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Abstract 
 
Autonomous driving offers benefits such as congestion mitigation, increased productivity through the reallocation of driving time, 
and decreased energy waste. However, achieving Level 4 and 5 autonomous driving remains a significant challenge for both 
academia and industry. Among the various modules of autonomous driving, High-Definition (HD) maps have become a crucial 
component due to their high precision in map elements, enabling accurate localization, scene interpretation, navigation, vehicle 
control and motion forecasting of trajectory of surrounding objects. Several map providers, including TomTom, HERE, Waymo, and 
NVIDIA, create HD maps for their specific purposes. However, most HD map datasets are not publicly available for individual 
researchers and companies to investigate the current trends in HD map generation. Furthermore, recent survey papers on HD map 
generation have tended to focus only on specific aspects, such as road topology or boundary extraction, rather than considering the 
overall end-to-end HD map generation process. Therefore, we begin with a brief definition, standards, and functionality of HD maps, 
followed by an exploration of different types of HD maps, including offline and online variants, highlighting their respective 
advantages and disadvantages. Finally, we will discuss the most recent end-to-end HD map generation architectures, along with 
various types of open-source HD map datasets and compare their performances. 
 

1. Introduction 

1.1 High-Definition Map 

In recent years, traditional digital maps have primarily provided 
two-dimensional information at the basic road level, lacking the 
necessary accuracy and abundance of environmental attributes 
essential for autonomous driving, such as road conditions, lanes, 
and traffic signaling (LETE, 2023). This deficiency is addressed 
through High-Definition (HD) maps, which involve collecting 
data from a diverse set of sensors, including lidar, radar, 
mono/stereo cameras, GNSS, and IMU (Shan, 2020), (Yang, 
2018), (Yu, 2015). 
 
HD maps refer to digital maps that contain all critical static 
properties of the road and surrounding environment essential for 
autonomous driving. These maps are typically accurate at the 
centimeter level and provide abundant geometric and semantic 
information about the road environment (Bao, 2023). The use of 
HD maps plays a crucial role in improving the precision of 
vehicle localization and enhancing the robustness and safety of 
both the vehicle and the surrounding environment. By 
interacting with different types of sensor modalities, such as 
cameras, lidar, and radar, an accurate HD map aids in building 
the perception module of autonomous driving (Bao, 2023), (Liu, 
2019). As a result, autonomous driving systems can process 
downstream tasks, such as motion planning for both long and 
short-term travel and motion forecasting of surrounding 
elements (Liu, 2023), such as other vehicles, pedestrians, and 
cyclists, thereby optimizing vehicle control for safety and 
driving efficiency. Figure 1 illustrates the autonomous driving 
pipeline and its individual modules. 
 
Although HD maps are widely used in many companies to 
deploy safe autonomous driving, each map provider has its own 
typical standard of HD map, especially concerning the 
definition of the layers of HD maps. TomTom, HERE, and 
Bertha Drive are among the most widely known HD map 
providers (Marchant, 2019), (Joergensen, 2024), (Ziegler, 2014). 
The most common type of layer division in HD maps is divided 

into three layers: the road layer, the lane layer, and the feature 
layer. Table 1 presents different types of map layer divisions. 
 
First, the road layer consists of road topology, direction, and 
rules that define high-level and basic road characteristics. It is 
usually designed as a graph and primarily serves navigation 
purposes. Second, the lane layer consists of lane dividers, 
centerlines, and stop lines, and it includes more specific road 
pavement marking elements. Lane layer elements are designed 
in vectorized map format and communicate with vehicle sensors 
to build the perception module (Han, 2023), (Liang, 2020), 
(Zhang, 2022) for environmental modeling, motion planning 
(Hu, 2021), (Ngiam, 2022), and forecasting (Hu, 2021), 
(Kamenev, 2022), (Liu, 2021) for vehicle control tasks. Lastly, 
the feature layer consists of roadside furniture such as traffic 
signs, signals, and buildings. Feature layers aid localization, 
especially in urban areas, by detecting benchmarks and roadside 
elements. Although most map providers define HD maps with 
three distinct layers, most open-source HD map datasets only 
consist of road and lane layers. Open-source datasets do not 
consider the feature layer as a task for HD maps but rather for 
the perception module.  

 
Figure 1. Autonomous driving module pipeline including 

localization, environment perception modeling, motion planning 
and forecasting, and vehicle control. Vehicle sensors include a 
camera, and stereo camera. lidar, radar, GPS/IMU, and more. 
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Layer Bertha Drive TomTom HERE 

1 Open Street Map  Navigation 
Data 

Road Layer 

2 Lane Level Map Planning data Lane Layer 

3 Landmark Map Road DNA Localization 
layer 

Table 1. Examples of HD map three-layer division among 
different HD map providers. 

 
1.2 Offline HD Map Production 

Despite its disadvantages, there remains a significant need for 
offline HD maps due to their high accuracy resulting from 
professional map production, including human QA/QC. In the 
domain of autonomous driving, offline HD maps serve as more 
than just navigation tools; they act as a type of geospatial data, 
past structured sensor data that assists autonomous driving 
beyond the usual sensor range, overcoming occlusion problems 
and harsh environments. Autonomous driving requires high 
redundancies in each task to minimize the probability of 
catastrophic accidents, as road accidents not only involve 
property damages but also human lives. Therefore, human-
labeled offline HD maps can provide both redundancy and 
accuracy in autonomous driving task modules for safety 
purposes. 
n provide both redundancy and accuracy in autonomous driving 
task modules for safety purposes. 
 
However, offline HD map generation presents challenges. 
While sensor technologies and data availability have 
significantly improved, generating offline HD maps requires 
considerable human effort for annotating and maintaining 
semantic information, leading to scalability issues. Moreover, 
many HD map providers increasingly rely on crowdsourcing, a 
task impractical for individual researchers due to the sheer 
volume of data and limited access to company data. Lastly, 
keeping HD maps continuously updated is costly. 
 
1.3 Online HD Map Creation 

Online HD mapping refers to the generation of HD maps while 
an autonomous vehicle is operating on the road. With 
advancements in sensor technologies and neural networks for 
object detection in images, online HD map generation has 
emerged as a preferred solution to reduce human effort in 
labeling map elements' locations and semantic information. 
Most online HD map generation models leverage transformer-
based methodologies to extract a bird’s eye view (BEV) feature 
map from the vehicle’s 360-degree surrounding cameras and 
detect lane locations, types, and directions, road boundaries, and 
pedestrian crossings. Consequently, generating HD maps on-
the-fly is not limited to existing maps for autonomous vehicle 
localization, potentially alleviating meter-level errors in special 
circumstances. 
rrors in special circumstances. 
 
However, online HD mapping also has its drawbacks. Although 
the development of neural networks shows promise in 
generating HD maps while driving, the accuracy of these maps 
remains questionable. The mean Average Precision (mAP) of 
state-of-the-art online HD map generation models is shown in 
Tables 3 and 4. Moreover, online HD map generation models 
based on open-source HD map datasets have not been evaluated 
over long-range traveling, as most open-source datasets only 
consider approximately 20-second intervals for each driving 
scenario due to dataset size limitations.  

2. Open-Source HD Map Datasets 

The availability of accurate and precise ground truth datasets 
plays a crucial role in training neural networks to achieve high 
performance. In the past few years, there have been limited 
open-source datasets providing human-labeled HD maps for 
individual researchers to investigate (Geiger, 2012). However, 
nowadays, various universities and companies have started 
releasing open-source datasets that include highly accurate HD 
maps with human labeling, along with corresponding sensor 
data such as camera images, lidar, radar, and GPS location data 
(Wilson, 2023), (Chang, 2019), (Sun, 2020), (Caesar, 2020). 
This development enables both academic and industry 
researchers to delve into HD map generation models. In Section 
2, we will discuss the most recent and commonly used 
autonomous driving datasets, covering the following aspects: 
list of sensors and data collection methods, data annotation and 
scene selection, and HD map formation. 
 
2.1 nuScenes 

2.1.1 Sensors and Data Collections 
Following in the spirit of pioneering autonomous driving 
datasets like KITTI (Geiger, 2012), nuTonomy released their 
first autonomous driving dataset called nuTonomy Scenes, or 
nuScenes for short. nuScenes collected their dataset primarily in 
two cities: Boston (Seaport and South Boston) and Singapore 
(One North, Holland Village, and Queenstown), known for 
dense traffic and challenging driving conditions (Caesar, 2020). 
Their dataset encompasses urban, residential, natural, and 
industrial areas of the cities, including surrounding vegetation, 
buildings, vehicles, road markings, and traffic directions (both 
right and left). To represent diverse driving circumstances, data 
collection was performed during various times of the day, under 
different weather conditions such as sunny, rainy, and cloudy 
days. This makes nuScenes the first dataset to include such a 
wide range of driving situations. 
 
nuScenes employs a variety of sensor modalities, including 5 
radar, 1 lidar, 6 RGB cameras, and 1 GPS/IMU. The 6 RGB 
cameras are strategically positioned around the vehicle, 
covering the front center, front right, front left, rear right, rear 
left, and back, providing a 360-degree field of view. The lidar 
sensor is mounted on the top of the vehicle, while the 5 radars 
are distributed at the front, front right, front left, rear right, and 
rear left. nuScenes claims to be the first and only dataset to 
include radar data, which offers more ranging data compared to 
lidar but with higher sparsity in data points. The specific setup 
locations and axes of each sensor are illustrated in Figure 2. 
 
2.1.2 Data Annotation and Scene Selection  
The nuScenes dataset consists of 1000 scenarios, each with a 
duration of 20 seconds, and is fully annotated with 3D bounding 
boxes spanning 23 classes, including rare objects. Notably, their 
dataset includes 7 times more 3D bounding boxes than KITTI, 
and these bounding boxes are annotated across the entire 360-
degree field of view. In contrast, KITTI only annotates objects 
visible in the frontal view. The annotations in nuScenes are 
conducted by expert annotators and undergo multiple 
validations. Each 3D bounding box is marked with the object's x, 
y, z coordinates; width, length, height; and yaw angle. 
 
The 1000 scenes in the dataset provide approximately 15 hours 
of driving data within the city, covering a total distance of 242 
km at an average speed of 16 km/hr. These scenes encapsulate a 
wide array of interesting driving scenarios, including high-
traffic situations at intersections and construction sites, rare 
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class objects such as ambulances, potentially dangerous 
situations on the road like jaywalkers, unusual driving, and 
pedestrian behaviors, as well as typical driving scenarios such 
as lane changes, turns, and stops. 

 
Figure 2. Vehicle sensor setup for nuScenes data collection. 

 
2.1.3 nuScenes HD Map  
In addition to sensor data, nuScenes also provides highly 
accurate and human-labeled semantic HD maps corresponding 
to each sensor data scenario. The nuScenes HD map is 
structured around three base primitives: nodes, lines, and 
polygons. A node represents a basic element with spatial 
information in terms of x and y coordinates, based on the WGS 
84 coordinate system, which corresponds with Google Maps. A 
line consists of two or more nodes, while a polygon is formed 
by three or more nodes to shape the external outline of the 
polygon. Additionally, polygons can include holes, which are 
also formed by three or more nodes. 
 
The nuScenes HD map is mainly divided into 11 layers: 
drivable area, road segment, roadblock and divider, lane and 
divider, pedestrian crossing, sidewalk, stop line, car park, and 
traffic light. Detailed nuScenes HD map layers are illustrated in 
Figure 3. The nuScenes HD map includes essential road rules 
such as intersection points, traffic directions, and traffic light 
information for drivers. In comparison with the basic three-layer 
division from HERE, the nuScenes HD map primarily has two 
layers: road and lane layers. However, nuScenes further 
subdivides the road and lane layers into smaller segments such 
as road segments, roadblocks, and lanes. 
 

 
Figure 3. Example of nuScenes 11 semantic layers of local area 

of Singapore. 
 
It's important to note that unlike the typical understanding of 
traditional HD maps, nuScenes HD maps do not provide any 3D 
spatial information regarding surrounding roadside objects or 

ground height information. Instead, temporary roadside objects 
such as road barriers and traffic cones are included in the 3D 
bounding box annotations rather than being marked in the HD 
map layers. 
 
2.2 Argoverse 2 

2.2.1 Sensors and Dat Collection 
The Argoverse 2 dataset is one of the most recent autonomous 
driving datasets and is provided by Argo AI in collaboration 
with various universities including Georgia Tech, UBC, MIT, 
and CMU (Wilson, 2023). Argoverse 2 serves as the successor 
to their previous dataset, Argoverse 1. In comparison to 
Argoverse 1, Argoverse 2 offers more scenes and is 23 times 
richer in terms of the number of 3D bounding boxes. The 
dataset was primarily collected across six different cities in the 
United States: Austin, Detroit, Miami, Pittsburgh, Washington 
DC, and Palo Alto, aiming to reflect diverse driving styles and 
urban structures. Similar to the nuScenes dataset, Argoverse 2 
followed similar styles of data collection, including data 
collection from different seasons such as snowy, sunny, and 
rainy days, as well as different lighting conditions including 
night and day driving scenarios. 
 
The sensor modalities in Argoverse 2 include 2 lidars, 7 
cameras, 2 stereo cameras, and GPS/IMU. The 7 high-
resolution (2048 width x 1550 height) cameras cover a 360-
degree field of view, including front, front left and right, side 
left and right, and rear left and right perspectives. Additionally, 
2 stereo cameras (2048 width x 1550 height) are installed at the 
front left and right positions. The 2 lidar sensors and GPS/IMU 
are mounted on the top of the vehicle. Argoverse 2 shares a 
similar sensor configuration with the nuScenes dataset, except 
for the fact that nuScenes includes 5 radar sensors while 
Argoverse 2 has 2 stereo cameras instead. 
 
2.2.2 Data Annotation and Scene Selection 
Initially, Argoverse 1 contained only 113 scenes, covering a 
mere 0.6 hours of data collection, making it a smaller dataset 
compared to other similar datasets released around the same 
time, such as nuScenes, Waymo Open, and Lyft L5. In response 
to this, Argoverse 2 was released with 1000 scenes, each lasting 
15 seconds, and included annotations for 23 classes. The dataset 
contains approximately 23 million 3D bounding boxes, 
surpassing the number in nuScenes. Notably, the 1000 scenes in 
Argoverse 2 include distinct driving behaviors observed in 
crowded and dynamic scenarios, such as cut-ins and encounters 
with jaywalkers. The number of scenes intentionally matches 
that of Waymo Open and nuScenes. 
 
In their paper, the creators of Argoverse 2 aimed to challenge 
the notion that bigger datasets are always better. They believed 
that releasing a benchmark dataset that is excessively large 
might deter the academic community from engaging with the 
work, leaving progress solely to well-resourced companies. 
Moreover, the Argoverse 2 dataset includes annotations for 
some under-researched objects, such as animals, traffic light 
signalers, and railed vehicles.  
 
2.2.3 Argoverse HD Map 
Argoverse 2 also provides an HD map along with corresponding 
sensor data. However, unlike nuScenes, which offers a full city-
level HD map, Argoverse 2 subdivides the city into local maps 
for each individual scene. This approach eliminates the need for 
developers to render or crop the HD map. The data in Argoverse 
2 is composed of x, y, z coordinates for their basic primitive 
node in 3D, utilizing a city-level coordinate system (Chang, 
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2019). The city-level coordinate system involves generating a 
local tangent plane from the Earth’s surface centered at a central 
point within the city of interest. Consequently, city-level 
coordinates can be easily converted to UTM by adding the 
origin of the city-level coordinate in UTM to the object’s city-
level xyz position, according to user preferences. In contrast to 
nuScenes HD map, which uses the WGS 84 coordinate system, 
Argoverse 2 prefers its own city-level coordinate system. This 
decision is motivated by the fact that leveraging WGS 84 at a 
city scale causes changes to the xyz coordinates in hundredths 
decimal place which decreases the interpretability of the 
location data. 
 
Based on the xyz coordinate primitives, Argoverse 2 provides 
four distinct layers of HD map: drivable area, lane segment, 
pedestrian crossing, and ground height. Drivable area illustrates 
areas where vehicles can drive without damage. Lane segment 
provides road lane information, such as road boundaries, lane 
types, intersection information. However, unlike nuScenes, the 
lane segment layer in Argoverse 2 does not include traffic 
direction information. Pedestrian crossing identifies areas 
designated for pedestrians to cross roads safely. Lastly, ground 
height is a rasterized map with a 30-centimeter resolution to 
provide high-resolution ground height information. However, 
Argoverse 2 does not specify whether they used orthometric 
height or geoid height, nor do they disclose the types of geoid 
models they employed. Similar to nuScenes, the Argoverse 2 
HD map dataset focuses on road and lane layers without 
including feature layer information, consistent with the basic 
layer-division principle outlined in Table 1. 
 

 
Figure 4. (Left) Example of Argoverse 2 3 semantic layers of 

local area of Pittsburgh. (Right) Example of Argoverse 2 
ground height map of local area of Pittsburgh. 

 
2.3 Comparison among HD Map Datasets 

After the release of the KITTI dataset, many autonomous 
driving datasets began to incorporate 3D box annotation 
information derived from lidar point clouds. Moreover, the 
number of classes, scenes, and cuboids increased to reflect 
advancements in autonomous driving research. However, until 
recently, there was a notable absence of datasets that included 
HD maps, which limited research on online HD map generation 
models. Argoverse 1 was a pioneer in providing an autonomous 
driving dataset that included HD maps of the collected city data. 
However, the size of these datasets was limited and not 
sufficient for training HD map generation models. Following in 
the footsteps of the KITTI dataset, today's major open-source 
autonomous driving datasets provide HD maps of the areas 
where they collected sensor data include Argoverse 2, nuScenes, 
and Waymo Open. 
 
Table 2 illustrates a comparison among different autonomous 
driving datasets. Argoverse 2 stands out with its impressive 
numbers of cuboids and the number of cities included, 
reflecting the varied road, and driving characteristics of diverse 

urban environments in the United States. Both nuScenes and 
Argoverse 2 boast the greatest number of classes, ensuring a 
comprehensive representation of distinct object types such as 
ambulances to aid motion planning and control task of the 
autonomous driving. Lastly, Argoverse 2 and Waymo provide 
3D HD maps, which represent an area of research that has not 
been extensively explored, particularly in the realm of online 
HD map generation. 
 
 Argoverse2 nuScenes Waymo KITTI 
Year 2021 2019 2019 2012 
Cities 6 2 3 1 
Cameras 7 6 5 4 
Lidars 2 5 1 1 
Classes 23 23 4 8 
Cuboids ~23M ~1.4M 12M 200K 
Scenes 1K 1K 1K 22 
Night/Rain Yes/Yes Yes/Yes Yes/Yes No/No 
Map/3DMap Yes/Yes Yes/No Yes/Yes No/No 

Table 2. Comparison of popular autonomous driving datasets. It 
is labelled with respect to year that dataset was released. Only 

Argoverse 2, nuScenes, and Waymo dataset include vector map. 
 

3. End-to-End HD Map Generation Architecture 

Following the semantic layers of open-source HD map datasets, 
HD map is typically constructed in BEV (Xiong, 2023), (Liu, 
2023), (Huang, 2022). However, these models are based on 
rasterized map that has limitation on using autonomous driving 
downstream tasks, such as motion forecasting and planning. 
Specifically, these models place emphasis on predicting lane 
dividers, boundaries, and pedestrian crossings as map elements 
when evaluating performance in map element prediction tasks. 
Given that map elements typically consist of simple lines or 
polygons in 2D, each map element is represented as a set of 
points or vectors. Furthermore, while predicting the location of 
map elements is essential, accurately outlining the set of points 
of the map element is also crucial for achieving accurate map 
construction. Thus, accurately shaping the outline of map 
elements is another important task in the HD map construction 
process. 
 
3.1 HDMapNet 

HDMapNet is a pioneering online vectorized HD map 
generation model that utilizes open-source HD map datasets and 
corresponding sensor data to generate HD maps in real-time (Li, 
2022). Its architecture consists of a BEV feature extractor 
encoder, based on camera and/or lidar inputs, and a BEV 
decoder that produces semantic segmentation, instance 
embedding, and direction prediction maps. Post-processing is 
then applied to vectorize pixels into a vector map. 
 
The BEV feature encoder comprises two main components: an 
image encoder and a point cloud encoder. The image encoder 
utilizes surrounding images captured by cameras, while the 
point cloud encoder leverages lidar data to extract BEV features. 
The image encoder consists of a perspective view image 
encoder, employing an EfficientNet-B0 (EB0) model (Tan, 
2020), and a neural view transformer, which converts 
perspective view feature maps into BEV features in the camera 
coordinate system via a multi-layer perceptron (MLP). 
Alternatively, the point cloud encoder, based on a methodology 
similar to PointNet (Charles, 2017), utilizes dynamic 
voxelization (Zhou, 2019) to divide the 3D space of the lidar 
point cloud into multiple pillars, which are then converted into 
BEV feature maps. 
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Following the generation of the image and/or BEV feature maps, 
the BEV decoder employs a ResNet (He, 2016) with three 
blocks to generate the BEV vector map. This process involves 
three main branches: semantic prediction, instance embedding, 
and direction prediction. Semantic prediction employs a fully 
convolutional network (Long, 2015) and cross-entropy loss to 
predict the semantic meaning of each part of the embedding, 
such as lane types, boundaries, and pedestrian crossings. 
Instance embedding involves clustering elements of the 
embedding based on DBSCAN to identify necessary line 
elements of the map in pixels, which are then connected 
greedily based on direction prediction to construct vector map 
elements. 
 
Although HDMapNet lays the groundwork for online vectorized 
HD map generation, it still relies on pixelwise prediction and 
necessitates post-processing to vectorize pixels for map 
generation. Additionally, its mean average precision for overall 
and individual lane dividers, boundaries, and pedestrian 
crossings requires improvement before it can be used effectively 
in autonomous driving tasks. Nonetheless, HDMapNet 
demonstrates the potential of using single or multi-modal inputs 
to generate HD maps on the fly. 
 
3.2 VectorMapNet 

Even though HDMapNet introduced an online vectorized map 
construction architecture using single and/or multi-modalities, it 
suffers from the need for post-processing from pixel-generated 
maps to vector maps. To address this disadvantage, 
VectorMapNet was introduced as the first end-to-end online HD 
map generation model without the need for post-processing, 
generating vector maps directly (Liu, 2023). VectorMapNet 
follows a similar scheme to HDMapNet, utilizing BEV feature 
maps to predict map elements, but it enhances mean average 
precision (mAP) and eliminates post-processing through its 
unique architecture. 
 
The VectorMapNet architecture is divided into three parts: a 
BEV feature extractor using images and/or point clouds, a map 
element detector, and a polyline generator. The BEV feature 
extractor using images employs ResNet50 (R50) (He, 2016), 
particularly a shared CNN backbone to obtain perspective view 
feature maps, which are then converted using Inverse 
Perspective Mapping (IPM) (Mallot, 1991) to BEV feature 
maps. The BEV feature extractor using point clouds utilizes 
PointPillar (Lang, 2019) with dynamic voxelization (Zhou, 
2019), similar to HDMapNet, to extract BEV features from the 
point cloud. BEV features from both images and point clouds 
are concatenated if both are present. 
 
The map element decoder leverages a variant of DETR (Carion, 
2020), which uses object queries to predict an object's location. 
However, in VectorMapNet, instead of object queries, it 
employs BEV feature maps and element queries, where each 
query represents a map element similar to object queries. The 
objective of the element query is to predict not only the position 
of the map element but also the position of the constituent x and 
y points of the predicted map element, referred to as keypoint 
embedding. The element query also predicts the class label of 
the predicted map element. The map element decoder adopts a 
multi-head self/cross-attention module as the attention module 
of the transformer (Vaswani, 2023). In the prediction head, an 
MLP decodes the predicted class label and location of the map 
elements. However, the predicted keypoint does not represent 
the vertices of the map elements, necessitating further work to 
construct the vector map element. 

To construct vector map elements from keypoints and class 
labels, the polyline generator adopts a basic transformer 
architecture (Vaswani, 2023), which has shown superior 
performance in conditional sequence generation tasks in natural 
language processing (NLP). The transformer's conditional 
sequence generation methodology is utilized to capture the 
complex shape of the map element from keypoints, class labels, 
and BEV feature maps based on an autoregressive network. The 
autoregressive network enables each vertex to be predicted 
based on the previously predicted vertex. 
 
Building on the preceding work of HDMapNet, VectorMapNet 
introduced the first end-to-end online vectorized HD map 
construction architecture without the need for post-processing 
of pixel images. Moreover, VectorMapNet increased mAP by 
approximately two times compared to HDMapNet. However, 
the autoregressive network in the polyline generator suffers 
from cumulative errors and requires significant inference time 
due to its nature of predicting the current vertex based on the 
previous vertex. Additionally, the feature introduced by 
HDMapNet, direction prediction, is not involved in 
VectorMapNet, indicating further need for improvement in 
online HD map construction research. 
 
3.3 MapTR 

Following the release of VectorMapNet, the utilization of 
DETR methodology became a key architecture for end-to-end 
online vector map construction. However, VectorMapNet still 
lacked a key feature of vector maps, namely direction prediction, 
and suffered from large inference times. To address this 
drawback, MapTR introduces perturbation-equivalent modeling. 
This approach not only predicts direction but also constructs the 
vector map without the need for a polyline generator, leveraging 
an autoregressive model to decrease the inference time of the 
model (Liao, 2023). Moreover, the MapTR architecture only 
uses image input but still achieves higher mean average 
precision (mAP) than previous works. 
 
MapTR architecture utilizes images as the sole sensor modality 
input for HD map construction. It is divided into two parts: the 
map encoder and the map decoder. The map encoder primarily 
takes images and processes them into perspective feature maps 
using R50 (He, 2016). These perspective view feature maps are 
then converted to BEV features through a geometrically guided 
transformer (GKT) (Chen, 2022), which leverages geometric 
information to guide the transformation of perspective features 
to BEV features. 
 
Similar to VectorMapNet, the map decoder in MapTR uses a 
DETR-based transformer. It takes BEV features and object 
queries to predict the class label and location of each point of 
the map element. In MapTR, the object query is referred to as 
an instance-level query, representing the map element. 
Specifically, a fixed number of instance-level queries are 
employed based on a hierarchical query scheme, where each 
instance-level query contains a fixed number of point-level 
queries that form the shape of the map element. Subsequently, 
permutation-equivalent modeling is employed to perform 
instance-level matching and point-level matching. This 
approach adopts a bipartite matching methodology similar to 
DETR, where predicted objects are matched with ground truth 
objects and unmatched objects are labeled as no object. 
Instance-level matching predicts the class level and approximate 
position of the map element, while point-level matching 
predicts the shape and direction of the map element at the point 
level. Through permutation-equivalent modeling, MapTR 
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achieves higher mAP and direction prediction while 
maintaining faster inference times without the need for an 
autoregressive network. 
 
As the name suggests, MapTR shares many similarities with 
DETR more than VectorMapNet, utilizing a bipartite matching 
scheme to generate vector map elements without relying on an 
autoregressive network to reduce the inference time of map 
element construction. However, the use of a fixed number of 
point queries presents another drawback. Since the shape of 
map elements is dynamic and unique, such as round corners, 
this approach may introduce redundant points and loss of 
information about the detailed shape of the map elements, 
potentially leading to a lower mAP for the model. 
 
3.4 PivotNet 

MapTR introduced a novel approach by utilizing DETR's 
bipartite matching scheme to generate map elements, including 
direction prediction, while maintaining fast inference times. 
However, due to the fixed number of queries required by DETR, 
map elements contain redundant points or fail to shape map 
element correctly. To address this issue, PivotNet introduced 
the pivot dynamic matching module, which outlines the shape 
of the map element based on pivotal points (Ding, 2023). 
Furthermore, PivotNet maintains faster inference times 
compared to the autoregressive network used in VectorMapNet. 
 
PivotNet is divided into four parts: the camera feature extractor, 
BEV feature decoder, line-aware point decoder, and pivot point 
head. The camera feature extractor takes surrounding images 
and extracts perspective view features using a shared neural 
network, with PivotNet utilizing SwinT (Liu, 2021) as the 
transformer-based feature extractor. The BEV feature decoder 
converts perspective view features into BEV features based on a 
transformer scheme, similar to BEVFormer (Li, 2022), a 
transformer encoder-based neural network that employs BEV 
queries to map perspective views into BEV view features. 
 
After extracting the BEV feature map from the images, the line-
aware point decoder employs an MLP and object query scheme. 
Object queries in PivotNet, referred to as point queries, 
represent the outline vertices of the map element. The line-
aware point decoder utilizes a point-to-line mask module to 
effectively construct the map element. This module ensures that 
each point query of the same instance learns and shares a line-
aware attention mask. The line-aware attention mask is then 
combined with cross-attention to encode subordinate and 
geometric priors into the point queries. The encoded point query, 
known as the point descriptor in PivotNet, is then utilized by the 
pivot point head, which employs pivot dynamic matching. This 
technique utilizes bipartite matching to identify pivotal points, 
distinguishing the direction of the point and ensuring that 
multiple points are not placed in the same location within the 
map element. 
 
By incorporating pivot dynamic matching, PivotNet effectively 
reduces redundant points and mitigates the loss of points when 
constructing the map element from the predictions. Additionally, 
PivotNet maintains higher inference times than VectorMapNet 
by continuing to use the bipartite matching scheme to predict 
direction and map elements. However, compared to MapTR, 
which utilizes a hierarchical query scheme to encode 
information between map elements and belonging points, 
PivotNet employs a simpler point query approach. This may 
result in incomplete map element shapes or accuracy issues 
(Zhou, 2024). 

4. Comparison among HD Map Generation Models 

4.1 Comparison Metrics  

Based on comparison metrics from image detection (Lin, 2014), 
the comparison metrics for HD map generation models is 
average precision (AP), which utilizes the Chamfer distance as 
the threshold to determine the true positives of the predicted 
map elements compared to the ground truth. The Chamfer 
distance measures the dissimilarity between two sets of points 
by comparing a reconstructed set of points with the ground truth 
set of points. The threshold values for the Chamfer distance 
typically used are {0.2, 0.5, 1.0} meters. However, Chamfer 
distance does not provide any directional difference 
measurement between two different sets of points. 
 
To compare the specific details of three map elements (lane 
divider, boundary, and pedestrian crossing), the AP scores for 
each element are computed individually. The AP is then 
calculated for each element at different Chamfer distance 
thresholds. Finally, the mAP is calculated by taking the average 
of the three AP values. This provides an overall performance 
metrics for the model across all map elements. 
 

 

 
(1) 
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where  S1, S2 = two sets of points 
 x, y = coordinate points from set of points 

 min = minimum values in the set 
 ||.||2 = L2 norm 
 

 

 
(3) 

 

 
Where t = set of Chamfer distance threshold 
 
4.2 Comparisons  

Based on the average precision (AP) and mean average 
precision (mAP) comparison metrics with a Chamfer distance 
threshold of {0.2, 0.5, 1.0} meters, a comparison among 
different HD map construction models is performed using only 
image data as the sensor modality. Among the compared 
models, PivotNet achieves the highest mAP across both the 
nuScenes and Argoverse 2 datasets. However, it's important to 
note that using different types of backbone models may affect 
the results of the mAP, as PivotNet is the only model in the 
comparison that uses a transformer-based feature extractor.  
Despite HDMapNet and VectorMapNet showing lower mAP 
values, they still achieve high AP scores for boundary detection 
and lane divider, respectively. Additionally, even with a lower 
number of training epochs, MapTR demonstrates competitive 
results on road divider AP. An interesting observation is that the 
Argoverse 2 dataset yields competitive results with the 
nuScenes dataset, even with a lower number of training epochs. 
This suggests that the Argoverse 2 dataset may offer 
comparable good performance to the nuScenes dataset for HD 
map construction tasks. 
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 HDMapNet VMapNet MapTR PivotNet 
BKB EB0 R50 R50 SwinT 
Epoch 30 110 24 30 110 
APdivider 17.7 27.2 30.7 47.6 53.6 
APPed 13.6 18.2 23.2 38.3 43.4 
APboundary 32.7 18.4 28.2 43.8 50.5 
mAP 21.3 21.3 27.3 43.3 49.2 

 
 HDMapNet VMapNet MapTR PivotNet 
BKB EB0 R50 R50 SwinT 
Epoch 6 24 6 10 
APdivider 19.5 33.32 42.2 51.1 
APPed 9.8 18.3 28.3 36.1 
APboundary 35.9 20.4 33.7 47.8 
mAP 21.8 24.0 34.8 45.9 

Table 3, 4. Comparison of SOTA HD map construction models 
based on different measurements based on nuScenes (Above) 

Argoverse2 (Bottom) dataset. 
  

5. Conclusion 

In this paper, recent autonomous driving datasets with HD map 
data and end-to-end vectorized HD map construction models are 
analyzed. HDMapNet introduced the first online vectorized HD 
map but suffered from post-processing of pixel-wise results to 
generate the vector map. VectorMapNet addressed the post-
processing issue by adopting DETR and an object query-based 
neural network but has limitations on inference time due to 
autoregressive modeling. MapTR further developed the DETR 
architecture using bipartite matching to solve the inference time 
of vector map construction; however, it has limited mAP. 
PivotNet resolved the mAP issue by predicting pivotal points of 
the map element to accurately predict the shape of the map 
element. Nonetheless, PivotNet misses the interaction between 
the element and points, still causing accuracy problems. 
 
In conclusion, while recent advancements in autonomous 
driving datasets and vectorized HD map construction models 
have addressed various challenges, there remain significant 
hurdles to overcome. These challenges include ensuring the 
accuracy of map element predictions, preserving essential 3D 
information in the generated 2D vector maps, and effectively 
addressing occlusion issues. Future research efforts should 
focus on refining existing methodologies to tackle these 
challenges and pave the way for safer and more efficient 
autonomous driving systems.  
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