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ABSTRACT:

Positioning, Navigation, and Timing (PNT) solutions are fundamental for autonomous driving, ensuring reliable localization for safe
vehicle control in diverse environments. While GNSS-based systems provide absolute positioning, they become unreliable in GNSS-
denied scenarios such as urban canyons or tunnels. Dead reckoning techniques, including Visual Odometry (VO), offer an alternative
by estimating motion from onboard sensors. Integrating these methods with deep learning (DL) has shown potential for enhancing
robustness, particularly in challenging conditions. This study, part of the VAIPOSA ESA project, investigates the performance of VO
solutions under various environmental conditions using a simulation-based approach. The CARLA simulator provides controlled
testing scenarios, enabling the evaluation of VO accuracy across different weather conditions, illumination changes, and dynamic
environments. A synthetic stereo setup enables capturing error-free ground truth trajectories and fair evaluation of the VO methods.
Multiple sequences are analyzed, reflecting real-world challenges such as poor visibility, texture variations, and occlusions. The
findings highlight the influence of environmental factors and dynamic objects on VO performance and the role of DL in mitigating

common failure modes.

(a‘)ANo traffic day (b) No traffic rainy night

(c) No traffic foggy night

(e) Traffic foggy night

(d) Traffic day

@

Figure 1: Samples of the five test scenarios with different light, weather and traffic conditions.

1. INTRODUCTION

1.1 Positioning and mobile mapping systems

Real-time positioning of a moving agent (i.e., determining its
position, attitude, and their change in time) is a field of research
of great interest with countless technical applications. It enables
robotic platforms or vehicles to navigate through space, execute
operations either semi-autonomously or fully autonomously, and
collect spatially enriched data. Examples include precision
agriculture  (Weyler et al.,, 2023), autonomous vehicles
(Yurtsever et al., 2020), and planetary exploration (Sanguino et
al., 2017). A positioning system - carried by humans or animals
- allows the study of movement patterns for security, medical, or
commercial purposes (Correa et al., 2017; Aziz and Koo, 2025).
Positioning systems typically integrate multiple sensors to
enhance data redundancy and mitigate individual technological
limitations (Fayyad et al., 2020). The cost and accuracy of these
systems vary widely depending on the application. In open-sky
environments, the preferred solution is the Global Navigation
Satellite System (GNSS), which can provide accurate absolute
positioning within a global reference frame. In the automotive
sector, for instance, it is common to integrate GNSS with inertial
measurement units (IMUs), LIDAR, RGB or RGB-D cameras,
and odometry sensors such as wheel encoders (Yeong et al.,
2021). These positioning systems have played - and continue to
play - a crucial role in geomatics, mapping and environment
monitoring. Integrating a positioning system with additional
sensors (e.g., thermometers or pollution detectors) on a mobile

platform enables the collection of spatially and temporally
referenced data. When coupled with sensors capable of capturing
geometric and radiometric characteristics of the surrounding
environment, such as RGB cameras and LiDARs, these systems,
through direct georeferencing, enable the 3D reconstruction of
topographic, facility, or infrastructure-related features. Such
systems, commonly referred to as mobile mapping systems, can
be mounted on ground-based platforms (e.g. a wheel robot),
unmanned aerial vehicles (UAVs), or aircraft. In some cases, a
combination of sensors can contribute to both positioning and
mapping (as in mobile laser scanning systems; Vaaja et al., 2018)
while in others, specific sensors are dedicated to positioning, with
the remaining ones providing geometric or colorimetric data
(Toth and Grejner-Brzezinska, 2004). For instance, in LiDAR-
camera systems, cameras are often used to supply colorimetric
information to LiDAR data rather than participating directly in
the positioning process (Vechersky et al., 2018).

1.2 Deep learning for positioning

In recent years, machine learning (ML) and deep learning (DL)
have significantly advanced scientific and technological fields,
including positioning systems. In particular, these techniques
have played a crucial role in the development of Visual Odometry
(VO) and Visual-SLAM (Simultaneous Localization and
Mapping) technologies. These approaches aim to simultaneously
reconstruct the environment in which an agent operates and
estimate its position within it using one or more RGB cameras
(Kazerouni et al., 2020). Due to their favorable balance between
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accuracy, processing time and cost, such technologies have found
widespread applications in robotics and the automotive sector.
One of the prevailing approaches in VO and Visual-SLAM
involve tracking feature points across image sequences,
triangulating them, and positioning new frames relative to
previously triangulated points based on photogrammetric
principles (Scaramuzza and Fraundorfer, 2011). This process is
followed by local optimization techniques, such as sliding
window bundle adjustment (BA), and global optimization
methods, including global BA or pose graph optimization
(Kiimmerle and Grisetti, 2011). In recent years, deep learning has
been progressively integrated into these frameworks to enhance
specific tasks, such as tracking local features in images, up to the
proposal of fully end-to-end DL-based positioning systems (Teed
and Deng, 2021; Chen et al., 2023; Sarlin et al., 2023; Klenk et
al., 2024; Wang et al., 2024). Several novel frameworks focus not
only on real-time positioning, but also consistent large-scale
mapping (Murai et al., 2024; Zhong et al., 2024).

1.3 The VAIPOSA ESA project and aim of the work

The VAIPOSA! project aims to investigate the integration of VO

solutions with varying levels of DL components alongside

traditional positioning sensors commonly used in the automotive
sector. The VAIPOSA project has two main objectives:

e to assess the performance - in terms of accuracy and
reliability - of DL-based components for pose estimation,
particularly in challenging environments such as urban
canyons or tunnels, where GNSS signals may be partially or
entirely unavailable.

e to develop a non-DL-based safety mechanism capable of
detecting failures in individual positioning components
before the data fusion process. To ensure greater control over
test environments and improve the reliability of ground truth
data, the developed tools are tested within a simulated
environment, enabling exhaustive verification of their
performance in autonomous driving scenarios in an urban
setting. The GNSS signal is simulated considering
obstruction to the signal due to obstacles along the line of
sight, and the position estimated in PPP (Elsheikh et al.,
2023).

This paper focuses specifically on the VO component under

development in the project — build upon COLMAP-SLAM

(Morelli et al., 2023a), and analyses advantages and limitations

of emerging DL-based approaches for vision-based positioning

of moving agents. We examine deep learning ability to provide
accurate and reliable solutions even in challenging scenarios,
such as environments with limited geometric features, dynamic
objects, poor visibility, or adverse weather conditions. The
evaluation is performed using synthetically generated stereo

image sequences rendered in CARLA (Dosovitskiy et al., 2017)

and comparing the accuracy of estimated trajectories across

different algorithms.

2. METHODOLOGY

2.1 Simulator and datasets

CARLA (Dosovitskiy et al., 2017) simulation environment
leverages Unreal Engine 4% for rendering. To isolate the
performance of the Visual Odometry algorithm, data fusion with
other sensors (e.g., IMU or GNSS) is not considered. CARLA
ensures a reliable ground truth generation and eliminates
dependencies on external factors, such as uncertainty of stereo
system calibration in terms of distortion and relative camera
orientation. Multiple sequences are generated considering

L https://vaiposa.fbk.eu/

varying atmospheric conditions (rain, fog, etc.) and scene
characterization (texture, illumination, etc.). Specifically, five
case studies were examined (Figure 1). Three involved scenarios
without traffic (i.e., no other vehicles present on the road in either
direction): (a) daytime with clear weather, (b) nighttime with
rain, and (c) nighttime with fog. The remaining two scenarios
included the presence of traffic: (d) daytime with traffic, and (e)
nighttime with fog and traffic.

Figure 2: Example of feature tracking with ALIKE and
LightGlue in COLMAP-SLAM.

E

2.2 Visual Odometry algorithms

Three approaches are considered for performing Visual
Odometry. The selection was carried out on the basis of testing
representative visual odometry methods, utilizing deep learning
solutions at different levels of solving the pose estimation
problem. Thus, we adopted one method using an end-to-end
camera pose estimation architecture, one mixing learning-based
solution for feature extraction and matching with classical
camera orientation principles, and finally a baseline method,
which does not incorporate any learning-based components

(hand-crafted). The specific methods employed were:

e ORB-SLAM3 (Campos et al., 2021): it is an open-source
SLAM solution based on hand-crafted algorithms. Image
correspondences in the stream are based on ORB (Rublee et
al., 2011), a computationally efficient algorithm well-suited
for scenarios without significant illumination changes
between consequent frames. ORB-SLAM3 is widely
regarded as a benchmark in multiple research domains,
including computer vision and robotics. The odometry
estimation relies on a local sliding-window bundle
adjustment, complemented by a global map optimization
process based on pose graph optimization.

e COLMAP-SLAM (Morelli et al., 2023a): the advent of DL
aimed to overcome limitations of traditional visual
positioning algorithms by offering solutions that more
effectively handle challenging illumination conditions.
COLMAP-SLAM integrates DL methods for the extraction
and tracking of image correspondences in the image stream
and uses a sliding-window bundle adjustment to derive all
unknowns (Morelli et al., 2023b). In our tests, image
correspondences are extracted coupling ALIKED (Zhao et
al., 2023), a convolutional network designed for real-time
local feature extraction, with LightGlue (Lindenberger et al.,
2023), a graph neural network-based matcher which
identifies correspondences and filter out outliers. LightGlue
is also optimized for real-time performance, employing an
adaptive early-exit strategy from different convolution layers
based on the network's assessment of image complexity.
Figure 2 shows an example of feature tracking in a simulated
urban scene. As alternative method, we also tested

2 https://www.unrealengine.com/en-US
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SuperPoint (De Tone et al., 2018) combined with LightGlue.
SuperPoint is a convolutional neural network trained on
synthetic geometrical shapes with additional training on real
images and it is considered a reference method between
sparse DL-based local features.

e DROID-SLAM (Teed and Deng, 2021): it is an end-to-end
DL-based SLAM framework that estimates camera poses and
refined dense depth maps from a sequence of images. For
each image, the network maintains two state variables: the
camera pose and the inverse depth, which are updated
iteratively as new frames arrive. The system builds a dynamic
frame graph to represent overlapping fields of view between
images and continuously updates this graph as poses and
depths are refined. Thanks to that, the framework can
produce meaningful results even with imperfect input depth
maps, such as data coming from monocular depth estimation
(MDE). The Metric3D MDE model (Yin et al., 2023) is used
to derive depths from the monocular sequences. In the front-
end, a convolution-based learned update operator predicts
updates to both the pose and depth estimates. At the start of
each iteration, dense correspondences between image pairs
are computed to generate optical flow features, which are
then processed to refine the state estimates. Global
consistency is enforced by a Dense Bundle Adjustment layer
that maps these updates into refined camera poses and pixel-
level depth values, minimizing reprojection errors. For this
study, as we put the focus on the odometry frameworks, we
disabled the back-end optimization of DROID-SLAM, using
only its front-end pose estimation with a sliding window
approach.

3. RESULTS

The test trajectory spans 1.2 km and primarily consists of a
closed-loop path with an approximately squared shape (150
meters per side). The five tested scenarios (Figure 1) depict an
urban environment with rich textures, no urban canyoning,
various and traffic conditions and illumination or weather
changes. The simulated stereo system comprises two cameras
with identical orientations, mounted 1.40 meters apart on the
vehicle's roof and aligned with the vehicle’s direction of motion.
The camera in CARLA is modelled using the pinhole camera
model, with the principal point located at the centre of the image
and no radial or other distortions. This ideal imaging setup, free
from noise and distortion modelling errors, provides an
opportunity to evaluate the accuracy of the odometry modules

under analysis without any effects from miscalibration.
Furthermore, the use of CARLA simulator enables generating a
reliable ground truth of the stereo camera poses. The autonomous
agent followed a pre-planned route, maintaining an approximate
speed of 50 km/h. The five sequences are composed of 858 stereo
pairs acquired at 5 fps.

For the quantitative evaluation, two metrics are considered: the
Absolute Pose Error (APE) and the Relative Pose Error (RPE),
both computed using the Evo library (Grupp, 2017). APE and
RPE are calculated by aligning the trajectory estimated with each
SLAM algorithm with the GT trajectory via a Helmert
transformation based on all estimated camera positions.

Table 1 shows the RMSE of APE and RPE comparing the
estimated poses with the ground truth (GT) trajectories provided
by the simulator. Figure 4 reports APE box plot subdivided by
dataset, to easily compare each method performance by
sequence. Figure 5 reports instead APE box plot subdivided by
V-SLAM algorithm, showing how each SLAM performs across
the different sequences. Figures 6 shows, for each dataset,
trajectories and RPEs in time. Due to the inflation of the metrics
by scale issues of DROID-SLAM, in the plots we included only
results of DROID-SLAM with the corrected scale factor. In the
evaluation, loop closure detection was not utilized and explicitly
disabled where available (ORB-SLAM and DROID-SLAM), as
its occurrence is unlikely in typical automotive scenarios and
would artificially compensate for accumulated  drift.
Nevertheless, a closed, approximately square trajectory was
selected for evaluation, as it facilitates clearer visualization of
both translational and rotational drift.

3.1 ORB-SLAMS3 without loop closure detection

The firsts tests with ORB-SLAMS3 showed frequent loss of ORB
feature tracking with default configuration, which necessitates
repeated reinitialization of the SLAM process (Figure 3). This
tracking failure may be attributed to the vehicle's speed and the 5
fps frame rate of the image stream, which likely causes
significant changes in the appearance of local features, making
them challenging for ORB to track effectively. Fine-tuning
specific configuration parameters related to the extraction of
ORB features enabled the complete trajectory to be reconstructed
without discontinuities. The parameters that have shown the
highest impact on the results were: the number of ORB features
(f) extracted and the number of levels (levels) in the scale
pyramid.

(a) No traffic, day RMSE APE RMSE RPE (b) No traffic, rainy night RMSE APE RMSE RPE
ORB-SLAM3 0.339 0.014 ORB-SLAM3 1.801 0.045
COLMAP-SLAM-ALIKED 0.874 0.005 COLMAP-SLAM-ALIKED 0.815 0.007
COLMAP-SLAM-SuperPoint 0.570 0.006 COLMAP-SLAM-SuperPoint 0.714 0.007
Droid-slam unscaled 10.947 0.164 Droid-slam unscaled 16.497 0.230
Droid-slam scaled 7.283 0.074 Droid-slam scaled 10.460 0.094
(c) No traffic, foggy night RMSE APE RMSE RPE (d) Traffic, day RMSE APE RMSE RPE
ORB-SLAM3 0.787 0.016 ORB-SLAM3 0.300 0.015
COLMAP-SLAM-ALIKED 0.819 0.008 COLMAP-SLAM-ALIKED 0.486 0.006
COLMAP-SLAM-SuperPoint 1.610 0.011 COLMAP-SLAM-SuperPoint 0.647 0.011
Droid-slam unscaled 14.951 0.195 Droid-slam unscaled 10.178 0.144
Droid-slam scaled 10.766 0.095 Droid-slam scaled 7.547 0.063
(e) Traffic, foggy night RMSE APE RMSE RPE
ORB-SLAM3 - -
COLMAP-SLAM-ALIKED 19.471 1.826
COLMAP-SLAM-SuperPoint 11.445 0.110
Droid-slam unscaled 35.671 0.346
Droid-slam scaled 35.668 0.349

Table 1: Absolute Pose Error (APE) and Relative Pose Error (RPE) in meters for the five test datasets. The lowest values in green.
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The number of ORB features extracted is inextricably linked with
the number of levels in the scale pyramid: specifically, increasing
the latter allows to perform a finer tuning on the former.
Moreover, since pyramid level values larger than 10 have
exhibited no sensible improvement to the results, and values
lower than 8 have shown a consistent loss of tracking, especially
in sharp curves, only values of 10 and 8 have been used. Finally,
number of ORB features larger than 2000 have shown an
increased divergence from GT or loss of tracking, especially in
curves, while values below 700 have shown loss of tracking in
curves and in sequences with significant lack of visibility and
adverse weather conditions.

Variations of the pyramid scale factor, and the initial and
minimum threshold for detected corners have no significant
impact on the results, therefore they have been left at the default
values for all analyses (scaleFactor=1.2, minThFAST=7,
iniThFAST=20). No single parameter combination was found to
generalize well across all datasets, and any small change in f and
number of levels leads to a tracking loss. Table 1 reports the
results for ORB-SLAM with the best parameters that allowed to
have a complete trajectory. This highlights the strong sensitivity
of ORB features to parameter settings and suggests that either
real-time parameter tuning strategies must be implemented, or
the potential for tracking failure - and thus the need to reinitialize
the SLAM system - must be accounted for.

Despite this sensitivity, ORB-SLAM3 consistently achieved an
average APE across the four datasets (a-d) between 0.3 and
1.8 m, i.e. less than 1.5%o error. This small value can be attributed
to the ideal pinhole camera model without any errors in the
estimation of camera distortions. In the foggy-night traffic
scenario, the worst scenario in terms of visibility, ORB-SLAM3
failed to recover the full trajectory, even with fine tuning of the
afore-mentioned critical parameters. In terms of relative pose
error, RMSE RPE is at centimeter level, ranging from 1.4 to 4.5
cm.

K 2}
|
100 X

Figure 3: Trajectory estimation with ORB-SLAM 3 with default
parameters. Colors show the timestamps (from blue through
green to red).

3.2 COLMAP-SLAM

In the COLMAP-SLAM solution, ALIKED and SuperPoint
combined with LightGlue are utilized for both feature tracking
and mapping. An example of feature tracking in COLMAP-
SLAM is reported in Figure 2. The average optical flow is used
for keyframe selection, therefore only frames showing enough
change in the scene appearance are considered as keyframes (5
px threshold). Differently from ORB-SLAM, the initial tests
revealed continuity in feature tracking, enabling the estimation of
a single trajectory across the five test datasets without specific
parameter fine tuning. As shown in Table 1 and Figure 4,
COLMAP-SLAM achieved APE in the range of 0.57 and 1.61 m,

i.e., less than 1.3%o error. It managed to orient all the keyframes
also in the most challenging scenarios (e), traffic, foggy night,
even if a quite high RMSE APE of 19.47 m for ALIKE and 11.44
m for SuperPoint. Even if APE errors are quite high, the relative
error RPE for SuperPoint (11 cm) has the same order of
magnitude of the other datasets, while the RPE of ALIKED is
significantly higher because of an outlier.

Although COLMAP-SLAM demonstrates continuous tracking
and produces a seamless trajectory across all test cases, in the
initial tests with both ALIKED and SuperPoint feature extractors,
it exhibited significant performance degradation when the
number of keypoints was limited to a maximum of 1000. When
no such constraint is applied - resulting in approximately 3000
features per image - the APE improves substantially up to two
times, therefore in the results are reported only for the scenarios
where max number of features are extracted.

3.3 DROID-SLAM front-end

Compared to ORB-SLAM3, DROID-SLAM successfully
maintains a continuous trajectory throughout all tested image
sequences. However, it exhibits more pronounced drift
accumulation than COLMAP-SLAM, with an APE RMSE
significantly bigger both with and without scaling factor re-
estimation This substantially lower accuracy compared to
COLMAP-SLAM is partially attributable to DROID-SLAM’s
reliance on a monocular camera and a neural network-based
approach for monocular depth estimation (Yin et al., 2023). The
decrease in APE error is also reflected by the RPE that it
consistently at least ten times worse with respect to ORB-
SLAM3 and COLMAP-SLAM. Thus, since DROID-SLAM uses
a sliding window optimization approach, limiting the number of
wrongly oriented frames through outlier detection could
potentially improve its reliability and accuracy. Nevertheless,
DROID-SLAM produced smooth and topologically correct
trajectories in all test cases, including the most challenging
dynamic night scenario.

As the DROID-SLAM pose estimation is based on a mixture of
RGB and prior depth information, a monocular depth prediction
was performed. Due to that, the resulting trajectory is not
properly scaled. Although the issue could be theoretically solved
by employing a dense stereo depth estimation, initial trials with
using such a model did not result in a topologically correct
trajectory. A potential cause of such phenomenon could be that
the original weights of DROID-SLAM, pretrained strictly on
simulated sequences with monocular cameras, do not generalize
well to the dense stereo metric input.

3.4 Discussion

Five synthetic datasets were generated using CARLA to allow
full control over illumination, weather conditions, and the
presence or absence of dynamic objects (e.g., traffic), while also
providing access to reliable ground truth data. A comparison of
APE performance indicates that both ORB-SLAM and
COLMAP-SLAM are viable alternatives. However, ORB-SLAM
requires careful parameter tuning for ORB feature extraction to
maintain robust tracking; otherwise, frequent reinitialization of
the SLAM system may be necessary. DROID-SLAM and
COLMAP-SLAM are capable of handling even the most
challenging sequence (e) traffic-foggy-dark without losing
tracking, though with generally higher error compared to other
sequences. Notably, in most cases, DROID-SLAM exhibits an
RMSE APE at least an order of magnitude higher than that of
ORB-SLAM and COLMAP-SLAM, showing that there is space
of improvements for end-to-end DL SLAM approaches.
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On the other hand, the performance of DROID-SLAM is
noteworthy, given that it is based on monocular depth estimation.
Figure 5 illustrates the performance of each method across the
different datasets. The results indicate that the presence of traffic
- although not particularly dense - does not substantially degrade

APE performance under favourable lighting conditions. This is
likely due to the abundance of visual features, which enables the
exclusion of tie points associated with moving objects during the
RANSAC process. In contrast, when traffic is combined with
nighttime lighting and fog, the scarcity of features impairs the
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Figure 6: Planar projection of the trajectories and RPE in time for every tested VO solution for all sequences (a — e).

ability to filter out tie points of dynamic objects, resulting in a
significant increase in APE. In the absence of traffic, sequences
with nighttime lighting rain and fog (b and c) consistently yield
worse performance compared to the reference datasets, i.e.,
daylight without traffic scenario (a) and daylight with traffic (d).

4. CONCLUSIONS

This study presents a comparative evaluation of three SLAM
algorithms - ORB-SLAM3, COLMAP-SLAM, and DROID-
SLAM - within a realistic urban simulation environment
designed to reflect typical automotive operating conditions. The
results indicate that while ORB-SLAM3 and COLMAP-SLAM
achieve the best absolute pose error (APE) across most scenarios,
ORB-SLAMS is highly sensitive to configuration parameters and
prone to tracking failures unless finely tuned. COLMAP-SLAM
offers a robust alternative, demonstrating consistent feature
tracking keeping accurate trajectory estimation also in
challenging conditions, albeit with higher APE in the most
difficult scene (traffic with nighttime light condition and fog).
DROID-SLAM, though capable of maintaining continuous
tracking, suffers from significant drift and reduced accuracy,
likely due to its monocular input and learned depth estimation
strategy. Overall, the reported findings underscore the
importance of matching SLAM system design choices - feature
type, configuration flexibility, and sensor modality.

In future work, testing will be expanded to include longer
trajectories and more diverse environments, with a particular
focus on urban canyon scenarios. Additionally, these visual
odometry algorithms will be integrated with other simulated
sensors, such as wheel odometry, inertial measurement units, and
global navigation satellite systems.
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