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Abstract 

 

Historic structures are important for our society but could be prone to structural deterioration due to long service durations and natural 

impacts. Monitoring the deterioration of historic structures becomes essential for stakeholders to take appropriate interventions. 

Existing work in the literature primarily focuses on assessing the structural damage at a given moment instead of evaluating the 

development of deterioration over time. To address this gap, we proposed a novel five-component digital twin framework to monitor 

time-varying changes in historic structures. A testbed of a casemate in Fort Soledad on the island of Guam was selected to validate our 

framework. Using this testbed, key implementation steps in our digital twin framework were performed. The findings from this study 

confirm that our digital twin framework can effectively monitor deterioration over time, which is an urgent need in the cultural heritage 

preservation community.  

 

1. Introduction 

 

Historic structures are critical for our lives and society, bridging 

our past, present, and future, and fostering a deep sense of 

identity. The preservation of historic structures, therefore, is 

essential for government agencies, local communities, and other 

stakeholders to maintain this tangible connection to our society.  

 

Recent advances in photogrammetry technology integrated with 

Unmanned Aerial Vehicles (UAVs) show great promise in 

detecting structural deterioration of historic structures. For 

instance, Galantucci et al. (2019) developed a photogrammetry 

3D model of an Italian historic building, producing orthophotos 

of its limestone façade to identify structural deterioration from 

cavities. Forlin et al. (2018) utilized photogrammetry on 

archaeological sites in Cyprus and Spain, extracting orthophotos 

from 3D models to detect earthquake-induced crack patterns on 

the buildings’ elevation walls. Ulvi (2022) utilized UAVs and 

photogrammetry to generate 3D dense point clouds of a Turkish 

archaeological site across four excavation phases, from which 

elevation profiles of specific cut sections were derived and 

comparatively analyzed. 

 

While these investigations have yielded successful outcomes, 

these methods primarily focus on evaluating the status of the 

structures at a given moment instead of assessing the 

developments of deteriorations over time (see Figure 1). 

Although an engineering team can conduct structural inspection 

across multiple visits using the same method mentioned above, a 

critical challenge lies in understanding the evolution of structural 

deterioration between different inspections (e.g., crack 

propagation, ongoing settlement, continuous decay). This 

highlights the importance of investigating new research 

frameworks to monitor time-varying structural deteriorations. 

 

This paper proposes a photogrammetry-driven digital twin 

framework and illustrates its feasibility for monitoring time-

varying deterioration in historic structures. Our approach is built 

upon two existing knowledge domains: 1) photogrammetry 

techniques in historic preservation; and 2) proven capabilities of 

digital twin applications from civil and construction engineering 

disciplines. By integrating these two domains, we hope to 

broaden digital twin applications in heritage preservation.  

 

 
 

Figure 1. Research gap to be addressed in this study 

 

The rest of the paper is structured as follows: Section 2 discusses 

the proposed digital twin framework and explains its key 

methodological principles; Section 3 describes the testbed 

selection; Sections 4 to 6 illustrate validations of the key 

feedback flows in the proposed framework including virtual 

entity reconstruction in Phase 1, deterioration monitoring in 

Phase 2, and decision-making in Phase 3, Section 7 differentiates 

our digital twin with those proposed by others, Section 8 

concludes the study, and Section 9 summarizes the future work. 

 

2. Digital Twinning 

 

The scientific discovery of the digital twin has exponentially 

grown recently, spanning aerospace, manufacturing, biomedical, 

construction engineering, environmental science, and healthcare 

(Jiang et al., 2021). Grieves and Vickers (2016) describe a digital 

twin as a comprehensive collection of virtual information that 

represents a physical manufactured product in detail. Later on, 

Jiang et al. (2021) reviewed digital twin applications in civil 

engineering based on 134 studies and proposed a definition of 

digital twin encompassing five key components: 1) the real-world 

physical entity; 2) the virtual entity that mirrors the physical 

entity; 3) the connections that enable data transfer; 4) the data 

repository; and 5) the service that enhances specific objectives 

for the system, as shown in Figure 2a. All the connections 

(indicated as black arrows in the figure) are bidirectional flows 

except the optional feedback flow from data to the physical 

entity, as suggested by the authors. 
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Figure 2. Comparison of digital twin frameworks: (a) proposed 

by Jiang et al., 2021; and (b) proposed in this study. 

 

Due to the limited digital twin frameworks reported in the current 

literature on cultural heritage, a new framework is proposed in 

this study as shown in Figure 2b. Our framework is built upon 

the digital twin concept defined by Jiang et al. (2021), mainly 

because our research goal, monitoring structural deteriorations of 

historic structures, is closely related to the digital twin 

applications in construction engineering reviewed by Jiang et al. 

(2021). To better suit the photogrammetry technological 

workflow, we reconfigured some key components in our 

framework: 1) the data component between service and physical 

entity is removed in our definition, and 2) all connections are 

designed as a unidirectional loop. The methodological principles 

for all the feedback flows in our framework will be explained in 

the rest of this section. 

 

2.1 Feedback Flow: from the Physical Entity to its Virtual 

Entity 

 

In this study, we define the physical entity as any historic 

structure of interest such as buildings, bridges, arenas, towers, or 

fortifications; and the virtual entity as a 3D dense point cloud 

model of the selected physical entity. To reconstruct the point 

cloud, many existing methodologies can fit this purpose such as 

LiDAR/laser scanners-based (Castagnetti et al., 2012) or 

Structure-from-Motion Multi-View-Stereo (SfM-MVS)-based 

(Brandolini and Patrucco, 2019). This study applies a 

photogrammetry workflow based on SfM-MVS. The data to 

construct the point cloud, in this regard, is a large volume of high-

resolution images collected by UAVs.  

 

2.2 Feedback Flow: from the Virtual Entity to Service 

 

Once the 3D dense point cloud is established in Section 2.1, the 

point cloud is then transferred from the virtual entity component 

to the service component. In this study, we define the service 

component as evaluating the time-varying deterioration of a 

historic structure. To fulfill this need, cloud-to-cloud (C2C) 

distances are computed to uncover differential features of the 

physical entity over time. Computing C2C distances is 

commonly used in remote sensing (Kong, 2021; Alazmi and Seo, 

2023). Lastly, identifying changes over time also requires 

comparing two point cloud datasets at different inspections. This 

can be achieved by collecting UAV images of the structure twice 

for constructing two point clouds. 

 

2.3 Feedback Flow: from Service to Physical Entity 

 

Based on the findings from the deterioration monitoring 

explained in Section 2.2, stakeholders of the historic structure can 

make informed decisions on possible interventions. For example, 

if the monitoring results indicate that the structure is safe with no 

significant deterioration, then no major actions are required. 

However, if the structure has evidence of substantial 

deteriorations (e.g., critical crack propagation, severe 

deformation, or extensive corrosion) that would weaken the 

structural integrity, then this information will be reported to the 

stakeholders for taking possible actions such as retrofit, 

rehabilitation, or replacement of the affected parts of the historic 

structure. 

 

2.4 Feedback Loop: Implementation Over Time 

 

While Sections 2.1 to 2.3 explain a typical digital twin cycle, it is 

important to notice that the physical entity in the digital twin 

framework is subjected to time-varying physical states (i.e., 

ongoing development of structural deterioration). To 

continuously monitor the time-varying deteriorations over the 

long term, we can iteratively execute the digital twin loop, 

repeating the methodological flows described in Sections 2.1 to 

2.3. This involves performing further field visits for image 

collections; building updated virtual models; monitoring 

additional potential deteriorations, and making informed 

decisions based on the new data. 

 

2.5 Our Framework vs. 4D Modeling 

 

In heritage preservation, 4D modeling refers to combining a 

physical entity’s three spatial dimensions with its temporal 

dimension for mapping changes over time (Kersten et al., 2014). 

Although both our framework and 4D modeling adopt temporal 

approaches, they are different in two notable ways: 1) 4D 

modeling typically examines changes in the physical entity over 

extended periods (e.g., decades or centuries), often to 

hypothesize about past historical developments (Rodríguez-

Gonzálvez, et al., 2017). In contrast, our framework focuses on 

the current state of the historic structure over shorter time 

intervals, aiming to monitor structural deteriorations in the future. 

2) 4D Modeling generally documents the structure at a given time 

or environmental condition without any feedback mechanism 

from the virtual entity to the physical entity (Hassan and Fritsch, 

2019, Kersten et al., 2014). On the other hand, our framework 

enables the feedback loop, where the information generated from 

the virtual entity leads to human interventions applied to the 

physical entity. 

 

3. Testbed 

To evaluate our methodology, we selected a historic casemate in 

Fort Nuestra Señora de la Soledad (Fort of Our Lady of Solitude, 

hereafter referred to as Fort Soledad) in Umatac, Guam. Guam is 

the largest island of the Marianas Chain in the Western Pacific, 

known for its ancient history and rich cultural heritage. Fort 

Soledad is one of the four fortifications built by the Spanish from 

1680 to 1810. Figure 3 shows Fort Soledad and the casemate 

under different views. 

 

 
 

Figure 3. (a) Fort Soledad; (b) and (c) are different views of the 

casemate, the testbed in this study. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-181-2024 | © Author(s) 2024. CC BY 4.0 License.

 
182



 

4. Validation Phase 1: Virtual Entity Reconstruction 

 

This section validates the feedback flow that links the physical 

entity and the virtual entity. We first discuss the UAV image 

collection strategies in Section 4.1; then we explain the procedure 

for creating the virtual entity of the casemate in Section 4.2. 

 

4.1 UAV Operation and Image Collection 

 

To collect images of the testbed, DJI Phantom 4 Pro+ V2.0 (DJI 

Phantom 4 hereafter) was adopted during the field visit. A total 

of 395 UAV images were collected of Fort Soledad under 

different camera positions. Two flight patterns were planned 

during the visit through pre-programmed path planning functions 

available in DJI Phantom 4. The first pattern (Pattern 1) was at 

lower elevations, designed to capture various viewing angles of 

the casemate. The second pattern (Pattern 2), flown at higher 

elevations, was designed to scan the entire fort. Both patterns 

were under the circular path. To ensure the success of the 

photogrammetry process, an overlap of approximately 70% to 

80% was maintained between adjacent UAV images. Lastly, 

instead of letting the UAV camera directly face downward, we 

defined the camera angle (i.e., the angle between the normal 

direction of the image plane and the horizontal direction; denoted 

in Figure 4a) as about 70 degrees. 

 

Figure 4a and b show the camera positions, marked as small blue 

patches, in both elevation and plan views. The casemate in Figure 

4b cannot be seen directly from the figure because it is obstructed 

by blue patches. Both patterns of UAV image collection were 

achieved by a single flight performed by one UAV operator. As 

can be seen in the figures, a comprehensive scan of the casemate's 

surface can be captured. 

 

4.2 Establishment of the 3D Point Cloud 

 

We utilized Agisoft Metashape (Agisoft, 2020) for 3D dense 

point cloud reconstruction. To this end, the SfM-MVS algorithms 

were applied in the software to process the UAV images 

discussed in Section 4.1. The procedure began with detecting 

features, which are distinctive localized small image patches that 

contain unique pixel intensity distribution. Feature points 

consistently appear across multiple images, even if they are under 

different camera positions. Next, feature points from different 

images were paired together using feature-matching algorithms. 

These matched feature points served as correspondences to 

estimate the camera matrix and further reconstruct the sparse 

point cloud of the virtual scene, as shown by the blue dashed lines 

in Figure 4a. The creation of the sparse point cloud requires less 

computational cost. At this stage, a user can also effectively 

check the quality of the image alignment, pinpoint any incorrect 

alignments, and evaluate the distribution of feature points.  

 

Based on the result of the sparse point cloud, the dense point 

cloud of Fort Soledad was then established (Figure 4c). This 

procedure involved adding more points between the initially 

matched feature points, substantially increasing the density and 

detail of the model. The established dense point cloud of Fort 

Soledad contained approximately 2.4 million 3D RGB points. 

Creating a dense point cloud is computationally demanding but 

provides a high-fidelity digital replica of the physical site. Lastly, 

we applied the segmentation techniques through CloudCompare 

(CloudCompare, 2024) to segment the casemate from the main 

point cloud. The point cloud of the casemate (Figure 4d) serves 

as the virtual entity of the historic structure in this study. For a 

detailed discussion of the SfM-MVS algorithms and 3D 

reconstruction technologies, especially in the context of cultural 

heritage, the reader is referred to the study performed by 

Kingsland (2020).  

 

5. Validation Phase 2: Deterioration Monitoring 

 

This section validates the feedback flow that links the virtual 

entity and the service (i.e., structural deterioration monitoring). 

Section 5.1 explains a two-stage point cloud alignment procedure 

to register two datasets of the casemate; Section 5.2 discusses the 

principle of computing cloud-to-cloud (C2C) distances and 

shows the results of C2C distances for a side wall of the 

casemate; Section 5.3 demonstrates the methodologies for 

simulating crack-like edges and true cracks and further illustrates 

the structural deterioration monitoring results against these two 

types of simulated features. 

 

5.1 Point Cloud Alignment 

 

As explained in Section 2.2, two point cloud datasets are required 

to monitor structural deterioration over time. To obtain the 

additional dataset, we revisited Fort Soledad to collect new UAV 

images, reconstruct the dense point cloud of the site, and truncate 

the casemate’s point cloud, following the protocol explained in 

Section 4. Thereafter, both point clouds of the casemate were 

aligned together via a two-stage protocol described below:

 

 
 

Figure 4. Virtual entity reconstruction: (a) and (b) show the camera positions (i.e., small blue patches) of UAV images from the side 

and plan views, respectively; (c) and (d) show the established 3D dense point cloud of Fort Soledad and the casemate, respectively.
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First, point clouds were loaded into CloudCompare for rough 

alignment. As shown in Figure 5a, four correspondences (C1 to 

C4) were manually selected in each dataset for alignment. These 

correspondences served as the basis for initial rough alignment. 

Notice the selection of these correspondences is flexible, any 

other distinct features can be selected as correspondences if they 

can be identified by human eyes. Lastly, it is worth noting that 

registration errors may exist at this stage due to manual selections 

and they will be minimized in the second stage alignment. 

 

Second, a fine adjustment was performed using the Iterative 

Closest Point (ICP) algorithm developed by Chen and Medioni 

(1992). The algorithm can refine the alignment by finding the 

closest point for each 3D point in the second visit’s point cloud 

to a given point in the first visit’s point cloud, minimizing point-

to-point distance. Next, a geometric transformation matrix can be 

estimated using a root mean square error minimization, which 

can be formulated as: 

 

𝐸(𝑅, 𝑡) = min
𝑅,𝑡

∑‖𝑝𝑖 − (𝑅𝑞𝑖 + 𝑡)‖2

𝑖

          (1) 

 

where R and t are the rotation and translation from the geometric 

transformation matrix; 𝐸(𝑅, 𝑡) is the error function; 𝑝𝑖 is a point 

from the point cloud in the first visit; and 𝑞𝑖 is a point from the 

point cloud from the second visit. Once established, this 

geometric transformation matrix was applied to the point cloud 

in the second visit to align it with the point cloud in the first visit. 

 

 
 

Figure 5. (a) Rough alignment of the casemate from two field 

visits; and (b) the C2C distances in the ROI. 

 

5.2 C2C Distances 

 

Once two point clouds from both visits are aligned through the 

procedure above, we calculated the cloud-to-cloud (C2C) 

distances between these two clouds to find time-varying changes 

caused by structural deteriorations. To this end, let us define a set 

𝐴 = {𝑎1, … , 𝑎𝑝} as the reference point cloud from the first visit, 

and a set 𝐵 = {𝑎1, … , 𝑎𝑞}, as the floating point cloud from the 

second visit. The Hausdorff distance (Huttenlocher, 1993) 

between these sets is formulated as: 

 

𝐻(𝐴, 𝐵) = max
⬚

(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴))          (2) 

 

where ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖.  

 

The function, ℎ(𝐴, 𝐵), finds the largest single distance from any 

point in set A to its closest point in set B, measuring the maximum 

possible discrepancy between the two datasets.  

 

To better facilitate the C2C distance calculations, we defined a 

region of interest (ROI) on the side wall of the casemate, as 

depicted in the red dashed box in Figure 5a for both datasets. The 

purpose of selecting such an ROI is to quantify a localized area 

rather than the whole structure, such that any differential features 

caused by the deterioration can be easily identified.  

 

Figure 5b shows the C2C distances in the ROI between two visits. 

Before performing C2C distance computation, we excluded any 

3D points within the window area (i.e., the rectangular void in 

the figure) because these 3D points usually had low data quality 

caused by insufficient UAV image coverage. 

 

5.3 Deterioration Monitoring 

 

Because the two field visits were carried out under a short time 

interval, minimal structural deteriorations can be observed in 

Figure 5b. To evaluate our framework’s ability to monitor time-

varying changes that one would see in the real world, we 

developed methods for simulating both crack-like edges (i.e., 

fake cracks) and true cracks. Figure 6 and Figure 7 illustrate the 

methodologies used for creating these non-crack and crack 

features; while the validation of these methodologies was 

performed in CloudCompare which will be discussed later on in 

this section. 

 

To simulate crack-like edges, we first define a narrow, slender-

shaped element in the point cloud of the side wall, as shown in 

Figure 6a. This element is then segmented from the main wall, 

and colored black to enhance its visibility. Next, this colored 

slender element is merged back with the segmented wall, to form 

the final point cloud in the figure. Notice that this simulation 

involves no geometric alterations to the point cloud. Therefore, 

the crack-like edge is a slender element painted in black rather 

than a true crack. 

 

 
 

Figure 6. Methodologies to simulate crack-like edges. 

 

The simulation of true cracks follows a similar procedure 

described above but with a critical modification: the geometric 

features of the slender element are changed. In particular, we 

slightly shift the element along its normal direction, which is 

perpendicular to the xy plane, as shown in Figure 7. This 

element’s movement along its normal direction is intended to 

simulate the penetrating behavior of cracking in stone walls, 

reflecting the depth that true cracks would exhibit. This 

adjustment ensures that the simulated cracks represent realistic 

depth, essential for accurate deterioration monitoring.  

 

 
 

Figure 7. Methodologies to simulate true cracks. 
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Figure 8. Crack monitoring result: (a) the point cloud from the first visit; (b) the point cloud from the second visit; and (c) C2C 

distances between the point clouds from two visits. 
 

Figure 8 illustrates the validation procedure. First, we applied the 

crack simulation methods described earlier, introducing one 

simulated crack-like edge and one simulated true crack to the side 

wall of the casemate from the second visit. The results of these 

simulations are shown in Figure 8b. The C2C distances of two 

point clouds from the first visit (Figure 8a) and the second visit 

(Figure 8b) are calculated, showing in Figure 8c. As can be seen 

from Areas 1 and 2 in Figure 8b, the texture of the crack-like edge 

and true crack are very similar, making them difficult to 

distinguish even with human eyes. Nevertheless, our proposed 

method effectively identifies the true crack, as shown in Area 2 

from Figure 8c, while correctly avoiding the detection of the false 

positive result as shown in Area 1 from Figure 8c. 

 

6. Validation Phase 3: Decision Making 

 

This section discusses the feedback flow that links the service 

(i.e., structural deterioration monitoring) and the physical entity. 

As can be seen from the results in Sections 4 and 5, our proposed 

method effectively detects damage in the stone wall of the 

casemate. In addition, our method is scalable and can be adapted 

to meet the needs of various stakeholders for their decision-

making. For example, instead of finding the local scale cracks in 

this study, the method can be expanded to identify damage such 

as loosened stones and uneven settlement at mesoscale or large 

scales. Lastly, the monitoring approach can be applied to other 

parts of the casemate, such as the dome, or other historic 

structures. Readers are referred to Kong and Hucks, 2023 for a 

case study in monitoring the deterioration of a historic bridge. 

 

This adaptability of our approach in different scales and types of 

structures would be crucial for decision-making. By providing 

detailed and scalable monitoring data on the condition of the 

historic structure, our method enables stakeholders to prioritize 

repairs, plan maintenance schedules, and allocate resources more 

effectively. For example, early detection of minor cracks can 

prompt timely interventions that prevent further damage, 

reducing long-term repair costs and enhancing structural 

integrity. Additionally, by understanding the broader 

implications of mesoscale and large-scale deteriorations, such as 

uneven settlement, stakeholders can make strategic decisions that 

address underlying issues. 

 

7. Discussion 

 

While there is no consensus on the exact definition of a digital 

twin in the literature, we embrace the ongoing debates and 

discussions about what constitutes a digital twin and how it can 

help us achieve our research goals. As discussed in Section 2.1, 

our conception of a digital twin contains five key components: 

physical entity, virtual entity, service, data, and connection. 

Although we highlighted the key distinctions between our digital 

twin framework and 4D modeling in Section 2.5, here we further 

differentiate our approach from other studies. 

 

Firstly, we argue that the digital twin is more than just a digital 

model; it should be beyond simple digital modeling. Indeed, 

while the 3D dense point cloud model of the casemate in this 

study captures the geometric and color textures of the physical 

entity, the point cloud itself should not be considered a digital 

twin. To qualify as a digital twin, the system must incorporate the 

aforementioned five key components in the feedback loop, 

serving a specific service objective, which is the deterioration 

monitoring in this study. 

 

Secondly, we argue that while real-time feedback is the preferred 

feature for a digital twin, not a requirement. Digital twin 

applications in manufacturing, such as those described by Thelen 

et al. (2022), typically emphasize real-time feedback from the 

virtual entity to the physical entity, often implemented through 

manufacturing plant control systems. However, given the context 

of heritage preservation, whether monitoring results can be 

synchronously looped back to influence the physical entity may 

not be essential and highly depends on the monitoring 

technologies employed. For instance, if a contact-based sensor 

network could be deployed, real-time monitoring and decision-

making would be achievable. However, this could also result in 

increased implementation costs for property owners. Therefore, 

digital twin applications must be considered carefully within the 

specific constraints and needs of cultural heritage preservation. 

 

8. Conclusion 

 

In this study, we introduced an innovative digital twin framework 

for monitoring time-varying deteriorations of historic structures. 

We began by reviewing existing literature to identify the research 

gap, which is assessing time-varying changes in historic 

structures. Next, a five-component digital twin framework was 

developed. The proposed framework was then validated through 

a casemate at Fort Soledad on the island of Guam. We discussed 

the processes in validation including reconstructing the virtual 

entity of the casemate in Phase 1, monitoring structural 

deterioration in Phase 2, and the usage of monitoring results for 

decision-making in Phase 3. 

 

The findings from this study confirm that our digital twin 

framework can effectively monitor the deterioration of historic 

structures, which is a critical need in the cultural heritage 

preservation community. As illustrated in the results of this 

paper, our work supports stakeholders in making sound decisions 

that enhance structural integrity. We hope that this research will 

contribute to the existing body of knowledge across the domains 

of photogrammetry, digital twin, and cultural heritage 

preservation; and prove valuable to our peers in these fields. 
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9. Future Work 

 

Future work will focus on expanding the proposed digital twin 

framework from historic structure preservation to broad 

engineering applications such as civil infrastructure inspections. 

Findings in the field of computer vision-based structural health 

monitoring such as detecting steel cracks (Kong and Li, 2019) 

and loosened bolts (Kong and Li, 2018) will be investigated for 

their potential to be integrated into our framework. 
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