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ABSTRACT: 

Positioning, Navigation, and Timing (PNT) solutions are fundamental for autonomous driving, ensuring reliable localization for safe 

vehicle control in diverse environments. While GNSS-based systems provide absolute positioning, they become unreliable in GNSS-

denied scenarios such as urban canyons or tunnels. Dead reckoning techniques, including Visual Odometry (VO), offer an alternative 

by estimating motion from onboard sensors. Integrating these methods with deep learning (DL) has shown potential for enhancing 

robustness, particularly in challenging conditions. This study, part of the VAIPOSA ESA project, investigates the performance of VO 

solutions under various environmental conditions using a simulation-based approach. The CARLA simulator provides controlled 

testing scenarios, enabling the evaluation of VO accuracy across different weather conditions, illumination changes, and dynamic 

environments. A synthetic stereo setup enables capturing error-free ground truth trajectories and fair evaluation of the VO methods. 

Multiple sequences are analyzed, reflecting real-world challenges such as poor visibility, texture variations, and occlusions. The 

findings highlight the influence of environmental factors and dynamic objects on VO performance and the role of DL in mitigating 

common failure modes. 

(a) No traffic day (b) No traffic rainy night (c) No traffic foggy night (d) Traffic day (e) Traffic foggy night

Figure 1: Samples of the five test scenarios with different light, weather and traffic conditions. 

1. INTRODUCTION

1.1 Positioning and mobile mapping systems 

Real-time positioning of a moving agent (i.e., determining its 

position, attitude, and their change in time) is a field of research 

of great interest with countless technical applications. It enables 

robotic platforms or vehicles to navigate through space, execute 

operations either semi-autonomously or fully autonomously, and 

collect spatially enriched data. Examples include precision 

agriculture (Weyler et al., 2023), autonomous vehicles 

(Yurtsever et al., 2020), and planetary exploration (Sanguino et 

al., 2017). A positioning system - carried by humans or animals 

- allows the study of movement patterns for security, medical, or

commercial purposes (Correa et al., 2017; Aziz and Koo, 2025).

Positioning systems typically integrate multiple sensors to

enhance data redundancy and mitigate individual technological

limitations (Fayyad et al., 2020). The cost and accuracy of these

systems vary widely depending on the application. In open-sky

environments, the preferred solution is the Global Navigation

Satellite System (GNSS), which can provide accurate absolute

positioning within a global reference frame. In the automotive

sector, for instance, it is common to integrate GNSS with inertial

measurement units (IMUs), LiDAR, RGB or RGB-D cameras,

and odometry sensors such as wheel encoders (Yeong et al.,

2021). These positioning systems have played - and continue to

play - a crucial role in geomatics, mapping and environment

monitoring. Integrating a positioning system with additional

sensors (e.g., thermometers or pollution detectors) on a mobile

platform enables the collection of spatially and temporally 

referenced data. When coupled with sensors capable of capturing 

geometric and radiometric characteristics of the surrounding 

environment, such as RGB cameras and LiDARs, these systems, 

through direct georeferencing, enable the 3D reconstruction of 

topographic, facility, or infrastructure-related features. Such 

systems, commonly referred to as mobile mapping systems, can 

be mounted on ground-based platforms (e.g. a wheel robot), 

unmanned aerial vehicles (UAVs), or aircraft. In some cases, a 

combination of sensors can contribute to both positioning and 

mapping (as in mobile laser scanning systems; Vaaja et al., 2018) 

while in others, specific sensors are dedicated to positioning, with 

the remaining ones providing geometric or colorimetric data 

(Toth and Grejner-Brzezinska, 2004). For instance, in LiDAR-

camera systems, cameras are often used to supply colorimetric 

information to LiDAR data rather than participating directly in 

the positioning process (Vechersky et al., 2018). 

1.2 Deep learning for positioning 

In recent years, machine learning (ML) and deep learning (DL) 

have significantly advanced scientific and technological fields, 

including positioning systems. In particular, these techniques 

have played a crucial role in the development of Visual Odometry 

(VO) and Visual-SLAM (Simultaneous Localization and 

Mapping) technologies. These approaches aim to simultaneously 

reconstruct the environment in which an agent operates and 

estimate its position within it using one or more RGB cameras 

(Kazerouni et al., 2020). Due to their favorable balance between 
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accuracy, processing time and cost, such technologies have found 

widespread applications in robotics and the automotive sector. 

One of the prevailing approaches in VO and Visual-SLAM 

involve tracking feature points across image sequences, 

triangulating them, and positioning new frames relative to 

previously triangulated points based on photogrammetric 

principles (Scaramuzza and Fraundorfer, 2011). This process is 

followed by local optimization techniques, such as sliding 

window bundle adjustment (BA), and global optimization 

methods, including global BA or pose graph optimization 

(Kümmerle and Grisetti, 2011). In recent years, deep learning has 

been progressively integrated into these frameworks to enhance 

specific tasks, such as tracking local features in images, up to the 

proposal of fully end-to-end DL-based positioning systems (Teed 

and Deng, 2021; Chen et al., 2023; Sarlin et al., 2023; Klenk et 

al., 2024; Wang et al., 2024). Several novel frameworks focus not 

only on real-time positioning, but also consistent large-scale 

mapping (Murai et al., 2024; Zhong et al., 2024). 

 

1.3 The VAIPOSA ESA project and aim of the work 

The VAIPOSA1 project aims to investigate the integration of VO 

solutions with varying levels of DL components alongside 

traditional positioning sensors commonly used in the automotive 

sector. The VAIPOSA project has two main objectives: 

• to assess the performance - in terms of accuracy and 

reliability - of DL-based components for pose estimation, 

particularly in challenging environments such as urban 

canyons or tunnels, where GNSS signals may be partially or 

entirely unavailable.  

• to develop a non-DL-based safety mechanism capable of 

detecting failures in individual positioning components 

before the data fusion process. To ensure greater control over 

test environments and improve the reliability of ground truth 

data, the developed tools are tested within a simulated 

environment, enabling exhaustive verification of their 

performance in autonomous driving scenarios in an urban 

setting. The GNSS signal is simulated considering 

obstruction to the signal due to obstacles along the line of 

sight, and the position estimated in PPP (Elsheikh et al., 

2023). 

This paper focuses specifically on the VO component under 

development in the project – build upon COLMAP-SLAM 

(Morelli et al., 2023a), and analyses advantages and limitations 

of emerging DL-based approaches for vision-based positioning 

of moving agents. We examine deep learning ability to provide 

accurate and reliable solutions even in challenging scenarios, 

such as environments with limited geometric features, dynamic 

objects, poor visibility, or adverse weather conditions. The 

evaluation is performed using synthetically generated stereo 

image sequences rendered in CARLA (Dosovitskiy et al., 2017) 

and comparing the accuracy of estimated trajectories across 

different algorithms. 

 

2. METHODOLOGY 

2.1 Simulator and datasets 

CARLA (Dosovitskiy et al., 2017) simulation environment 

leverages Unreal Engine 42 for rendering. To isolate the 

performance of the Visual Odometry algorithm, data fusion with 

other sensors (e.g., IMU or GNSS) is not considered. CARLA 

ensures a reliable ground truth generation and eliminates 

dependencies on external factors, such as uncertainty of stereo 

system calibration in terms of distortion and relative camera 

orientation. Multiple sequences are generated considering 

 
1 https://vaiposa.fbk.eu/ 

varying atmospheric conditions (rain, fog, etc.) and scene 

characterization (texture, illumination, etc.). Specifically, five 

case studies were examined (Figure 1). Three involved scenarios 

without traffic (i.e., no other vehicles present on the road in either 

direction): (a) daytime with clear weather, (b) nighttime with 

rain, and (c) nighttime with fog. The remaining two scenarios 

included the presence of traffic: (d) daytime with traffic, and (e) 

nighttime with fog and traffic. 

 

 
Figure 2: Example of feature tracking with ALIKE and 

LightGlue in COLMAP-SLAM. 

 

2.2 Visual Odometry algorithms 

Three approaches are considered for performing Visual 

Odometry. The selection was carried out on the basis of testing 

representative visual odometry methods, utilizing deep learning 

solutions at different levels of solving the pose estimation 

problem. Thus, we adopted one method using an end-to-end 

camera pose estimation architecture, one mixing learning-based 

solution for feature extraction and matching with classical 

camera orientation principles, and finally a baseline method, 

which does not incorporate any learning-based components 

(hand-crafted). The specific methods employed were: 

• ORB-SLAM3 (Campos et al., 2021): it is an open-source 

SLAM solution based on hand-crafted algorithms. Image 

correspondences in the stream are based on ORB (Rublee et 

al., 2011), a computationally efficient algorithm well-suited 

for scenarios without significant illumination changes 

between consequent frames. ORB-SLAM3 is widely 

regarded as a benchmark in multiple research domains, 

including computer vision and robotics. The odometry 

estimation relies on a local sliding-window bundle 

adjustment, complemented by a global map optimization 

process based on pose graph optimization. 

• COLMAP-SLAM (Morelli et al., 2023a): the advent of DL 

aimed to overcome limitations of traditional visual 

positioning algorithms by offering solutions that more 

effectively handle challenging illumination conditions. 

COLMAP-SLAM integrates DL methods for the extraction 

and tracking of image correspondences in the image stream 

and uses a sliding-window bundle adjustment to derive all 

unknowns (Morelli et al., 2023b). In our tests, image 

correspondences are extracted coupling ALIKED (Zhao et 

al., 2023), a convolutional network designed for real-time 

local feature extraction, with LightGlue (Lindenberger et al., 

2023), a graph neural network-based matcher which 

identifies correspondences and filter out outliers. LightGlue 

is also optimized for real-time performance, employing an 

adaptive early-exit strategy from different convolution layers 

based on the network's assessment of image complexity. 

Figure 2 shows an example of feature tracking in a simulated 

urban scene. As alternative method, we also tested 

2 https://www.unrealengine.com/en-US 
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SuperPoint (De Tone et al., 2018) combined with LightGlue. 

SuperPoint is a convolutional neural network trained on 

synthetic geometrical shapes with additional training on real 

images and it is considered a reference method between 

sparse DL-based local features.  

• DROID-SLAM (Teed and Deng, 2021): it is an end-to-end 

DL-based SLAM framework that estimates camera poses and 

refined dense depth maps from a sequence of images. For 

each image, the network maintains two state variables: the 

camera pose and the inverse depth, which are updated 

iteratively as new frames arrive. The system builds a dynamic 

frame graph to represent overlapping fields of view between 

images and continuously updates this graph as poses and 

depths are refined. Thanks to that, the framework can 

produce meaningful results even with imperfect input depth 

maps, such as data coming from monocular depth estimation 

(MDE). The Metric3D MDE model (Yin et al., 2023) is used 

to derive depths from the monocular sequences. In the front-

end, a convolution-based learned update operator predicts 

updates to both the pose and depth estimates. At the start of 

each iteration, dense correspondences between image pairs 

are computed to generate optical flow features, which are 

then processed to refine the state estimates. Global 

consistency is enforced by a Dense Bundle Adjustment layer 

that maps these updates into refined camera poses and pixel-

level depth values, minimizing reprojection errors. For this 

study, as we put the focus on the odometry frameworks, we 

disabled the back-end optimization of DROID-SLAM, using 

only its front-end pose estimation with a sliding window 

approach. 

 

3. RESULTS 

The test trajectory spans 1.2 km and primarily consists of a 

closed-loop path with an approximately squared shape (150 

meters per side). The five tested scenarios (Figure 1) depict an 

urban environment with rich textures, no urban canyoning, 

various and traffic conditions and illumination or weather 

changes. The simulated stereo system comprises two cameras 

with identical orientations, mounted 1.40 meters apart on the 

vehicle's roof and aligned with the vehicle’s direction of motion. 

The camera in CARLA is modelled using the pinhole camera 

model, with the principal point located at the centre of the image 

and no radial or other distortions. This ideal imaging setup, free 

from noise and distortion modelling errors, provides an 

opportunity to evaluate the accuracy of the odometry modules 

under analysis without any effects from miscalibration. 

Furthermore, the use of CARLA simulator enables generating a 

reliable ground truth of the stereo camera poses. The autonomous 

agent followed a pre-planned route, maintaining an approximate 

speed of 50 km/h. The five sequences are composed of 858 stereo 

pairs acquired at 5 fps. 

For the quantitative evaluation, two metrics are considered: the 

Absolute Pose Error (APE) and the Relative Pose Error (RPE), 

both computed using the Evo library (Grupp, 2017). APE and 

RPE are calculated by aligning the trajectory estimated with each 

SLAM algorithm with the GT trajectory via a Helmert 

transformation based on all estimated camera positions.  

Table 1 shows the RMSE of APE and RPE comparing the 

estimated poses with the ground truth (GT) trajectories provided 

by the simulator. Figure 4 reports APE box plot subdivided by 

dataset, to easily compare each method performance by 

sequence. Figure 5 reports instead APE box plot subdivided by 

V-SLAM algorithm, showing how each SLAM performs across 

the different sequences. Figures 6 shows, for each dataset, 

trajectories and RPEs in time. Due to the inflation of the metrics 

by scale issues of DROID-SLAM, in the plots we included only 

results of DROID-SLAM with the corrected scale factor. In the 

evaluation, loop closure detection was not utilized and explicitly 

disabled where available (ORB-SLAM and DROID-SLAM), as 

its occurrence is unlikely in typical automotive scenarios and 

would artificially compensate for accumulated drift. 

Nevertheless, a closed, approximately square trajectory was 

selected for evaluation, as it facilitates clearer visualization of 

both translational and rotational drift. 

 

3.1 ORB-SLAM3 without loop closure detection 

The firsts tests with ORB-SLAM3 showed frequent loss of ORB 

feature tracking with default configuration, which necessitates 

repeated reinitialization of the SLAM process (Figure 3). This 

tracking failure may be attributed to the vehicle's speed and the 5 

fps frame rate of the image stream, which likely causes 

significant changes in the appearance of local features, making 

them challenging for ORB to track effectively. Fine-tuning 

specific configuration parameters related to the extraction of 

ORB features enabled the complete trajectory to be reconstructed 

without discontinuities. The parameters that have shown the 

highest impact on the results were: the number of ORB features 

(f) extracted and the number of levels (levels) in the scale 

pyramid.

 

(a) No traffic, day RMSE APE RMSE RPE 

ORB-SLAM3 0.339 0.014 

COLMAP-SLAM-ALIKED 0.874 0.005 

COLMAP-SLAM-SuperPoint 0.570 0.006 

Droid-slam unscaled 10.947 0.164 

Droid-slam scaled 7.283 0.074 
 

(b) No traffic, rainy night RMSE APE RMSE RPE 

ORB-SLAM3 1.801 0.045 

COLMAP-SLAM-ALIKED 0.815 0.007 

COLMAP-SLAM-SuperPoint 0.714 0.007 

Droid-slam unscaled 16.497 0.230 

Droid-slam scaled 10.460 0.094 
 

(c) No traffic, foggy night RMSE APE RMSE RPE 

ORB-SLAM3 0.787 0.016 

COLMAP-SLAM-ALIKED 0.819 0.008 

COLMAP-SLAM-SuperPoint 1.610 0.011 

Droid-slam unscaled 14.951 0.195 

Droid-slam scaled 10.766 0.095 
 

(d) Traffic, day RMSE APE RMSE RPE 

ORB-SLAM3 0.300 0.015 

COLMAP-SLAM-ALIKED 0.486 0.006 

COLMAP-SLAM-SuperPoint 0.647 0.011 

Droid-slam unscaled 10.178 0.144 

Droid-slam scaled 7.547 0.063 
 

 

(e) Traffic, foggy night RMSE APE RMSE RPE 

ORB-SLAM3 - - 

COLMAP-SLAM-ALIKED 19.471 1.826 

COLMAP-SLAM-SuperPoint 11.445 0.110 

Droid-slam unscaled 35.671 0.346 

Droid-slam scaled 35.668 0.349 

Table 1: Absolute Pose Error (APE) and Relative Pose Error (RPE) in meters for the five test datasets. The lowest values in green. 
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The number of ORB features extracted is inextricably linked with 

the number of levels in the scale pyramid: specifically, increasing 

the latter allows to perform a finer tuning on the former. 

Moreover, since pyramid level values larger than 10 have 

exhibited no sensible improvement to the results, and values 

lower than 8 have shown a consistent loss of tracking, especially 

in sharp curves, only values of 10 and 8 have been used. Finally, 

number of ORB features larger than 2000 have shown an 

increased divergence from GT or loss of tracking, especially in 

curves, while values below 700 have shown loss of tracking in 

curves and in sequences with significant lack of visibility and 

adverse weather conditions.  

Variations of the pyramid scale factor, and the initial and 

minimum threshold for detected corners have no significant 

impact on the results, therefore they have been left at the default 

values for all analyses (scaleFactor=1.2, minThFAST=7, 

iniThFAST=20). No single parameter combination was found to 

generalize well across all datasets, and any small change in f and 

number of levels leads to a tracking loss. Table 1 reports the 

results for ORB-SLAM with the best parameters that allowed to 

have a complete trajectory. This highlights the strong sensitivity 

of ORB features to parameter settings and suggests that either 

real-time parameter tuning strategies must be implemented, or 

the potential for tracking failure - and thus the need to reinitialize 

the SLAM system - must be accounted for. 

Despite this sensitivity, ORB-SLAM3 consistently achieved an 

average APE across the four datasets (a-d) between 0.3 and 

1.8 m, i.e. less than 1.5‰ error. This small value can be attributed 

to the ideal pinhole camera model without any errors in the 

estimation of camera distortions. In the foggy-night traffic 

scenario, the worst scenario in terms of visibility, ORB-SLAM3 

failed to recover the full trajectory, even with fine tuning of the 

afore-mentioned critical parameters.  In terms of relative pose 

error, RMSE RPE is at centimeter level, ranging from 1.4 to 4.5 

cm. 

 
Figure 3: Trajectory estimation with ORB-SLAM 3 with default 

parameters. Colors show the timestamps (from blue through 

green to red). 

 

3.2 COLMAP-SLAM 

In the COLMAP-SLAM solution, ALIKED and SuperPoint 

combined with LightGlue are utilized for both feature tracking 

and mapping. An example of feature tracking in COLMAP-

SLAM is reported in Figure 2. The average optical flow is used 

for keyframe selection, therefore only frames showing enough 

change in the scene appearance are considered as keyframes (5 

px threshold). Differently from ORB-SLAM, the initial tests 

revealed continuity in feature tracking, enabling the estimation of 

a single trajectory across the five test datasets without specific 

parameter fine tuning.  As shown in Table 1 and Figure 4, 

COLMAP-SLAM achieved APE in the range of 0.57 and 1.61 m, 

i.e., less than 1.3‰ error. It managed to orient all the keyframes 

also in the most challenging scenarios (e), traffic, foggy night, 

even if a quite high RMSE APE of 19.47 m for ALIKE and 11.44 

m for SuperPoint. Even if APE errors are quite high, the relative 

error RPE for SuperPoint (11 cm) has the same order of 

magnitude of the other datasets, while the RPE of ALIKED is 

significantly higher because of an outlier. 

Although COLMAP-SLAM demonstrates continuous tracking 

and produces a seamless trajectory across all test cases, in the 

initial tests with both ALIKED and SuperPoint feature extractors, 

it exhibited significant performance degradation when the 

number of keypoints was limited to a maximum of 1000. When 

no such constraint is applied - resulting in approximately 3000 

features per image - the APE improves substantially up to two 

times, therefore in the results are reported only for the scenarios 

where max number of features are extracted.  

 

3.3 DROID-SLAM front-end 

Compared to ORB-SLAM3, DROID-SLAM successfully 

maintains a continuous trajectory throughout all tested image 

sequences. However, it exhibits more pronounced drift 

accumulation than COLMAP-SLAM, with an APE RMSE 

significantly bigger both with and without scaling factor re-

estimation This substantially lower accuracy compared to 

COLMAP-SLAM is partially attributable to DROID-SLAM’s 

reliance on a monocular camera and a neural network-based 

approach for monocular depth estimation (Yin et al., 2023). The 

decrease in APE error is also reflected by the RPE that it 

consistently at least ten times worse with respect to ORB-

SLAM3 and COLMAP-SLAM. Thus, since DROID-SLAM uses 

a sliding window optimization approach, limiting the number of 

wrongly oriented frames through outlier detection could 

potentially improve its reliability and accuracy. Nevertheless, 

DROID-SLAM produced smooth and topologically correct 

trajectories in all test cases, including the most challenging 

dynamic night scenario.  

As the DROID-SLAM pose estimation is based on a mixture of 

RGB and prior depth information, a monocular depth prediction 

was performed. Due to that, the resulting trajectory is not 

properly scaled. Although the issue could be theoretically solved 

by employing a dense stereo depth estimation, initial trials with 

using such a model did not result in a topologically correct 

trajectory. A potential cause of such phenomenon could be that 

the original weights of DROID-SLAM, pretrained strictly on 

simulated sequences with monocular cameras, do not generalize 

well to the dense stereo metric input. 

 

3.4 Discussion 

Five synthetic datasets were generated using CARLA to allow 

full control over illumination, weather conditions, and the 

presence or absence of dynamic objects (e.g., traffic), while also 

providing access to reliable ground truth data. A comparison of 

APE performance indicates that both ORB-SLAM and 

COLMAP-SLAM are viable alternatives. However, ORB-SLAM 

requires careful parameter tuning for ORB feature extraction to 

maintain robust tracking; otherwise, frequent reinitialization of 

the SLAM system may be necessary. DROID-SLAM and 

COLMAP-SLAM are capable of handling even the most 

challenging sequence (e) traffic-foggy-dark without losing 

tracking, though with generally higher error compared to other 

sequences. Notably, in most cases, DROID-SLAM exhibits an 

RMSE APE at least an order of magnitude higher than that of 

ORB-SLAM and COLMAP-SLAM, showing that there is space 

of improvements for end-to-end DL SLAM approaches. 
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(a) No traffic, day (b) No traffic, rainy night (c) No traffic, foggy night 

 

  
(d) Traffic, day (e) Traffic, foggy night 

 

Figure 4: Distributions of APE for all examined VO methods group by the test scenario (a – e). 

 

 

 

 

 

(a) ORB-SLAM3 odometry (b) DROID-SLAM odometry 

  
(c) COLMAP-SLAM-ALIKED (d) COLMAP-SLAM-SuperPoint 

 

Figure 5: Distributions of APE for all successfully processed test sequences grouped by the VO module (a – d). 

 

On the other hand, the performance of DROID-SLAM is 

noteworthy, given that it is based on monocular depth estimation. 

Figure 5 illustrates the performance of each method across the 

different datasets. The results indicate that the presence of traffic 

- although not particularly dense - does not substantially degrade 

APE performance under favourable lighting conditions. This is 

likely due to the abundance of visual features, which enables the 

exclusion of tie points associated with moving objects during the 

RANSAC process. In contrast, when traffic is combined with 

nighttime lighting and fog, the scarcity of features impairs the 
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(a) no traffic nominal (b) no traffic rainy-dark (c) no traffic foggy-dark 

 

 
 

(d) traffic nominal. (e) traffic foggy-dark. 

 

Figure 6: Planar projection of the trajectories and RPE in time for every tested VO solution for all sequences (a – e). 

 

ability to filter out tie points of dynamic objects, resulting in a 

significant increase in APE. In the absence of traffic, sequences 

with nighttime lighting rain and fog (b and c) consistently yield 

worse performance compared to the reference datasets, i.e., 

daylight without traffic scenario (a) and daylight with traffic (d). 

 

 

4. CONCLUSIONS 

This study presents a comparative evaluation of three SLAM 

algorithms - ORB-SLAM3, COLMAP-SLAM, and DROID-

SLAM - within a realistic urban simulation environment 

designed to reflect typical automotive operating conditions. The 

results indicate that while ORB-SLAM3 and COLMAP-SLAM 

achieve the best absolute pose error (APE) across most scenarios, 

ORB-SLAM3 is highly sensitive to configuration parameters and 

prone to tracking failures unless finely tuned. COLMAP-SLAM 

offers a robust alternative, demonstrating consistent feature 

tracking keeping accurate trajectory estimation also in 

challenging conditions, albeit with higher APE in the most 

difficult scene (traffic with nighttime light condition and fog). 

DROID-SLAM, though capable of maintaining continuous 

tracking, suffers from significant drift and reduced accuracy, 

likely due to its monocular input and learned depth estimation 

strategy. Overall, the reported findings underscore the 

importance of matching SLAM system design choices - feature 

type, configuration flexibility, and sensor modality.  

In future work, testing will be expanded to include longer 

trajectories and more diverse environments, with a particular 

focus on urban canyon scenarios. Additionally, these visual 

odometry algorithms will be integrated with other simulated 

sensors, such as wheel odometry, inertial measurement units, and 

global navigation satellite systems. 
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