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Abstract

The processing of bathymetric LIDAR waveforms is an important task, as it provides range and radiometric information to
determine the precise location of water surface and bottom, and other characteristics like amplitude. The exponential waveform
decomposition proved to be an effective algorithm for bathymetric LIDAR waveforms processing, however, it heavily relies on
the high-quality initial estimates of the model parameters. This paper proposes to make use of deep learning to obtain the initial
values directly from the input received waveforms without any hand-crafted features and prior-knowledges. Additionally, to
provide training samples, we presents a method to create the synthetic bathymetric LIDAR waveforms by simulating of the
backscatter cross function returned from water bodies. Two networks with different sensitivities of weak signals were trained by
these synthetic waveforms, and used to estimate the initial values of the model parameters, a least square optimization follows up
to obtain the final waveform decomposition result. This deep learning assisted exponential waveform decomposition method is
applied to the real waveforms acquired by RIEGL VQ-840-G. The results show that estimations with the help of deep learning is
less influenced by the intermediate peaks backscattered from objects and particles in water, producing a cleaner point cloud with
less isolated points below water surface than the original exponential waveform decomposition. Moreover, the proposed sensitive
DL-XDC is even able to detect some very weak bottom returns with low SNR.

1. Introduction

Airborne laser bathymetry (ALB) is an efficient method for
underwater topography measurements. To deliver accurate
3D point clouds to the end users, the laser signals received
by the detector need to be processed to obtain spatial and
radiometric data. However, it’s challenging to accurately
interpret vast amounts of received waveforms across various
water conditions. In an ideal water body, the laser pulse is
expected to return one echo from the water surface and one
echo from the water bottom. Due to the scattering of light
by particles in the water, it is likely that a small portion of
the pulse energy is reflected to the receptor when interacting
with turbid water, resulting in one or multiple intermediate
peaks apart from the echoes returned from the water surface
and the water bottom. Additionally, the laser pulse is
attenuated by absorption and scattering, which leads to only
limited signals from the water bottom collected by the
receiver. This makes it difficult to accurately distinguish the
weak water bottom signal from background noise, especially
in deep, turbid water. Therefore, a reliable waveform
processing algorithm needs to be studied to retrieve precise

range and radiometric features of the water body.

The received waveform is the convolution of the system
response and the differential backscatter cross section
(dBCS) of the target, which describes the physical properties
of the target hit by the laser beam. The major task of our
waveform analysis is to reconstruct the dBCS. Most methods
that have been published w.r.t. ALB full waveform analysis,
regarded the received waveform as a superposition of the
signals of the water surface, the water column and the water
bottom, in which the signals are described by mathematical
functions. The signals of the water surface and the water
bottom were represented as two Gaussian functions in the
research of (Yang et al., 2022, Abady et al., 2014), while the
authors in (Abdallah et al., 2013) fitted the water surface
signal by a Gaussian function and the water bottom as a
Weibull function. To include the system response into
consideration, (Xing et al., 2019) used a transformation of
the calibration waveform to fit the surface and bottom
returns. The calibration waveform is the system response to
a target with the Dirac-shaped backscatter cross section, like

bare ground, and approximated by a smoothing spline
function.

As for the fitting of the back-scattered water column signal,
different shapes of the functions are used, such as the
exponential function with a second-order polynomial used
in (Xing et al., 2019), the quadrilateral function (Abady et
al., 2014) and the triangle function (Abdallah et al., 2013).
However, none of these methods considered or proposed a
physical model to describe the laser beam backscattering
within the water column. Waveforms collected by
topography airborne LiDAR systems are normally
decomposed into multiple Gaussian pulses under the
assumption that the system response is a Gaussian, pulse
and the convolution of two Gaussians yields a Gaussian as
well. But this conventional Gaussian decomposition does
not apply to the bathymetry waveforms with asymmetric
shapes. Without consideration of the system response, the
fitting methods that are merely applied on the received
waveforms cannot fully capture the physical characteristics
of the interaction of the laser beam and the water body.
Additionally, a bias of the estimated water depth has been
mentioned in (Abady et al., 2014) (Abdallah et al., 2013),
which comes mainly from the approximated water column
signals overlapping water surface and bottom returns,
translating the peaks of the surface and bottom.

A deconvolution could be applied to remove the system
response, the remaining waveform should then be the
representation of the dBCS of the target. However, the
deconvolution induces a large amount of noise as it amplifies
the amplitudes of the high frequency noise-components,
which causes the amplitude of these components that may
contain meaningful information such as water surface and
bottom to fall below the inherent noise of the system. The
deconvolution in its bare form is unusable in practice. The
authors in a comparative study (Wang et al., 2015) on the
ALB waveforms processing state that the robust
Richardson-Lucy deconvolution has a superior performance
compared to the mathematical approximation of the
received waveforms, as it follows the physical process of
the signal. Their findings demonstrate the importance of

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI11-2-2024-195-2024 | © Author(s) 2024. CC BY 4.0 License. 195



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024

including the system response in the ALB waveform
processing.

To avoid the current shortcoming, an exponential
decomposition with implicit deconvolution method has been
proposed by Schwarz (Schwarz et al., 2017). The authors
represented the dBCS of a water body by multiple
exponential function segments. The received waveforms
can then be modeled as a convolution result of the LIDAR
instrument’s system waveform and the dBCS of the
illuminated target. The purpose of the waveform
decomposition is to determine the values of the parameters
of the dBCS model that can minimize the difference between
the modelled waveform and the received waveform. As the
solution to this non-convex problem is obtained by means
of a modified Levenberg-Marquardt algorithm by imposing
parameter constraints, the result is very sensitive to the
choice of the initial values of the parameters.

In recent years, some research have investigated the
potential of deep learning (DL) on LiDAR waveform
processing. In the studies of (Lang et al., 2022) and (Fayad
et al., 2021), the authors utilize a convolutional neural
network (CNN) to retrieve canopy height from large
footprint waveforms acquired by space-borne LiDAR. Their
results have shown that the use of a CNN-based framework
enables direct processing of waveforms, which avoids the
necessity of computational manual algorithm calibration to
find the best settings. Letard (Letard et al., 2023) designs a
U-Net with additional attention layers to reconstruct the
water surface, column and bottom components of the
bathymetric lidar signal. Asmann (Asmann et al., 2021)
regards the detection of principal peak components in
waveforms as a classification problem, a 1D CNN was
applied on waveforms and predicted the peak confidence of
each elements in the waveform.

This work is an extension of the exponential decomposition
method proposed by Schwarz (Schwarz et al., 2017) and
aims to utilize DL to estimate better than hand-crafted initial
values of the dBCS model parameters for the exponential
decomposition algorithm. The well-known ResNet-18
architecture is used and adapted to work on 1D waveforms.
And the network is trained by synthetic waveforms. By
interpreting the physical meaning of the parameters of the
proposed dBCS model, we assign a reasonable range for
each parameter and simulate the waveforms by randomly
selecting values from the given range. In this way, a large
amount of synthetic waveforms with ground truth parameter
values can be created and fed into the designed network for
the training. The estimations from the DL networks are
provided as the initial values and then go through a non-
linear least square optimization to obtain the final values.
To evaluate the performance, the proposed DL-assisted
exponential decomposition is applied on real waveforms
collected by a RIEGL VQ-840-G instrument to validate the
performance.

2. Methods
2.1 Waveform modelling

The received waveform is considered to be a convolution of
the system waveform and the dBCS of the target water body.
The model of dBCS, denoted by o (t), consists of three
contributions: water surface, water column, and water
bottom. Based on the previous work (Schwarz et al., 2017),
we use a Dirac-shaped pulse to describe the dBCS of water
surface as it is considered a discrete scatter event. A
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truncated exponential function is used as the dBCS for water
column, as both the laser pulse and the backscattered pulse
attenuate exponentially when travelling in turbid water.
Another truncated exponential function is used for the water
bottom as it has proven to give a better fitting result than a
Dirac-shaped dBCS. Thus, the dBCS of the water body,
denoted by o (t) can be written as the sum of the dBCS of
water surface, water column, and bottom in Eq. (1).

o(®) = es-8(t—ty)
+dy e O = 1)) — (e + )]
+dg e T (e — (£ + £5))3] Q)

Where 6() denotes Dirac’s function, ()3_ denotes the
Heavyside step function to indicate the effective time range
of the dBCS of water column and water bottom. The
Heavyside step function is given in Eq. (2).
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The dBCS of water body o(t), is a function depending on 7
parameters (eg, dy, dp, t,, tp, Ty, Tp). The physical
explanation of the parameters, which are also depicted in
Fig. 1, are the following:

e, .... water surface pseudo reflectivity, in units of 1.

to ... the start time of water column return, in units of ns.
dy .... water volume pseudo reflectivity density (PRD), in
units of 1/ns

Ty ... water volume decay time of PRD, in units of ns.

dp ... water bottom PRD, in units of 1/ns

Tp .... water bottom decay time of PRD, in units of ns

tp ... time difference between water surface and bottom
returns, related to water depth, in units of ns.

The attenuation of the laser pulse travelling in water can be
interpreted by the exponential function of the water column
(the second item in Eq. (1)). The starting dBCS of the water
column is d}, when the laser pulse hits the water surface,

and drops to the value of dy, /e after travelling 7}, in the

water. In turbid water, the energy decreases quickly due to
strong scattering by dense submerged particles in the water,
hence the value of 7, is very likely to be low. While in clear

water, the laser pulse tends to travel for a long distance
without so much energy attenuation, hence the value of 7,

is very likely to be high.

Although it could be expected that the response of the water
bottom would be a Dirac-shaped function, the dBCS of the
water bottom of this work uses an exponential function for
a better approximation of the received waveform. Therefore,
the physical meaning of the water bottom PRD (dj) and
decay time () cannot be interpreted as we did for the water
column, these two parameters are merely used for
mathematical approximation.

The returned energy of the three target components (surface,
column, and bottom) can then be calculated by the integral
of their dBCS functions over the according time range. As
plotted in Fig. 1, the two shaded areas under the two curves
correspond to the returned energy of water column and
water bottom, respectively. The mathematical equations are
given in Eq. (3), Eq. (4) and Eq. (5), where Eg, Ey, Ep
denote returned energy from the water surface, the water
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column, the water bottom, respectively. E, E\,, Ep are in
units of 1.
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Figure 1. An example model of the dBCS of a target water
body that contains waveforms returns of water surface,
column and bottom.
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The received signal p(t) can be written as a convolution
with o (t) the dBCS and the system waveform h(t), as
shown in Eq. (6).

p(®) =[Foc@h(t—1) di= o(t) *h(t) 6)

The aim of the exponential waveform decomposition (XDC)
is to iteratively compute the 7 parameters of the dBCS
function in Eq. (1), so that the modelled waveform, which is
a convolution (computed by Eq. (6)) between the given
system waveform and the estimated dBCS, is best-fitting
the received waveform. In the processing of the original
XDC (Schwarz et al., 2017), the initial values of the dBCS
model parameters need to be firstly estimated by a few
hand-crafted features, based on plausible reasoning, then a
least square method is applied to progressively determine
the final values. The result of the least square optimization
heavily depends on the proximity of the initial values to the
solution to avoid being trapped into a suboptimal result. In
this paper we propose to replace the hand-crafted method
by DL to facilitate the initial estimates of the dBCS
parameters. We use the DL network to perform the first step
in the XDC, which outputs the parameter values directly
from the input waveforms, then go through the same least
square procedure to obtain the optimized values of the
dBCS.

2.2 Waveform simulation

To train a proper deep learning network, a large amount of
accurately labelled training data is required. We used
simulated waveforms as training data. As the dBCS model
of water body is driven by the physical characteristics of the
target water area, the dBCS of water body can be simulated
by setting a reasonable range for the parameters and
convolved with the system waveform of the specific scanner
device to obtain synthetic echo waveforms. The value
ranges are presented in Tab. 1 and detailed as below.

. The total length of the waveform is set to be 512
ns. The start time (t,) is related to the instrument’s height

above the water surface and the beginning of the waveform
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recording. Thus a wide range is chosen for t;, as the water
surface echo could appear at any location of the waveform.

3 The time difference (tp) between the surface and
the bottom return is related to water depth. The possible
value of t ranges from 1.5 ns to 250 ns, which corresponds
to the water depth varying from 0.165 m to 27.5 m. The half
speed of light travelling in water (0.11 m/ns) is used to
convert time to range.

. The decay time (/) of water column dBCS relates
to the water turbidity. It tends to be high for a clear water
body, whereas it is low when water is turbid. Based on Eq.
(1), the starting dBCS of the water column is dy,, and drops

to dyl/e v after travelling 1 ns in the water, thus the drop
rate is 1/el/TV. We set the range of 7, as 0.8 ns to 100 ns.
That is to say, in an extremely turbid water, the dBCS drops

to 28% while the dBCS can keep 99% in an extremely clear
water after the laser pulse travelling 1 ns in the water.

3 The decay time (t) of water bottom dBCS should
be a relatively small value, as the water bottom is solid
target and the laser pulse should be mostly back-scattered.
It uses the same minimum values as the 7, used, and

maximum values is set empirically.

. Instead of interpreting the range values for PRD,
we computed the PRD of the water column and the water
bottom by its returned energy and decay time based on Eq.
(4) and Eq. (5), because the returned energy of the target is
casier to interpret than the PRD.

. The maximum value is set as 0.88 in units of 1,
for the returned energy of the water surface (E), the water
column (E) and the water bottom (Ep). Two different
minimum values are used for the returned energy of the
water bottom to train two networks with the different
sensitivities of the weak signals.

The returned energy of water column and water bottom are
negatively correlated. When the energy returned from the
water column is high, for instance, in a turbid water body,
the returned energy from the water bottom should be low. In
a clear water body, the water bottom energy tends to be high
but results in a low energy returned from water column.
Therefore, we added a constrain in the simulation as shown
in Eq. (7) to generate more realistic waveforms.

Ey,+Ep <0.88 @)
Tab. 1 Parameter ranges used for waveform simulation
parameter range unit
to [0.5, 510] ns
tp [1.5,250] ns
Ty [0.8, 100] ns
Tp [0.8,2.5] ns
Eg [0.0034, 0.88] 1
Ey [0.0034, 0.88] 1
Ep
for robust network [0.0034, 0.88] !
Ep
for sensitive network [0.0017, 0.88] !

We simulated 6 types of waveforms by varying the returned
energy of the water surface, column and bottom.
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. Type-1: the waveform contains one component:
water surface. E¢>0,E,, =0, E5=0.

. Type-2: the waveform contains two components:
water surface and column. E¢> 0, E;, >0, E5 =0.

. Type-3: the waveform contains one component:
water column. E¢=0, E;, >0, E5 =0.

. Type-4: the waveform contains two components:
water column and bottom. E¢=0, E}, >0, E5> 0.

. Type-5: the waveform contains all three target
components: water surface, column and bottom. Eg > 0,

E,>0,Eg>0.
. Type-6: the waveform contains two components:
water surface and bottom. E¢ >0, E}, =0, E5> 0.

For each type of waveform, parameter values are randomly
selected from the given range with the constrain in Eq. (7)
to create various dBCS functions, the synthetic waveforms
are then generated by convolution of the given system
waveform and the simulated dBCS functions.

The real waveform received from the LiDAR sensor is very
unlikely to be as smooth as the simulated waveform, thus
we considered three types of noise to complement the
simulation, which are random Gaussian noise, one or two
spike-like outliers occurring at arbitrary location, and a
false-alarm signal with a very small energy before the water
bottom return. This false-alarm signal was generated by
convolving the system waveform and a small Dirac-shape
pulse to simulate the peaks that are caused by back-
scattering at particles. To improve the robustness of the
trained network, the three types of noise were added during
the data augmentation of the network training.

2.3 Deep learning network

The ResNet-18 architecture (He et al., 2016) is adapted in
this work. All the two-dimensional operations are replaced
with one-dimensional convolution, pooling and batch
normalization layers, in order to deal with 1-D input
waveforms. The overall architecture of the network is
presented in Fig. 2(a). The ResNet-18 comprises 8 residual
blocks, as depicted in Fig. 2(b), each block consists of two
consecutive 3x3 convolutions, each followed by a batch
normalization and a rectified linear unit (ReLU) to introduce
non-linearity. In our work, the first convolution in the 1st,
3rd, 5th and 7th block is performed with a stride size of 2.
This down-sampling operation gradually increases the
receptive field of the input feature vector, so that the
parameters that need a large neighbourhood to interpret, like
to, could be well learned through the features represented

by deeper layers.

After the last residual block, a global average pooling layer
is added, to average all sample index in each feature
dimension to a scalar value, and result in a 1-dimensional
feature vector. At last, a fully connected layer is applied to
output the 7 target parameters’ values. Note that the 7 target
parameters are the start time (t), the time difference (tp),
the decay time of water column (7},), the decay time of water
bottom (7p) , the energy of water surface (Eg), the energy
of water column (E},) and the energy of water bottom (Ep).
The water column PRD (d},) and the water bottom PRD (
dp) are calculated based on Eq. (4) and Eq. (5).
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Figure 2. DL network (a) 1D ResNet-18 used for waveform
parameters estimation, (b) Residual Block
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We simulated 70,000 waveforms of each type and use the
resulting 420,000 waveforms to train the networks. Two
networks with different minimum values for the water
bottom energy are trained. The waveforms that are simulated
with the relatively higher energy threshold of the water
bottom return are used to train the network that would be
more robust against noise signals, named robust-DL network
in the following. Whereas, the network trained by the
waveforms with a relatively lower energy threshold of water
bottom is expected to be more sensitive to the weak bottom
returns.

3 Results

The performance of the proposed method was tested on real
waveforms acquired by RIEGL VQ-840-G in the bay area
of Toulon, a Mediterranean coastal city in France. Due to
the lack of ground truth values, we compare the results
against the results of the original implementation of
exponential decomposition, which is denoted as Ori-XDC.
In the Ori-XDC, the initial values of surface and bottom
returns were computed by evaluating the isolation,
prominence and amplitude of each sample point. The details
can be seen in (Schwarz et al., 2019). DL-XDC denotes the
exponential decomposition where initial values were
estimated by a deep learning network. Based on which pre-
trained network has been used for initial values estimation,
we refer to our methods as sensitive DL-XDC and robust
DL-XDC. Note that the same modified un-constrained least
square optimization method is applied after estimating the
initial values in the above-mentioned methods. The results
are evaluated by visually inspecting the generated point
clouds in Section 3.1, the waveform decomposition results
in Section 3.2 comparing the modelled waveforms and the
received waveforms and the computation time in Section
3.3.

3.1 Generated point clouds

Fig. 3 presents the point clouds generated by each
decomposition method. The length of the profiles in Fig. 3
is about 162 m and the deepest area is about 29 m deep. The
Ori-XDC tends to generate more points within water
column. Compared with robust DL-XDC, more bottom
points are detected by the sensitive DL-XDC method,
however, some points under the water surface are also
returned due to its high sensitivity to weak signal returns.
For better evaluation of the bottom detection, we manually
identified the bottom points and had the selected points
counted in RiPROCESS (RIEGL, 2018). The resulting
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bottom point count by Ori-XDC, robust DL-XDC and
sensitive DL-XDC is 458, 560 and 630, respectively. This
suggests that an improvement of bottom detection is

achieved by both DL-XDC methods, meanwhile resulting
also in less points within the water column.
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Fig. 3. Near shore sea profiles of the point clouds. The blue point clouds are the echoes from the water surface and the red point

clouds are the echoes from the water bottom. (a) was generated by Ori-XDC, (b) was generated by robust DL-XDC and (c) was

generated by sensitive DL-XDC.

3.2 Waveform decomposition results

To intuitively examine the effect of DL, we selected two
received waveforms that are difficult to interpret by hand-
crafted features such as peak isolation and prominence, and
depicted their modelled waveforms to illustrate the
decomposition performance. The modelled waveforms are
the result of the convolution of the system waveform and
the target dBCS function, in which the coefficients are
solved by Ori-XDC and the proposed DL-XDC methods.
The intermediate modelled waveform before the least square
optimization procedure are presented as well, in order to
evaluate the quality of the initial values provided by Ori-
XDC and DL methods.

Since the laser pulse may be scattered by objects within the
water column, an intermediate prominent peak, sometimes
with a even stronger returned energy than the water bottom
echo, may be observed in the received waveform, as for
example in Fig. 4. The water bottom echo is initially
detected at the index of 472, 621 and 620 by Ori-XDC in
Fig. 4(b), robust-DL in Fig. 4(c) and sensitive-DL in Fig.
4(d), respectively, After the iteratively optimization, the
water bottom echo is determined at the index of 472, 622
and 622 by Ori-XDC in Fig. 4(e), robust DL-XDC in Fig.
4(f) and sensitive DL-XDC in Fig. 4(g). By hand-crafted
features, Ori-XDC identified the intermediate peak as the
bottom return because it is the second most prominent peak
detected in the waveform, which results in many scattering
points (Fig. 3(a)) below the water surface. Both DL methods
tend to regard the last weak signal as the bottom return, thus
yielding less scatter points in the water column.

In Fig. 5, the water bottom return is very weak and and
nearly obscured by noise. For the initial estimates, the
bottom echo is detected at the index of 429, 683 by Ori-

XDC in Fig. 5(b) and sensitive-DL in Fig. 5(d), respectively,
while no bottom echo is detected by robust-DL in Fig. 5(c).
After the optimization, the bottom echo location is fine-
tuned and detected at the index of 421 and 688 by Ori-XDC
in Fig. 5(e) and sensitive DL-XDC in Fig. 5(g), respectively.
As the optimization is only performed on the input echo
parameters, no new echo would be created during the
optimization procedure. Thus, only the surface echo
parameters are fine-tuned for the robust-DL. The sensitive-
DL network was trained to be more responsive to weak
signals and successfully detects the very weak water bottom
signal from such a low signal-noise-ratio (SNR) waveform.
As for Ori-XDC, an intermediate peak is considered as the
water bottom echo like in the previous example shown in
Fig. 4,

The waveforms modelled by the initial estimates of the DL
models are plotted in the (c) and (d) in Fig. 4 and Fig. 5. The
modelled waveforms fit the received waveforms already
quite well before the optimization procedure proving that
the trained DL networks provide more accurate estimates of
the initial values.

Considering the test area is a relatively clear water body, the
water column is expected to be clean rather than occupied
by points. Additionally the water bottom points generated
by the DL methods are in agreement with the neighbouring
bottom points. Thus we conclude that the DL methods
improve the waveform decomposition performance and
result in more accurate water bottom points detection. Both
DL-networks show the ability to better distinguish
intermediate signals back-scattered by objects or particles
and the bottom returns. In addition, the sensitive DL network
is able to detect even weak bottom returns exhibiting very
low SNRs.
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Fig. 4. An example of the received waveform with the echo returned from submerged particles or objects in water. (a) received
waveform, the subset in the green rectangle are further depicted with additional modelled waveform in (b)-(g) to have a close look
at the fitting results. (b)-(d) are the modelled waveforms (before least square optimization) constructed by the initial parameters
values estimated by Ori-XDC, the predicted parameter values directly from robust DL and sensitive DL, respectively. (e)-(g) are
the modelled waveforms after least square optimization using the initial values provided by the different methods.
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Fig. 5. An example of the received waveforms with the weak signal of the water bottom. (a) received waveform, the subset in the
green rectangle are further depicted with additional modelled waveform in (b)-(g) to have a close look at the fitting results. (b)-(d)
are the modelled waveforms (before least square optimization) constructed by the initial parameters values estimated by Ori-XDC,
the predicted parameter values directly from robust DL and sensitive DL, respectively. (e)-(g) are the modelled waveforms after
least square optimization using the initial values provided by the different methods.

3.3 Computation time

Least square optimization iteratively minimize the
difference between the received waveform and the modelled
waveform to determine the best parameter values of the
dBCS function. Better initial values result in fewer
optimization steps and thus likely less processing time. Tab.
2 presents the processing time for each method for the
record containing 670309 waveforms. Runtime denotes the
overall processing time from reading the input data to
writing the point cloud, whereas full waveform analysis
time is only the time spent on waveform decomposition
itself.

For Ori-XDC, the waveform decomposition time is 22m47s,
which includes the initial values estimation and the
optimization procedure.

For DL-XDC, the waveform decomposition comprises two
steps, the initial values estimation by the trained DL
networks and the follow-up optimization step implemented
by XDC algorithm. Note that the deep learning inference
runs on a GPU (Quadro M2200). Thus, the total waveform
decomposition for DL methods is the sum of initial values
estimation time by DL and optimization time by XDC. The
waveform decomposition of robust DL-XDC and sensitive
DL-XDC is 18m57s and 18m38s, respectively. Overall, the
waveform decomposition time required by the DL-XDC is
slightly less than the Ori-XDC.

Tab. 2. Processing time

methods runtime full waveform analysis time
Ori-XDC 23m50s 22m47s
initial values optimization
robust DL-XDC 20m02s 3m57s 15m00s
sensitive DL-XDC 19m41s 3m54s 14m44s

4. Conclusion

In this work we designed and trained a deep learning
network to provide initial values for the parameters of the
dBCS used for full waveform analysis in the context of
bathymetric laser scanning. The proposed DL-assisted
waveform decomposition method is evaluated on the ALB
dataset collected in the ocean area. The improvement of
these initial values compared to hand-crafted initial values
can be confirmed by the generated point clouds, modelled
waveforms by the estimated parameters, and the
computation time. Compared to the Ori-XDC, the resulting
point cloud with the assistant of DL has less isolated points
in the water volume but more water bottom points. By
visually inspecting the waveform decomposition results, the
DL-XDC methods are less influenced by the intermediate
peaks in the received waveform and more likely to detect
the real water bottom return. Two DL-XDC networks are
offered based on different settings for the SNR: more bottom
signals can be detected by the sensitive DL-XDC in deep
water areas, but generating relatively more scattering points
within the water column than the robust DL-XDC. In the
future work, the performance of the proposed DL-XDC will
be evaluated on the ALB waveforms collected in different
water-bodies, such as lakes and rivers.
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