) al-
gorithm, a robust non-linear least-squares optimization method
that balances the efficiency of gradient descent with the preci-
sion of the Gauss-Newton method. The LM algorithm iterat-
ively adjusts the parameters {si, bi | i ̸= j} to find the optimal
solution that minimizes E. Upon convergence, the optimized
parameters are used to transform each depth patch di into the
global reference frame, yielding d

global
i .

Depth Fusion. After optimization, the aligned depth patches
{dglobal

i | i = 1, . . . , n} are fused to produce a single, glob-
ally consistent relative depth map d. The fusion process aver-
ages the depth values in overlapping regions, weighted by their
proximity to the patch center to reduce boundary artifacts. The
resulting depth map d represents the relative distance from each
pixel to the observation viewpoint, adhering to the perspective
projection relationship.

2.3 Relative Height Extraction with View Bias Filter

The relative depth map d provides distances under a perspect-
ive projection, which includes the influence of the observation
viewpoint. In contrast, the relative height h represents the ver-
tical distance from each pixel to a reference plane, following an
orthographic projection model. To extract h we must account
for the continuous and gradually varying effect of the view-
point, which we model as ”terrain variation,” and extract the
viewpoint bias for each pixel using the following pseudocode.

Algorithm 1 View Bias Filter
Require: Relative depth map d, sliding window size s, ground

ratio r, image height H , image width W
Ensure: Relative Height h

for i = 1, 2, . . . , H do
for j = 1, 2, . . . ,W do

window = D(i− s : i+ s, j − s : j + s)
window = Sort(Flatten(window))[0 : r ∗ s2]
bias(i, j) = Mean(window)
h(i, j) = d(i, j)− bias(i, j)

end for
end for

View Bias Modeling. We treat the view bias as a smooth, low-
frequency component of the depth map, representing the under-
lying topography of the scene. To isolate this component, we
design a morphological method to extract the view bias, which
approximates the terrain surface. The morphological approach
applies a series of dilation and erosion operations to smooth the
depth map while preserving large-scale topographic features.
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Figure 2. The study area.

Height Computation. The view biash s is subtracted from the
relative depth map d to obtain the relative height map h. This
operation removes the terrain variation, leaving the vertical dis-
tances of objects (e.g., buildings, trees) relative to the reference
plane. The resulting height map h is suitable for applications
such as urban modeling, infrastructure monitoring, and envir-
onmental analysis.

3. Experiments and discussion

3.1 Data Collection and Metrics

Data Collection. To validate the effectiveness of our pro-
posed method, we conducted experiments in a 2.58 km² area
within the Optics Valley of Wuhan, Hubei Province, as shown
in Fig. 2a. We downloaded the satellite imagery with a 0.5-
meter resolution for this area from the Google Earth platform
(https://earth.google.com/), which offers several advantages, in-
cluding fast updates, high resolution, and wide coverage, mak-
ing it highly suitable for dynamic, high-precision, large-scale
applications. Additionally, we used airborne LiDAR data col-
lected in 2020 as the validation ground truth. The point cloud
was processed using ENVI LiDAR software to generate nDSM
data (Fig. 2b).

Metics. Relative Root Mean Square Error (RRMSE) is a widely
used metric for evaluating the accuracy of predictive models,
particularly for quantifying relative errors between predicted
and actual values. RRMSE is calculated as the ratio of the Root
Mean Square Error (RMSE) to the mean of the actual values,
providing a normalized measure of error that facilitates compar-
ison across datasets with different scales. Its formula is defined
as:

RRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

ȳ
, (5)

where yi denotes the actual value, ŷi the predicted value, n the
number of samples, and ȳ the mean of the actual values. Ad-
ditionally, We employ R² to evaluate the goodness-of-fit of a
predictive model. It quantifies the proportion of the variance in
the dependent variable that is explained by the model, providing
insight into its predictive capability. R² is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)2∑
i = 1n(yi − ȳ)2

, (6)

3.2 Implementation Details

When using Google satellite imagery, the data is typically off-
nadir, resulting in a displacement of the estimated roof height
relative to the building footprint position. To restore accur-
ate relationships between relative building heights, we utilized
MLSBRN (Li et al., 2024) to extract building instance roofs and
their offsets relative to the footprints. The height of each indi-
vidual building instance is determined by the 90th percentile
of the relative height within the predicted roof instance mask,
and this mask is then adjusted by the offset to accurately loc-
ate the building footprint. Furthermore, few studies can achieve
height estimation at the individual building level. MLS-BRN
can also predict the height of each building mask and repres-
ents the current state-of-the-art level, making it a suitable com-
parison method (Li et al., 2024).

Figure 3. The examples predicted by DPv2.

Table 1. Quantitative Comparison for the proposed method and
MLS-BRN.

Metric R² RRMSE
MLS-BRN 0.29 0.53
Ours 0.77 0.25

3.3 Results

The depth prediction examples for each patch using our pro-
posed method are shown in Fig. 3. Leveraging the strong gen-
eralization capability of DAv2, it demonstrates superior depth
prediction performance on remote sensing imagery, capable of
obtaining pixel-level relative heights at the same resolution.
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Figure 4. The visualization result of the View Bias Filter.

Figure 5. The visualization result of 3D building model using different methods.

Due to the high resolution, building boundaries are clearly
defined, enabling height estimation at the individual building
level. After depth alignment through HWGO, all image patches
can be fused into a continuous whole, as shown in 3a. However,
a height reference bias due to the distance from the estimated
viewpoint is clearly observable. Our proposed View Bias Fil-
ter treats this viewpoint-induced bias as terrain undulation (Fig.
3b) and effectively eliminates its impact (Fig. 3c).

The quantitative comparison results between our proposed
method and MLS-BRN are detailed in Table 1, highlighting sig-
nificant performance differences. Our method achieves an R² of
0.77 and an RRMSE of 0.25, demonstrating high accuracy and
reliability in estimating individual building heights across di-
verse urban settings. In contrast, MLS-BRN performs poorly,
with an R² of 0.29 and an RRMSE of 0.53, reflecting its limited
capability in this task.

Few studies currently excel at precise height estimation for in-
dividual buildings, especially in complex urban environments
with varied architectural styles. MLS-BRN’s reliance on su-
pervised training is a key drawback, as its training dataset
lacks sufficient high-rise building samples. This scarcity causes
MLS-BRN to consistently underestimate the heights of taller
structures while also struggling to capture the intricate 3D
morphology of urban landscapes, resulting in poor generaliz-
ation across different scenarios, as shown in Fig. 5. On the
other hand, our method requires no data annotation, making
it more practical and scalable. By utilizing a high-capacity
large-scale relative depth estimation model, our approach ef-
fectively represents buildings of varying heights—from low-
rise to high-rise—with exceptional accuracy and robust gener-

alization, making it a promising tool for applications like urban
planning and 3D city modeling.

4. Conclusion

Due to limited land resources, urbanization is rapidly shifting
towards vertical development, highlighting the urgent need for
accurate and scalable building height estimation to support sus-
tainable urban planning and 3D urban morphology analysis.
Traditional methods, constrained by low-resolution data and
limited generalization across diverse architectural styles, often
fail to provide precise height estimates at the individual build-
ing level. To address these challenges, we have developed a
novel training-free method for relative height estimation from
high-resolution remote sensing (RS) imagery. By segmenting
large RS images into overlapping patches to overcome compu-
tational memory limitations, our method processes each patch
independently using a robust foundational model that excels in
boundary delineation and scene generalization. By integrat-
ing a Height-Weighted Graph Optimization (HWGO) approach,
we ensure consistent depth alignment across patches, while an
innovative View Bias Filter (VBF) effectively converts relat-
ive depth into accurate relative height, eliminating distortions
caused by viewing angles. This framework eliminates the need
for large annotated datasets, offering a practical and efficient
solution. Our method achieves state-of-the-art performance
with an R² of 0.77 and an RRMSE of 0.25. Relying on widely
available RS imagery, combined with its strong generalization
capability and high-resolution output, our approach presents a
promising tool for urban planning, 3D city modeling, and en-
vironmental monitoring. However, the current method only re-
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covers relative building heights. Future work could focus on
enhancing the method’s adaptability to varying imaging condi-
tions and integrating additional data sources to obtain absolute
building heights.
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