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Abstract 
Point clouds acquired by Mobile Mapping System (MMS) are useful for creating 3D maps that can be used for autonomous driving 
and infrastructure development. However, many applications require semantic labels to each point of the point clouds, and the manual 
labeling process is very time consuming and expensive. Therefore, there is a strong need to develop a method to automatically assigning 
semantic labels. For automatic labeling tasks, classification methods using multiscale features are effective because multiscale features 
include features of various scales of roadside objects. Multiscale features are calculated using points inside spheres of multiscale radii 
centered at each point in a point cloud. When calculating multiscale features that are useful for classifying MMS point clouds, it is 
necessary to calculate features using relatively large radii. However, when calculating multiscale features using wide range of neighbor 
points, existing methods, such as kd-tree, require unacceptably long computation time for neighbor search. In this paper, we propose 
a method to calculate multiscale features in practical time for semantic labeling of large-scale point clouds. In our method, an MMS 
point cloud is first divided into small spherical regions. Then, radius search using multiscale radii is performed, and multiscale features 
are calculated using those neighbor points. Our experimental results showed that our method achieved significantly faster 
computational performance than conventional methods, and multiscale features could be calculated from large-scale point clouds in 
practical time. 
 
 

1. Introduction 

Point clouds acquired by Mobile Mapping System (MMS) can be 
used for 3D map creation, infrastructure maintenance, and so on. 
In many applications, it is necessary to segment point clouds by 
adding a feature label to each point. Since it is very time-
consuming to manually perform labelling tasks, there is a strong 
need to develop a method to automatically add feature labels to 
MMS point clouds. 
 
For automatic labeling tasks, classification methods using 
multiscale features are effective because multiscale features 
include features of various scales of roadside objects. Previous 
studies such as (Weinmann, 2017) have shown that multi-scale 
features are effective in automatically labeling point clouds with 
a high success rate. Multiscale features are calculated using 
points inside spheres with various radii centered at each point in 
a point cloud, as shown in Figure 1.  
 
However, the calculation of multiscale features for large-scale 
point clouds often requires unacceptable computation time. This 
is because neighbor searches at various scales require a lot of 
computation time. Table 1 shows the computation time for multi-
scale features of 4.8 million points when neighbor points were 
searched using FLANN (Muja and Lowe, 2009).  
 
The kd-tree (Bentley, 1975) has been commonly used in neighbor 
search for point clouds. However, when the search radius is large, 
kd-tree is time-consuming because it traverses a large area of 
nodes in 3D space. The kd-tree is efficient when the search radius 
is small, but it is not efficient for large radii. Table 1 shows that 
as the radius increases by a factor of n, the computation time is 
approximately n squared. This is due to MMS point clouds tend 
to be distributed in planar regions. 
 

In our experiments, as described in a later section, features 
computed using relatively large radii had a high contribution to 
the classification of MMS point clouds. However, in Table 1, it 
took more than 16 hours to classify only 4.8 million points using 
exact multi-scale features with radii of 1m, 2m, 3m and 5m. Since 
the state-of-the-art laser scanners for the MMS can measure more 
than 1 million points per second, the actual MMS point cloud 
contains far more points than this example. Therefore, it is 
difficult to obtain multi-scale features from actual MMS point 
clouds in practical time. 
 
A straightforward way to address this problem is to down-sample 
point clouds instead of computing exact neighborhoods for each 
point. However, down-sampling may result in the loss of small-
scale features.  To avoid the loss of features, (Hackel, 2016) 
down-sampled point clouds at multiple scales with decreasing 

 

 
 (a) Neighbor points at multiple radii       (b) Classified points 

Figure 1. Classification using multi-scale features 
 
Table 1. Calculation time for multi-scale features using FLANN  

Radius 1m 2m 3m 5m Total 
Time 3035.7s 12322.2s 27498.2s 64236.7s 107092.8s 
Rate 1 4.06 9.06 21.16 35.28 
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point density, and generated a separate search structure per scale 
level.  In this method, approximate features are computed from 
down-sampled points rather than computing exact features from 
all points within a certain distance. Thus, computation time is 
greatly improved. However, it is not easy to determine the 
appropriate number of scales and their grid sizes for detecting 
various scale of features. It is difficult to predict in advance the 
contribution of features at each scale, especially in machine 
learning. Therefore, it is necessary to determine the scales 
experimentally. 
 
Efficient neighbor search methods without down-sampling have 
also been proposed. (Nüchter, 2007) accelerated neighbor search 
by using cached kd-trees. This method can effectively detect 
neighbor points by using the history of node search in a kd-tree 
for previous point.  However, it is difficult to dramatically reduce 
computation time with this method. As shown in Table 1, 
neighbor search for a large-scale point cloud takes an enormous 
amount of computation time. It is difficult to use multi-scale 
features in practical applications without dramatic improvement. 
 
In this paper, we propose a new method to efficiently compute 
multi-scale features of point clouds and classify each point using 
machine learning. Unlike the method of (Hackel, 2016), our 
method computes multi-scale features using exact neighbor 
points without down-sampling the points. Therefore, our method 
does not suffer from the loss of small-scale features due to down-
sampling. Our method achieves efficiency by computing 
accurate multi-scale features only for representative points in a 
two-step neighbor search, instead of computing the exact features 
for all points.  
 
In the following section, we outline the proposed method. Section 
3 describes our method for calculating multi-scale features, and 
Section 4 describes MMS-specific features. We describe 
experimental results in Section 5, and finally conclude our 
research in Section 6. 
 

2. Overview 

Our research goal is to classify each point in large-scale MMS 
point clouds in practical time. Roadside objects include traffic 
signals, utility poles, streetlights, guardrails, trees, and so on. The 
main task is to assign such a label to each point.   
 
Figure 2 shows the overview of our method. In our method, each 
point is classified using multi-scale features and MMS-specific 
features. It is known that multi-scale features are effective for 
characterizing each point (Weinmann, 2017). The key issue is to 
effectively obtain neighbor points at multiple scales. In addition, 
for MMS point clouds, vehicle trajectories and scanlines can also 
be used to characterize each point. Since roadside objects are 
typically placed along roads, their labels are strongly related to 
their distances and heights from the vehicle trajectory. A scanline 
is defined as a series of points that are measured sequentially by 
the MMS. Since the length and curvature of each scanline reflect 
the shape and width of each object, they can be used as features 
for classification. In this paper, the features computed from the 
trajectory and scan lines are referred to as MMS-specific features. 
For classification, multi-scale features and MMS-specific 
features are concatenated to estimate the label of each point using 
the random forest (Breiman, 2001). 
 
In our method, multi-scale features are computed using exact 
neighbor points without down-sampling. To speed up the 
calculation of multi-scale features, multi-scale neighborhoods are 
computed using two-step neighbor search, as shown in Figure 3. 

In the first step, the entire point cloud is divided into small 
regions by radius search with a fixed small radius. This neighbor 
search is quite fast because it does not require traversing a wide 
range of nodes in the tree structure. In the second step, multi-
scale neighborhoods are searched only using the representative 
point of each small region. This process is also fast because 
neighborhoods are searched from a relatively small number of 
representative points. Finally, the exact neighbor points are 
computed by considering the relationship between the radius of 
the small region and the radii at multi-scales.  
 

3. Efficient Calculation of Multi-Scale Features 

3.1 Dividing Point Cloud into Small Regions 

Figure 4 shows the process of dividing a point cloud into small 
regions. First, an arbitrary point is selected from a point cloud, as 
shown in Figure 4(a). Then, neighbor points are searched within 
the distance r from the selected point (Figure 4(b)). In this 

 

 
Figure 2. The overview of point cloud classification 

 
Figure 3.  Overview of two-step neighbor search 
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research, radius search is performed using FLANN (Muja and 
Lowe, 2009). As shown in Figure 4(c), the neighbor points are 
maintained as a small region, and a region number is assigned to 
each point in the small region. The next point is selected from 
points that do not have a region number, and a new small region 
is created from the neighbor points that are not included in any 
region (Figure 4(d)). A new region number is assigned to each 
point in the new small region. This process is repeated by 
selecting a point that do not have a region number (Figure 4(e).  
As a result, all points in the point cloud are subdivided into small 
regions, as shown in Figure 4(f). 
 
In this research, the center point of radius search is called the 
representative point. Therefore, each small region has a 
representative point at the center of radius search. We note that 
some researchers call small regions with semantics as superpoints 
(Landrieu, 2018). However, in our research, a small region is 
simply a cluster of neighbor points, which are used for the second 
neighbor search. Therefore, we simply call a cluster of neighbor 
points as a small region.  
 
Table 2 shows the number of small regions and the calculation 
time when subdividing a point cloud with 4,787,033 points. The 
computation time for the subdivision into small regions is very 
short compared to the computation time shown in Table 1. Table 
2 also shows the ratio of the number of points in the point cloud 
to the number of representative points.  
 

3.2 Neighbor Search using Representative Points 

In the second step in Figure 3, radius search at multiple radii is 
performed only using representative points. Since the number of 
representative points is much smaller than the number of points 
in the point cloud, multi-scale radius search can be performed 
effectively.  
 
Let {𝑅!} be the radii for multi-scale features. In this paper, 𝑅! is 
assumed to be sufficiently large compared to the radius 𝑟 of small 
regions. For each representative point, representative points 
within radius 𝑅! are searched. Figure 5(a) shows radius search for 
representative points at multiple scales. The neighbor 
representative points are obtained for each of  {𝑅!} by radius 
search.  
 
By collecting the points of small regions obtained as 
neighbourhoods, approximate neighbor points within radius 𝑅! 
can be obtained, as shown in Figure 5(b). The obtained neighbor 
points exist within radius  𝑅! with a deviation at most 𝑟. Thus, if 
𝑟 is sufficiently small compared to 𝑅!, the neighbor points are a 
good approximation for radius search at radius 𝑅!. 
 

Table 2. Number of regions subdivided from 4.8 million points. 

Radius r 10 cm 15 cm 20 cm 25 cm 30 cm 

Regions 325,252 20,109 140,566 106,510 85,036 

Rate 1/14.7 1/23.8 1/34.1 1/45.0 1/56.3 

CPU Time 2.71 s 2.43 s 2.32 s 2.28 s 2.05 s 
 
 

 
(a) Initial point                          (b) Radius search with r 
 
 

 
   (c) Initial small region                      (d) Next small region 
 

 
   (e) Repeat radius search                    (f) Small regions 

Figure 4. Dividing a point cloud into small regions 

 
(a) Neighbor representative points    (b) Approximated neighbors 

Figure 5. Radius search at multi-scales (Ri =1m,3m,5m) 
 
 

 
(a) Approximated neighbors          (b) Exact neighbors 

Figure 6. Refinement to obtain exact neighbor points. 
 
 

 
Figure 7. Criteria for refinement 
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3.3 Refinement for Exact Neighbor Points 

In Figure 5(b), some points are inside the radius 𝑅!  but not 
included in the neighborhood, and some points are outside the 
radius 𝑅! but included in the neighborhood. Such points can be 
detected efficiently and exact neighborhoods can be calculated, 
as shown in Figure 6. 
  
For obtaining exact neighbor points, multi-scale radius searches 
are performed using the enlarged radii {𝑅! + 𝑟}. Let 𝐩"  be the 
center point of radius search. As described in 3.2, the 
approximated neighbor points can be obtained from the neighbor 
representative points calculated using an enlarged radius. Then, 
as shown in Figure 6(a), the approximated neighbor points 
include all of the exact neighbor points, because the points in 
each small region exist within radius 𝑟 from the representative 
point of the small region.  
 
Figure 7 shows three types of neighbor representative points. Let 
𝑑 be the distance between point  𝐩" and a neighbor representative 
point. The following criteria can be used to determine if the 
points in a small region are included in the exact neighborhood. 

(i) If 𝑑 > 𝑅! + 𝑟, no points in the small region are included in 
the exact neighbor points. 

(ii) If 𝑑 ≤ 𝑅! − 𝑟, all points in the small region are included in 
the exact neighbor points. 

(iii) If 𝑅! + 𝑟 ≥ 𝑑 > 𝑅! − 𝑟, points in the small region may be 
partly included in the exact neighbor points. 

 
Only in case (iii), each point in the small region has to be checked 
whether the point is included in the exact neighbor points. This 
check can be made by checking whether the distance from 𝐩" is 
less than 𝑅! . Figure 6(b) shows the exact neighbor points 
calculated from points in Figure 6(a). Since the number of 
boundary regions is relatively small, the calculation of 
refinement can be done in a short time.  
 
3.4 Multi-Scale Features 

Table 3 shows feature values used in this research. Multi-scale 
features are calculated at each point using eigenvalues 𝜆#, 𝜆$, 𝜆% 
(𝜆# ≥ 𝜆$ ≥ 𝜆%). As shown in Table 3, various feature values can 
be calculated from eigenvalues (Weinmann, 2019). Eigenvalues 
are calculated using principal component analysis (PCA) from 
neighbor points at multiple scales.  
 

When calculating features based on eigenvalues, the selection of 
neighbor distances greatly affects the labeling accuracy. By 
calculating features using various neighbor distances, features at 
multiple scales can be captured from a point cloud and the 
labeling accuracy is improved. In this research, we used 1m, 2m, 
3m and 5m as the neighbor distances according to the sizes of 
typical roadside objects. 
 

4. MMS-Specific Features 

Since multi-scale features are calculated for the representative 
point of each small region, the same multi-scale features are 
added to all points in the small region. On the other hand, MMS-
specific features are given for each point, independent of small 
regions. 
 
MMS-specific features are calculated from the vehicle trajectory 
and scanlines. As shown in Figure 8, the MMS trajectory is used 
to calculate the height and horizontal distance at each point.  
 
A scanline is a sequence of line segments consisting of 
consecutive measurement points, as shown in Figure 9. If the 
distance between two points is sufficiently small, the two points 
are considered to be sampled from the same object. Therefore, 
the length of a scanline is regarded as the width of an object. The 
curvature of a scanline is defined as the ratio of the distances 𝐿 
and 𝐷 shown in Figure 9. The curvature is useful to distinguish 
between flat objects such as walls and curved objects such as 
poles.  
 

Table 3. Multi-scale features 

Linearity 𝐿& = (𝜆# − 𝜆$)/𝜆# 

Planarity 𝑃& = (𝜆$ − 𝜆%)/𝜆# 
Sphericity 𝑆& = 𝜆%/𝜆# 

Omnivariance 𝑂& = 7𝜆# ∙ 𝜆$ ∙ 𝜆%
!  

Anisotoropy 𝐴& = (𝜆# − 𝜆%)/𝜆# 
Eigenentropy 𝐸& = −∑ (𝜆! ln 𝜆!)%

!'#   
Sum of eigenvalues ∑ =&,%) 𝜆# + 𝜆$ + 𝜆%  

Change of curvature 𝐶& = 𝜆#/(𝜆# + 𝜆$ + 𝜆%) 
Verticality 𝑉 = 1 − 𝑛* 

Hight difference 𝛥𝐻%) = 𝑧+,- − 𝑧+!. 

Height deviation 𝜎/,%) = F#
0
∑ (𝑧! − �̅�)$0
!'#   

Unit normal vector (𝑛-, 𝑛1, 𝑛*) 
 

 

 
Figure 8. Features calculated using MMS trajectory 

 
 

 
Figure 9. Length and curvature of scanline 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-145-2024 | © Author(s) 2024. CC BY 4.0 License.

 
148



 

5. Experiments 

5.1 Calculation time  

We evaluated calculation time for calculating multi-scale 
features using a common PC with a 3.70 GHz Intel Core i9 and 
64GB RAM. The MMS was Trimble MX-8, and the laser scanner 
was RIEGL VQ-250. The small region radius r was set to 30cm, 
and the neighbor distances were 1m, 2m, 3m, and 5m. The point 
cloud used for this evaluation contained about 4.8 million points. 
We compared the calculation time for multi-scale features using the 
proposed method to the time directly using FLANN. The same code 
was used to calculate feature values from neighbor points.  
 
The experimental result is shown in Table 4. Table 4 also shows 
the ratio of computation time using the two methods as the 
reduction rates. The computation time for all scales was greatly 
reduced, and the overall computation time was more than 1,000 
times faster. In addition, the computation time increases 
significantly as the search radius increases in the conventional 
method, while the increase in computation time is relatively slow 
in the proposed method. 
 
We also investigated the effect of the radius r of small regions by 
investigating the computation time of multiscale features. The 
results are shown in Table 5 and Figure 10. The results show that 
our method could greatly improve performance in all cases, but 
the computation time significantly increased when radius 𝑟 was 
very small. However, roadside objects are relatively large and the 
scanline distances in MMS point clouds are typically about 5cm 
to 10 cm. Therefore, in our experiments, a radius of 30 cm for 
small regions was sufficient for classification of each point. 
 

Table 4. Calculation time for multi-scale features 

Radius Ri 1m 2m 3m 5m Total 
FLANN 3035.7s 12322.2s 27498.2s 64236.7s 107092.8s 

Ours 2.2 s 7.5 s 13.8 s 29.5 s 53.0s 
Reduction 1/1380 1/1643 1/1993 1/2178 1/2021 

 

 
Table 5. Calculation time for different radii of small regions  

Radius r 10 cm 20 cm 30 cm 40 cm 50 cm 60 cm 

Total Time 408.7 s 112.9 s 53.0 s 31.1 s 21.1 s 15.2 s 

Reduction 1/262 1/949 1/2021 1/3443 1/5075 1/7046 
 

 
Figure 10. Relationship between the calculation time  

and the radius of small regions 

Table 6. Classification results [%] 

 FLANN+MMS Proposed Method 
Road 97.51 97.48 
Grass 86.02 85.37 
Shrub 78.97 79.86 
Tree 94.34 94.45 

Building 82.85 83.01 
Car 75.76 77.94 

Motorcycle 59.97 58.76 
Electric Wire 83.97 84.52 
Traffic Light 92.44 91.35 
Traffic Sign 55.26 53.04 

Destination Sign 61.54 58.09 
Utility Pole 77.76 78.66 

Curb 59.57 60.54 
Guardrail 70.76 72.66 

Trunk 50.1 52.07 
（Average） (75.1) (75.2) 

 

 
(a) Ground Truth 

 

 
(b) FLANN (Exact multi-scale features) 

 

 
(c) Proposed Method 

Figure 11. Classified points 
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5.2 Classification Using Multi-Scale Features 

We classified each point in the point cloud using the proposed 
method. The classification process is shown in Figure 2. In this 
process, multi-scale features and MMS-specific features are 
calculated for each point and the random forest estimates the 
label of the point from the concatenated features. 
 
We defined 15 classes of objects for classification, as shown in 
Table 6. The point clouds used for classification were acquired in 

the same area as the one used for evaluating computation time. 
The total number of points was about 7.5 million and the ground-
truth labels were manually assigned to the points by an operator. 
In the evaluation of classification, approximately 50% of points 
were used for training, 20% for validation, and 30% for testing. 
 
Table 6 shows the classification results as F-measures. The 
classification results of our method were compared with those 
obtained using the conventional FLANN. The results show that 
our method could achieve almost the same classification 
accuracy as the conventional method, although our method was 
significantly faster, as shown in Table 4. 
 
Figure 11 visualizes classified points, in which points with the 
same class are drawn in the same color. These figures show that 
muti-scale features are very effective for point cloud 
classification, and our method provides visually equivalent 
results compared to those calculated with FLANN in very long 
computation time.  
 
The random forest can provide the contribution that indicates 
how much each feature contributed to the classification. We 
investigated the contribution of each scale of features. Table 7 
shows the top 10 contributions of features. The results indicate 
that MMS-specific features are particularly effective in 
classifying MMS point clouds and that both MMS-specific and 
multiscale features contribute to classification. Figure 12 shows 
the contribution of multi-scale features at each neighbor radius 
compared to MMS-specific features. Since multi-scale features 
at a wide range of scales contribute to classification to the same 
degree, it is worthwhile to compute multiscale features at many 
scales. Figure 12 also reveals that MMS-specific features 
contribute more effectively than multi-scale features at each scale.  
 
We also investigated the effect of the small region radius r on 
classification accuracy. As shown in Figure 13, F-measures 
decreased as radius 𝑟 was increased. In this figure, the F-measure 
of the conventional method (FLANN+MMS in Table 6) is shown 
as a dashed line. This result is due to the fact that multi-scale 
features are calculated only for the representative points of small 
regions. The results of Figures 10 and 13 suggest that the radius 
of the small regions should be selected based on the trade-off 
between computation speed and classification accuracy. In our 
experiments, 𝑟 = 30𝑐𝑚 was selected because the F-measure was 
equivalent to that of the conventional method, as shown in Figure 
13. 
 
6. Conclusion 
 
In this paper, we proposed a method to compute multi-scale 
features from large-scale MMS point clouds in a practical time. 
Our method computed the neighbor points in two steps using 
radius search. In the first step, we divided a point cloud into small 
regions, and in the second step, we searched neighbor point at the 
representative points of small regions. In our method, exact 
neighbor points without down-sampling could be obtained. In 
experiments, we confirmed that our method could compute 
multiscale features in practical time. We also confirmed that the 
multiscale features computed using our method could achieve 
good classification accuracy. 
 
In future work, we would like to investigate methods for 
adaptively define the radii of small regions, because the 
computation time and classification accuracy are affected by the 
selection of the radius of small regions. In the current 
implementation, different MMS-specific features are assigned to 
each point in a small region while the same multiscale feature is 

 
Table 7. Contributions of features 

Rank Feature Values Contribution Type 

1 Horizontal distance 
from trajectory 7.52% MMS 

2 Height 7.43% MMS 
3 Height from trajectory 6.74% MMS 
4 Scanline length 2.83% MMS 
5 Height deviation (1m) 2.80% Multi-Scale 
6 Verticality (5m) 2.75% Multi-Scale 
7 Hight difference (2m) 2.75% Multi-Scale 

8 Hight difference (3m) 2.59% Multi-Scale 
9 Intensity 2.49% MMS 
10 Hight difference (1m) 2.46% Multi-Scale 

 
 

 
Figure 12. Comparison of contributions of multi-scale features 

 

 
Figure 13. Relationship between the radius of small regions  

and classification accuracy 
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assigned to each point in a small region. The assignment of the 
same multiscale features may result in blurring of object 
boundaries. We would like to investigate methods to determine 
precise boundaries of objects for achieving high-quality 
classification of point clouds.   
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