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Abstract

Visual navigation has recently seen significant developments with the rise in autonomous navigation. Keypoint-based mapping
and localization has served as a reliable localization method for many applications, but the push to run more applications on
less expensive hardware becomes extremely limiting. In this paper, we present a novel approach for visual geolocalization and
navigation that improves landmark detection reliability while reducing reference map complexity. Similar to prior techniques,
we use the process of point based matching schemes to solve for the image-to-map transform. The critical difference is that we
use object detection to identify key-regions instead of keypoints. During an initial flight key-regions are mapped into an identity
dictionary with their geolocations and few-shot learning encoded descriptors. Then on subsequent flights, key-regions are detected
and matched using the identity dictionary for re-identification. Using the identified vehicles as key-regions, the results show that
the proposed key-region based localization produces GPS like localization while maintaining a higher resilience to image noise
compared to keypoint-based techniques.

1. Introduction

Geolocalization is a critical tool in today’s modern economy
with a long list of direct applications and impacts in logistics,
construction, analytics, and navigation. The impact of publicly
available Global Positioning System (GPS) is hard to overstate,
bringing global collaborators to a unified common coordinate
system. As researchers have extended the utility of GPS to
more precise and accessible applications, the challenges asso-
ciated with GPS become apparent. This is especially true in the
effort of autonomous unmanned aerial vehicles (UAV) where
operating environments and precision are being pushed to the
limit.

Autonomous drones have been utilized in aerial, outdoor, in-
door, underground, and underwater applications. Aerial applic-
ations have the most reliable GPS reception with little interfer-
ence. As the operating environment gets closer to the ground,
the likelihood of obstructing the satellite signals increases, such
as in urban or mountainous environments. Indoor, underground,
and underwater render GPS extremely unreliable.

As the operating environments and tasks become more com-
plex, the need for precision and reliability increases. For ex-
ample, UAV package delivery in populated areas has signific-
ant risks of human injury if its localization system were to fail.
As the adoption of autonomous UAVs in working environments
increases, so does the need for reliable localization.

Visual localization provides an alternative approach to GPS.
This is commonly accomplished with well defined landmarks,
such as seen in pre-GPS aviation with human readable labeled
ground control points. For computer vision, landmarks are of-
ten translated into machine interpretable fiducial markers that
have been placed and mapped throughout the operating envir-
onment. This approach is suitable for many controlled envir-
onments but has significant challenges in scaling to larger more
complex environments.

Simultaneous localization and mapping (SLAM) provides a par-
ticularly flexible approach toward visual navigation, producing
simultaneous point cloud mapping and camera localization. This
approach is effective but notoriously computationally expens-
ive. This is partially due to the curse of dimensionality. SLAM
is based on identifying keypoints that serve as naturally occur-
ring landmarks. The task of identifying, matching, and map-
ping can rapidly get out of hand if not delicately balanced. The
implementation of SLAM requires the user to carefully con-
sider the scene characteristics and tune the decision hyperpara-
meters accordingly.

Some more recent approaches improve efficiency by adapting
the SLAM approach to a fixed reference map. This reduces the
problem complexity and counteracts the effects of accumulat-
ing error. This approach hits a balance of performance and re-
liability, utilizing pre-existing georectified imagery to remove
the need for manual fiducial marker installment. However, it
still suffers from sensitivity to appearance variation requiring
the reference imagery to be taken in similar conditions as the
expected use case.

Key-region visual navigation provides the advantages of refer-
ence map based visual navigation while reducing sensitivity to
appearance changes and improving the understandability of ex-
tracted landmarks. This is accomplished by extending the key-
point concept into a more stable characteristic attribute space.
Keypoints identify distinct points within the scene and generate
a discriminative description of the neighborhood around that
keypoint for later re-identification. The small area of influ-
ence of the keypoint makes it highly sensitive to perspective
and lighting changes.

An additional advantage to key-region visual navigation is its
understandability. The concept of a keypoint is highly ambigu-
ous as to what it semantically refers. Good keypoints are scene
points that are the most reliably recognizable leaving the user
without a clear definition of what to look for when assessing
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operations in a new environment. Key-regions enable the user
to associate landmarks with semantically meaningful objects,
making their assessment much more reasonable. For example,
if buildings are used as key-regions the user can easily assess
the number and uniqueness of the buildings within a scene.

This paper presents a novel key-region based visual navigation
algorithm. This algorithm leverages object detection networks
to extract full objects as passive landmarks from a scene seen in
Figure 1. Few-shot learning is then used to encode the detected
objects into discriminative descriptors for later re-identification.
This approach is agnostic and can be generalized across a wide
range of objects. Detection networks have been well established
at detecting a large variety of different objects, and the few-shot
learning approach is specifically developed to rapidly adapt to
novel concepts with a few examples images.

Cars from a UAV perspective were selected as the example key-
region object for several reasons, including the availability of
public datasets to train the detection network, their high fre-
quency of occurrence across operating environments, and their
high visibility within the scene. The aim of this paper is to
present the generalizable key-region based visual navigation
that can be adapted for a user’s specific application.

Figure 1. Example visualization of the key-region based
localization.

2. Background

UAVs have a variety of localization capabilities. The stand-
ard modern UAV (DJI, Parrot) comes with onboard GPS and
inertial measurement unit (IMU) based localization systems.
(Jametoni and Saputra, 2021) lays out the remaining localiz-
ation alternatives in a taxonomy that categorizes UAV localiz-
ation systems into two major methods: vision-based and non-
vision-based. The non-visioned based refers to these GPS, IMU,

and radio frequency (RF) based transmission networks; while
the vision based refers to ground control points, fiducial mark-
ers, and SLAM. (Czyża et al., 2023) provides an assessment of
the state-of-the-art DJI Matrice 300 real-time kinematic posi-
tioning (RTK) localization validating the published specs for a
GPS horizontal localization error of 0.50 m and an RTK cor-
rected average error of 0.10 m. (Elkhrachy, 2021) backs these
findings by exploring the relative localization error of the DJI
Mavic Pro Platinum using 21 ground control points with root
mean square error (RMSE) of 0.883 m. (Patrik et al., 2019)
tested the positional accuracy of Global Navigation Satellite
System (GNSS) based autonomous flight on the Erle Robotics
UAV finding an average horizontal localization error of 1.11 m.
In general, these onboard GNSS based systems produce a mean
error of 0.5-2 m.

Many efforts are looking to improve UAV localization through
the addition of control beacons. These beacons take both visual
and non-visual forms. For example, the addition of ultra wide-
band (UWB) beacons were shown to reduce localization errors
from 0.35 m using the original GPS to 2.02 m with beacons
(Chen et al., 2023). A wide variety of RF beacons are currently
used but can come with increased complexities and localization
uncertainties, such as seen when using Bluetooth low energy
(BLE) and WiFi signals (Chen et al., 2023).

Much in the same way as RF, visual fiducial markers have been
employed to reduce localization errors (Mráz et al., 2020, ?).
(Supriyono and Akhara, 2021) presented a direct comparison
between GPS and GPS + visually aided landing, showing a
reduction in localization error of 1.99 m to 0.45 m. Beacon
placement is an effective high precision localization approach.
However, the installation and maintenance of beacon systems
are costly and infeasible for many UAV applications. This is
where the advantage of passive keypoint based visual naviga-
tion methods becomes apparent.

Keypoint based visual navigation does not require prior install-
ments of beacons. Instead naturally occurring beacons/landmarks
are extracted from the scene using a keypoint generator. These
keypoints are generally selected by the patterning in a pixel
neighborhood. This can be in the form of handcrafted gradient
based features such as SIFT and ORB or deep neural network
(DNN) based features such as SuperPoint (Wang et al., 2024,
Wei and Yilmaz, 2023). These methods search the image space,
identify pixels with distinct neighborhoods, and then generate a
description vector of that pixel region by which it can later be
re-identified.

(Gupta and Fernando, 2022) provides a review of the current
state-of-the-art SLAM approaches, giving an overview of the
approach and applications. These approaches vary from solely
SLAM, SLAM integrated GNSS, SLAM with multi-sensor fu-
sion, and SLAM for UAV swarms. These types of systems are
capable of achieving precise localization of 0.33 m (Li et al.,
2022). Another recent advancement combined SLAM and open
street map building geometry (Frosi et al., 2023). Another dir-
ection improves the efficiency of SLAM by introducing a pre-
flight generated keypoint reference map created from prior cap-
tured satellite imagery (Wei and Yilmaz, 2023). This approach
demonstrated strong geolocalization with an accuracy of 3.4 m
over km long flights in urban and rural environments. Another
study combined SLAM with object recognition to map the 3D
location of detected objects (Mazurek and Hachaj, 2021).

Key-region based visual navigation extends the keypoint concept
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towards key-objects. This approach leverages the recent devel-
opments in visual navigation with the addition of more stable
landmarks. Keypoints are relatively smaller than objects cap-
turing distinct information directly around a pixel making them
sensitive to perspective variation. Objects are recognizable from
a wider range of perspectives, ranges, and viewing conditions.
(Pi et al., 2020) completes the task of object re-identification
through simultaneous multiple views. Through this process,
they were able to accurately identify and map the scene ob-
jects but did not address UAV geolocalization over a flight. The
key development that enables this approach is the advancement
in rapid object re-identification providing the means for object
matching.

Key-region based visual navigation map utilizes few-shot gen-
erated appearance models for object re-identification. Few-shot
learning is a growing branch of the visual classification field.
Originating from the desire to reduce training requirements of
classification DNN, few-shot learning reformulated the task into
a metric learning form. The goal changed to focus on rapid
learning through optimized discriminative feature embedding
(Zeng and ying Xiao, 2024). Later this changed to a meta-
learning approach where the goal is to design models that can
be rapidly retrained (Zeng and ying Xiao, 2024).

For this work, we selected a few-shot learning method with
high generality and minimal training requirements known as the
Omni-Modeler (Karnes and Yilmaz, 2023). This approach dir-
ectly extracts and transforms a discriminative feature set from
the generic pretrained VGG-11 model without requiring iterat-
ive training or annotated data. The feature transform process
is referred to as language encoding. The key-region mapping
process intakes generic object detections and stores them in an
identity dictionary along with their encoded descriptions. On
following flights over the area, new detections are matched by
comparison to the identity dictionary.

UAV autonomous navigation heavily relies on GPS/GNSS loc-
alization with the growing recognition that higher precision and
more reliable operation are essential for emerging applications.
Beacon and ground control point based navigation are highly
effective but dependent upon maintaining a reliable infrastruc-
ture. Keypoint based approaches relieve these infrastructure
needs but are highly sensitive to scene changes limiting their
operational bounds. Key-region based navigation leverages this
long line of UAV navigation along with advancements in object
recognition to provide a more robust and understandable visual
navigation strategy.

3. Algorithm Design

3.1 Overview

Key-region based visual navigation has two primary phases:
mapping and localization. The mapping phase is completed on
an initial flight capturing imagery and location data on the ob-
jects of interest. This information is then processed into the
identity dictionary, a JSON file describing the mapped area in
terms of the objects’ sizes, locations, and descriptions. This
map is then re-utilized on the same UAV or transferred to an
additional UAV for future navigation through the area.

3.2 Map Generation

The key-region object map is generated during a mapping flight
where other localization methods are available. During this pro-

Figure 2. Algorithm overview showing the mapping to identity
dictionary to positioning relationship.

cess, the UAV position is determined using a keypoint localiz-
ation method similar to (Wei and Yilmaz, 2023). Then each
frame is passed through the object detection network, in this
case, the SAHI car detection network (Akyon et al., 2021).
The bounding box for each detection is then projected into the
geocoordinate space using the homography calculated from the
keypoints. Each detection is stored in a detections aggrega-
tion dictionary. After the flight is completed, object detections
are associated into identities using their mapped bounding box
areas. Once the identities are formed, their corresponding im-
age regions are cropped from the original image and encoded
into a description. Each identity is stored in the identity diction-
ary along with its bounding box information, mapped bounding
box information, and descriptions.

Figure 3. Flowchart showing the map generation process.

3.3 Description Encoding

Object descriptions are encoded using the Omni-Modeler (Karnes
and Yilmaz, 2023). The Omni-Modeler is a generalized few-
shot learning algorithm designed to rapidly adapt to novel ob-
jects. This is done through a series of calculated transforms that
maximize the discriminability of the resulting feature space.
This process is modeled off of the structure of natural language,
moving from letters to words to sentences. Using a set of rep-
resentative unannotated data, first the letters are extracted from
the raw latent feature space of the general pretrained DNN using
ICA. Next, the words are extracted from the letter feature space
using k-means clustering. Finally, the words are combined into
sentences by concatenating across DNN layers.

After the language encoding transforms are calculated, then an
identity dictionary is created. This process takes in example
reference images for each class and aggregates their associated
detections into a dictionary. The positional data and encoded
descriptions for each detection are stored for each identified
object. New samples are then identified by comparison to the
identity dictionary.
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Figure 4. Flowchart showing the Omni-Modeler training.

Figure 5. Flowchart showing the Omni-Modeler encoding
process.

3.4 Localization

Key-region based visual navigation follows a similar process as
keypoint based navigation approaches, which detects points in
the UAV image stream, matches them to prior known points
on the reference map, and then calculates the affine projec-
tion transform of the camera image to the reference map points.
In the same manner, key-region based navigation detects key-
objects, and then identifies matches and positions from those
matches.

Figure 6. Flowchart showing the key-region based localization
process.

4. Experiments

4.1 Overview

The key-region based navigation approach created several de-
cision point hyperparameters for the mapping and localization
processes. The experiments in this study explore the most in-
fluential decision parameters for each of these processes. The

Intersection-over-Union (IoU) Association Threshold controls
the decision point at which detections are associated into iden-
tities. The Probability Matching Threshold controls the match-
ing decision process critical to final localization performance.

The effects of these hyperparameters are explored using two
flight paths over the same area flown on the same afternoon
with the camera facing in a Nadir view. The first flight path,
flown at 300 ft and used for the mapping phase, is referred to as
Flight Path #1. The second flight path, used for the localization
phase, is referred to as Flight Path #2, flown at both 200 ft and
300 ft.

Figure 7. Visualizations of the two flight-paths utilized in this
study. The top image shows Flight Path #1, flown at 300 ft and

used for the mapping process. The bottom image shows the
flight path for Flight Path #2 which was flown at two different

altitudes, 200 ft and 300 ft, for localization testing.
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4.2 Mapping

The mapping process creates the identity dictionary that con-
sists of a series of object entries with the position and descrip-
tion data for each of their detections. An object identity is gen-
erated from identities of associated detections. The mapping
flight produces a series of detections and their mapped posi-
tions. The mapped detections are associated into identities by
their IoU values. This study looks at the quantitative and qualit-
ative effects of varying the IoU Association Threshold from 0.3
to 0.8 with a step size of 0.1.

Table 1 shows the results of the varying IoU Association Threshold,
showing the number of extracted identities and the average num-
ber of detections per identity. As the threshold increases the
number of identities and their average number of associated de-
tections decreases.

IoU Thresh. Identities Avg. Dets.
0.3 43 141.37
0.4 42 143.48
0.5 43 136.60
0.6 40 139.68
0.7 42 126.29
0.8 37 122.41

Table 1. IoU Association Threshold.

Figure 8 shows a visualization of the extracted identities from
the mapping process when using an IoU threshold of 0.1 and 0.8
where each of the blue bounding boxes represents an extracted
identity. The largest qualitative difference seen between the two
cases is the reduction of overlapping identity bounding boxes as
well as their relative sizes and aspect ratios. Combining these
quantitative and qualitative results it appears that the higher 0.8
IoU threshold produced a higher quality map.

4.3 Localization

The localization process uses the identity dictionary as its key-
region reference map. As the flight progresses, the algorithm
compares new detections to its reference to determine matches.
The comparison is completed using the 5 - Nearest Neighbors
which provides the most likely match and its associated prob-
ability. The associated probability serves as a match quality
score. This localization experiment looks into the effect of vary-
ing Probability Matching Threshold.

For this study, the identity dictionary resulting from Flight Path
#1 with an IoU threshold of 0.8 was used to localize the 200
ft and 300 ft flights over Flight Path #2. Table 2 shows the
effects of varying the Probability Matching Threshold on loc-
alization performance. The 200 ft Flight Path #2 showed an
overall weaker performance. As the threshold increases, the
mean localization error also tends to increase. The minimum
mean error for this flight is 3.36 m with probability thresholds
of 0.3 and 0.4. The opposite trend was seen for the 300 ft Flight
Path #2, with a continually decreasing mean error as the prob-
ability threshold increases. The best performance for this flight
has a mean error of 2.23 m with a probability threshold of 0.8.
Both flights saw a rapid decrease in performance moving from
a probability threshold of 0.8 to 0.9.

Figure 10 shows the visualizations for both the 200 ft and 300
ft flights at probability thresholds of 0.1 and 0.8. The largest
deviation is seen in the 200 ft flight along a turn, which was
then able to recover and continue on the appropriate path.

Figure 8. Visualization of the mapping results using Flight Path
#1 with two different IoU Association Thresholds 0.1 on top and
0.8 on bottom. Note that the bounding boxes are visualized on
the available satellite imagery taken on a different day than the
flights. The bounding boxes show the car locations seen during

the flight, not those seen on the satellite imagery.

4.4 Comparison to Keypoint Localization

To better assess the key-region performance, this study directly
compares the proposed algorithm to a re-implementation of the
state-of-the-art keypoint based localization (Wei and Yilmaz,
2023). For this study, the two algorithms were run on Flight
Path #2 flown at 300 ft with varying levels of Gaussian blur to
simulate image degradation. Table 3 shows the results for this
study. Method refers to either the keypoint (KP) or key-region
(KR) based localization. The reference map size (Ref. Size)
refers to the number of landmarks used for that flight’s local-
ization. The keypoint based localization used two difference
sized reference maps controlled by the non-maximum suppres-
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Probability Thresh. Flight Height (ft) Mean Error (m)
0.1 200 3.51
0.2 200 3.52
0.3 200 3.36
0.4 200 3.36
0.5 200 4.97
0.6 200 4.97
0.7 200 6.91
0.8 200 6.91
0.9 200 53.08
0.1 300 2.26
0.2 300 2.26
0.3 300 2.26
0.4 300 2.26
0.5 300 2.24
0.6 300 2.24
0.7 300 2.23
0.8 300 2.23
0.9 300 18.67

Table 2. IoU Association Threshold positioning results.

Figure 9. Visualization of the localization results for the 200 ft
and 300 ft flights over Flight Path #2.

sion (NMS) of 1 and 25, where they produced 6115 and 1224
keypoints respectively. The key-region landmarks are the ex-
tracted object identities, which for this map was 37. The blur
refers to the neighborhood of influence for Gaussian blur.

The key-region based localization proved significantly more re-
silient to image degradation compared to the key-point based
localization, maintaining a consistent mean positioning error of
2.23 m. The proposed algorithm also outperformed the com-
pared algorithm when it was limited to the smaller reference
map size. When given the higher density of keypoints, the lar-
ger reference map, the key-point based localization was more
accurate with a mean error of 1.83 m. The processing time of
the key-region based localization was slower at 1.17 FPS com-
pared to 3.05 FPS and 1.90 FPS of the key-point based method.

Method Ref. Size Blur Mean Error FPS
KR 38 0 2.24 1.17
KR 38 3 2.24 1.17
KR 38 5 2.24 1.17
KR 38 7 2.24 1.16
KP 1224 0 2.23 3.00
KP 1224 3 2.25 3.08
KP 1224 5 2.31 3.06
KP 1224 7 2.31 3.07
KP 6115 0 1.83 1.85
KP 6115 3 1.86 1.92
KP 6115 5 1.89 1.89
KP 6115 7 1.92 1.92

Table 3. Results for comparison of key-region (KR) versus
keypoint (KP) localization methods.

Figure 10. Visualization of the key-region and keypoint based
localization flights over Flight Path #2 with a Gaussian blur of 3.

5. Conclusion

Key-region based visual navigation shows strong feasibility from
the limited studies completed in this work. With the proper
parameters, the system achieved a mean localization error of
2.23 m and 3.36 m. This performance is comparable to current
GPS based and keypoint based localization methods producing
localization accuracies between 0.50 m and 3.4 m. The key-
region based approach proved more resilient to image degrada-
tion simulated through increasing Gaussian blur. Overall, key-
region based visual navigation showed comparable localization
performances to similar alternatives with improved resiliency
and higher understandability.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-173-2024 | © Author(s) 2024. CC BY 4.0 License.

 
178



References

Akyon, F. C., Cengiz, C., Altinuc, S. O., Cavusoglu, D., Sahin,
K., Eryuksel, O., 2021. SAHI: A lightweight vision library for
performing large scale object detection and instance segmenta-
tion.

Chen, Y.-E., Liew, H.-H., Chao, J.-C., Wu, R.-B., 2023.
Decimeter-Accuracy Positioning for Drones Using Two-Stage
Trilateration in a GPS-Denied Environment. IEEE Internet of
Things Journal, 10(9), 8319-8326.
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