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Abstract
The processing of bathymetric LiDAR waveforms is an important task, as it provides range and radiometric information todetermine the precise location of water surface and bottom, and other characteristics like amplitude. The exponential waveformdecomposition proved to be an effective algorithm for bathymetric LiDAR waveforms processing, however, it heavily relies onthe high-quality initial estimates of the model parameters. This paper proposes to make use of deep learning to obtain the initialvalues directly from the input received waveforms without any hand-crafted features and prior-knowledges. Additionally, toprovide training samples, we presents a method to create the synthetic bathymetric LiDAR waveforms by simulating of thebackscatter cross function returned from water bodies. Two networks with different sensitivities of weak signals were trained bythese synthetic waveforms, and used to estimate the initial values of the model parameters, a least square optimization follows upto obtain the final waveform decomposition result. This deep learning assisted exponential waveform decomposition method isapplied to the real waveforms acquired by RIEGL VQ-840-G. The results show that estimations with the help of deep learning isless influenced by the intermediate peaks backscattered from objects and particles in water, producing a cleaner point cloud withless isolated points below water surface than the original exponential waveform decomposition. Moreover, the proposed sensitiveDL-XDC is even able to detect some very weak bottom returns with low SNR.
1. Introduction
Airborne laser bathymetry (ALB) is an efficient method forunderwater topography measurements. To deliver accurate3D point clouds to the end users, the laser signals receivedby the detector need to be processed to obtain spatial andradiometric data. However, it’s challenging to accuratelyinterpret vast amounts of received waveforms across variouswater conditions. In an ideal water body, the laser pulse isexpected to return one echo from the water surface and oneecho from the water bottom. Due to the scattering of lightby particles in the water, it is likely that a small portion ofthe pulse energy is reflected to the receptor when interactingwith turbid water, resulting in one or multiple intermediatepeaks apart from the echoes returned from the water surfaceand the water bottom. Additionally, the laser pulse isattenuated by absorption and scattering, which leads to onlylimited signals from the water bottom collected by thereceiver. This makes it difficult to accurately distinguish theweak water bottom signal from background noise, especiallyin deep, turbid water. Therefore, a reliable waveformprocessing algorithm needs to be studied to retrieve precise
range and radiometric features of the water body.
The received waveform is the convolution of the systemresponse and the differential backscatter cross section(dBCS) of the target, which describes the physical propertiesof the target hit by the laser beam. The major task of ourwaveform analysis is to reconstruct the dBCS.Most methodsthat have been published w.r.t. ALB full waveform analysis,regarded the received waveform as a superposition of thesignals of the water surface, the water column and the waterbottom, in which the signals are described by mathematicalfunctions. The signals of the water surface and the waterbottom were represented as two Gaussian functions in theresearch of (Yang et al., 2022, Abady et al., 2014), while theauthors in (Abdallah et al., 2013) fitted the water surfacesignal by a Gaussian function and the water bottom as aWeibull function. To include the system response intoconsideration, (Xing et al., 2019) used a transformation ofthe calibration waveform to fit the surface and bottomreturns. The calibration waveform is the system response toa target with the Dirac-shaped backscatter cross section, like

bare ground, and approximated by a smoothing splinefunction.
As for the fitting of the back-scattered water column signal,different shapes of the functions are used, such as theexponential function with a second-order polynomial usedin (Xing et al., 2019), the quadrilateral function (Abady etal., 2014) and the triangle function (Abdallah et al., 2013).However, none of these methods considered or proposed aphysical model to describe the laser beam backscatteringwithin the water column. Waveforms collected bytopography airborne LiDAR systems are normallydecomposed into multiple Gaussian pulses under theassumption that the system response is a Gaussian, pulseand the convolution of two Gaussians yields a Gaussian aswell. But this conventional Gaussian decomposition doesnot apply to the bathymetry waveforms with asymmetricshapes. Without consideration of the system response, thefitting methods that are merely applied on the receivedwaveforms cannot fully capture the physical characteristicsof the interaction of the laser beam and the water body.Additionally, a bias of the estimated water depth has beenmentioned in (Abady et al., 2014) (Abdallah et al., 2013),which comes mainly from the approximated water columnsignals overlapping water surface and bottom returns,translating the peaks of the surface and bottom.
A deconvolution could be applied to remove the systemresponse, the remaining waveform should then be therepresentation of the dBCS of the target. However, thedeconvolution induces a large amount of noise as it amplifiesthe amplitudes of the high frequency noise-components,which causes the amplitude of these components that maycontain meaningful information such as water surface andbottom to fall below the inherent noise of the system. Thedeconvolution in its bare form is unusable in practice. Theauthors in a comparative study (Wang et al., 2015) on theALB waveforms processing state that the robustRichardson-Lucy deconvolution has a superior performancecompared to the mathematical approximation of thereceived waveforms, as it follows the physical process ofthe signal. Their findings demonstrate the importance of
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including the system response in the ALB waveformprocessing.
To avoid the current shortcoming, an exponentialdecomposition with implicit deconvolution method has beenproposed by Schwarz (Schwarz et al., 2017). The authorsrepresented the dBCS of a water body by multipleexponential function segments. The received waveformscan then be modeled as a convolution result of the LiDARinstrument’s system waveform and the dBCS of theilluminated target. The purpose of the waveformdecomposition is to determine the values of the parametersof the dBCSmodel that can minimize the difference betweenthe modelled waveform and the received waveform. As thesolution to this non-convex problem is obtained by meansof a modified Levenberg-Marquardt algorithm by imposingparameter constraints, the result is very sensitive to thechoice of the initial values of the parameters.
In recent years, some research have investigated thepotential of deep learning (DL) on LiDAR waveformprocessing. In the studies of (Lang et al., 2022) and (Fayadet al., 2021), the authors utilize a convolutional neuralnetwork (CNN) to retrieve canopy height from largefootprint waveforms acquired by space-borne LiDAR. Theirresults have shown that the use of a CNN-based frameworkenables direct processing of waveforms, which avoids thenecessity of computational manual algorithm calibration tofind the best settings. Letard (Letard et al., 2023) designs aU-Net with additional attention layers to reconstruct thewater surface, column and bottom components of thebathymetric lidar signal. Asmann (Asmann et al., 2021)regards the detection of principal peak components inwaveforms as a classification problem, a 1D CNN wasapplied on waveforms and predicted the peak confidence ofeach elements in the waveform.
This work is an extension of the exponential decompositionmethod proposed by Schwarz (Schwarz et al., 2017) andaims to utilize DL to estimate better than hand-crafted initialvalues of the dBCS model parameters for the exponentialdecomposition algorithm. The well-known ResNet-18architecture is used and adapted to work on 1D waveforms.And the network is trained by synthetic waveforms. Byinterpreting the physical meaning of the parameters of theproposed dBCS model, we assign a reasonable range foreach parameter and simulate the waveforms by randomlyselecting values from the given range. In this way, a largeamount of synthetic waveforms with ground truth parametervalues can be created and fed into the designed network forthe training. The estimations from the DL networks areprovided as the initial values and then go through a non-linear least square optimization to obtain the final values.To evaluate the performance, the proposed DL-assistedexponential decomposition is applied on real waveformscollected by a RIEGL VQ-840-G instrument to validate theperformance.

2. Methods
2.1 Waveform modelling
The received waveform is considered to be a convolution ofthe system waveform and the dBCS of the target water body.The model of dBCS, denoted by 𝜎 𝑡 , consists of threecontributions: water surface, water column, and waterbottom. Based on the previous work (Schwarz et al., 2017),we use a Dirac-shaped pulse to describe the dBCS of watersurface as it is considered a discrete scatter event. A

truncated exponential function is used as the dBCS for watercolumn, as both the laser pulse and the backscattered pulseattenuate exponentially when travelling in turbid water.Another truncated exponential function is used for the waterbottom as it has proven to give a better fitting result than aDirac-shaped dBCS. Thus, the dBCS of the water body,denoted by 𝜎 𝑡 can be written as the sum of the dBCS ofwater surface, water column, and bottom in Eq. (1).
𝜎 𝑡 = 𝑒𝑆  ∙ 𝛿 𝑡 − 𝑡0

+ 𝑑𝑉  ∙ 𝑒−(𝑡−𝑡0)/𝜏𝑉∙ [(𝑡 −  𝑡0)0+ − (𝑡 − 𝑡0 +  𝑡𝐵))0+ ]
+ 𝑑𝐵  ∙ 𝑒−(𝑡 − (𝑡0+ 𝑡𝐵))/𝜏𝐵 ∙ [(𝑡 − 𝑡0 +  𝑡𝐵))0+] (1)

Where 𝛿() denotes Dirac’s function, ()0+ denotes the
Heavyside step function to indicate the effective time rangeof the dBCS of water column and water bottom. TheHeavyside step function is given in Eq. (2).

𝑡 − 𝑡0
0
+ =  1, 𝑡 ≥  𝑡00, 𝑡 < 𝑡0  (2)

The dBCS of water body 𝜎(𝑡), is a function depending on 7parameters (𝑒𝑆, 𝑑𝑉, 𝑑𝐵, 𝑡0, 𝑡𝐵, 𝜏𝑉, 𝜏𝐵). The physicalexplanation of the parameters, which are also depicted inFig. 1, are the following:
𝑒𝑠 .... water surface pseudo reflectivity, in units of 1.𝑡0 .... the start time of water column return, in units of ns.𝑑𝑉 .... water volume pseudo reflectivity density (PRD), inunits of 1/ns𝜏𝑉 .... water volume decay time of PRD, in units of ns.𝑑𝐵 .... water bottom PRD, in units of 1/ns𝜏𝐵 .... water bottom decay time of PRD, in units of ns𝑡𝐵 .... time difference between water surface and bottomreturns, related to water depth, in units of ns.
The attenuation of the laser pulse travelling in water can beinterpreted by the exponential function of the water column(the second item in Eq. (1)). The starting dBCS of the watercolumn is 𝑑𝑉 when the laser pulse hits the water surface,and drops to the value of 𝑑𝑉/𝑒 after travelling 𝜏𝑉 in thewater. In turbid water, the energy decreases quickly due tostrong scattering by dense submerged particles in the water,hence the value of 𝜏𝑉 is very likely to be low. While in clearwater, the laser pulse tends to travel for a long distancewithout so much energy attenuation, hence the value of 𝜏𝑉is very likely to be high.
Although it could be expected that the response of the waterbottom would be a Dirac-shaped function, the dBCS of thewater bottom of this work uses an exponential function fora better approximation of the received waveform. Therefore,the physical meaning of the water bottom PRD (𝑑𝐵) anddecay time (𝜏𝐵) cannot be interpreted as we did for the watercolumn, these two parameters are merely used formathematical approximation.
The returned energy of the three target components (surface,column, and bottom) can then be calculated by the integralof their dBCS functions over the according time range. Asplotted in Fig. 1, the two shaded areas under the two curvescorrespond to the returned energy of water column andwater bottom, respectively. The mathematical equations aregiven in Eq. (3), Eq. (4) and Eq. (5), where 𝐸𝑆, 𝐸𝑉, 𝐸𝐵denote returned energy from the water surface, the water
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column, the water bottom, respectively. 𝐸𝑆, 𝐸𝑉, 𝐸𝐵 are inunits of 1.

Figure 1. An example model of the dBCS of a target waterbody that contains waveforms returns of water surface,column and bottom.
𝐸𝑆 =∫ 𝑡00 𝑒𝑠  ∙ 𝛿 𝑡 − 𝑡0 𝑑𝑡 = 𝑒𝑠 (3)

𝐸𝑉 =∫ 𝑡𝐵𝑡0  𝑑𝑉  ∙ 𝑒−(𝑡−𝑡0)/𝜏𝑉𝑑𝑡  
= 𝑑𝑉  ∙ 𝜏𝑉  ∙(1 −  𝑒−𝑡𝐵/𝜏𝑉) (4)

𝐸𝐵 = ∞
𝑡𝐵

𝑑𝐵  ∙ 𝑒−(𝑡 − (𝑡0+ 𝑡𝐵))/𝜏𝐵 𝑑𝑡 =  𝑑𝐵  ∙ 𝜏𝐵 (5)

The received signal 𝑝 𝑡 can be written as a convolutionwith 𝜎 𝑡 the dBCS and the system waveform ℎ 𝑡 , asshown in Eq. (6).
𝑝 𝑡 =∫∞0 𝜎 𝜏 ℎ 𝑡 − 𝜏  𝑑𝜏 =  𝜎 𝑡 ∗ ℎ 𝑡 (6)

The aim of the exponential waveform decomposition (XDC)is to iteratively compute the 7 parameters of the dBCSfunction in Eq. (1), so that the modelled waveform, which isa convolution (computed by Eq. (6)) between the givensystem waveform and the estimated dBCS, is best-fittingthe received waveform. In the processing of the originalXDC (Schwarz et al., 2017), the initial values of the dBCSmodel parameters need to be firstly estimated by a fewhand-crafted features, based on plausible reasoning, then aleast square method is applied to progressively determinethe final values. The result of the least square optimizationheavily depends on the proximity of the initial values to thesolution to avoid being trapped into a suboptimal result. Inthis paper we propose to replace the hand-crafted methodby DL to facilitate the initial estimates of the dBCSparameters. We use the DL network to perform the first stepin the XDC, which outputs the parameter values directlyfrom the input waveforms, then go through the same leastsquare procedure to obtain the optimized values of thedBCS.
2.2 Waveform simulation
To train a proper deep learning network, a large amount ofaccurately labelled training data is required. We usedsimulated waveforms as training data. As the dBCS modelof water body is driven by the physical characteristics of thetarget water area, the dBCS of water body can be simulatedby setting a reasonable range for the parameters andconvolved with the system waveform of the specific scannerdevice to obtain synthetic echo waveforms. The valueranges are presented in Tab. 1 and detailed as below.
· The total length of the waveform is set to be 512ns. The start time (𝑡0) is related to the instrument’s heightabove the water surface and the beginning of the waveform

recording. Thus a wide range is chosen for 𝑡0 as the watersurface echo could appear at any location of the waveform.
· The time difference (𝑡𝐵) between the surface andthe bottom return is related to water depth. The possiblevalue of 𝑡𝐵 ranges from 1.5 ns to 250 ns, which correspondsto the water depth varying from 0.165 m to 27.5 m. The halfspeed of light travelling in water (0.11 m/ns) is used toconvert time to range.
· The decay time (𝜏𝑉) of water column dBCS relatesto the water turbidity. It tends to be high for a clear waterbody, whereas it is low when water is turbid. Based on Eq.(1), the starting dBCS of the water column is 𝑑𝑉, and dropsto 𝑑𝑉/𝑒1/𝜏𝑉 after travelling 1 ns in the water, thus the drop
rate is  1/𝑒1/𝜏𝑉. We set the range of 𝜏𝑉 as 0.8 ns to 100 ns.That is to say, in an extremely turbid water, the dBCS dropsto 28% while the dBCS can keep 99% in an extremely clearwater after the laser pulse travelling 1 ns in the water.
· The decay time (𝜏𝐵) of water bottom dBCS shouldbe a relatively small value, as the water bottom is solidtarget and the laser pulse should be mostly back-scattered.It uses the same minimum values as the 𝜏𝑉 used, andmaximum values is set empirically.
· Instead of interpreting the range values for PRD,we computed the PRD of the water column and the waterbottom by its returned energy and decay time based on Eq.(4) and Eq. (5), because the returned energy of the target iseasier to interpret than the PRD.
· The maximum value is set as 0.88 in units of 1,for the returned energy of the water surface (𝐸𝑆), the watercolumn (𝐸𝑉) and the water bottom (𝐸𝐵). Two differentminimum values are used for the returned energy of thewater bottom to train two networks with the differentsensitivities of the weak signals.
The returned energy of water column and water bottom arenegatively correlated. When the energy returned from thewater column is high, for instance, in a turbid water body,the returned energy from the water bottom should be low. Ina clear water body, the water bottom energy tends to be highbut results in a low energy returned from water column.Therefore, we added a constrain in the simulation as shownin Eq. (7) to generate more realistic waveforms.

𝐸𝑉+ 𝐸𝐵 ≤ 0.88 (7)
Tab. 1 Parameter ranges used for waveform simulationparameter range unit𝑡0 [0.5, 510] ns

𝑡𝐵 [1.5, 250] ns𝜏𝑉 [0.8, 100] ns
𝜏𝐵 [0.8, 2.5] ns𝐸𝑆 [0.0034, 0.88] 1
𝐸𝑉 [0.0034, 0.88] 1
𝐸𝐵for robust network [0.0034, 0.88] 1
𝐸𝐵for sensitive network [0.0017, 0.88] 1

We simulated 6 types of waveforms by varying the returnedenergy of the water surface, column and bottom.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-195-2024 | © Author(s) 2024. CC BY 4.0 License.

 
197



· Type-1: the waveform contains one component:water surface. 𝐸𝑆 > 0, 𝐸𝑉 = 0, 𝐸𝐵 = 0.
· Type-2: the waveform contains two components:water surface and column. 𝐸𝑆 > 0, 𝐸𝑉 > 0, 𝐸𝐵 = 0.
· Type-3: the waveform contains one component:water column. 𝐸𝑆 = 0, 𝐸𝑉 > 0, 𝐸𝐵 = 0.
· Type-4: the waveform contains two components:water column and bottom. 𝐸𝑆 = 0, 𝐸𝑉 > 0, 𝐸𝐵 > 0.
· Type-5: the waveform contains all three targetcomponents: water surface, column and bottom. 𝐸𝑆 > 0,𝐸𝑉 > 0, 𝐸𝐵 > 0.
· Type-6: the waveform contains two components:water surface and bottom. 𝐸𝑆 > 0, 𝐸𝑉 = 0, 𝐸𝐵 > 0.
For each type of waveform, parameter values are randomlyselected from the given range with the constrain in Eq. (7)to create various dBCS functions, the synthetic waveformsare then generated by convolution of the given systemwaveform and the simulated dBCS functions.
The real waveform received from the LiDAR sensor is veryunlikely to be as smooth as the simulated waveform, thuswe considered three types of noise to complement thesimulation, which are random Gaussian noise, one or twospike-like outliers occurring at arbitrary location, and afalse-alarm signal with a very small energy before the waterbottom return. This false-alarm signal was generated byconvolving the system waveform and a small Dirac-shapepulse to simulate the peaks that are caused by back-scattering at particles. To improve the robustness of thetrained network, the three types of noise were added duringthe data augmentation of the network training.
2.3 Deep learning network
The ResNet-18 architecture (He et al., 2016) is adapted inthis work. All the two-dimensional operations are replacedwith one-dimensional convolution, pooling and batchnormalization layers, in order to deal with 1-D inputwaveforms. The overall architecture of the network ispresented in Fig. 2(a). The ResNet-18 comprises 8 residualblocks, as depicted in Fig. 2(b), each block consists of twoconsecutive 3x3 convolutions, each followed by a batchnormalization and a rectified linear unit (ReLU) to introducenon-linearity. In our work, the first convolution in the 1st,3rd, 5th and 7th block is performed with a stride size of 2.This down-sampling operation gradually increases thereceptive field of the input feature vector, so that theparameters that need a large neighbourhood to interpret, like 𝑡0, could be well learned through the features representedby deeper layers.
After the last residual block, a global average pooling layeris added, to average all sample index in each featuredimension to a scalar value, and result in a 1-dimensionalfeature vector. At last, a fully connected layer is applied tooutput the 7 target parameters’ values. Note that the 7 targetparameters are the start time (𝑡0), the time difference (𝑡𝐵),the decay time of water column (𝜏𝑉), the decay time of waterbottom (𝜏𝐵) , the energy of water surface (𝐸𝑆), the energyof water column (𝐸𝑉) and the energy of water bottom (𝐸𝐵).The water column PRD (𝑑𝑉) and the water bottom PRD (𝑑𝐵) are calculated based on Eq. (4) and Eq. (5).

(a) (b)Figure 2. DL network (a) 1D ResNet-18 used for waveformparameters estimation, (b) Residual Block
We simulated 70,000 waveforms of each type and use theresulting 420,000 waveforms to train the networks. Twonetworks with different minimum values for the waterbottom energy are trained. The waveforms that are simulatedwith the relatively higher energy threshold of the waterbottom return are used to train the network that would bemore robust against noise signals, named robust-DL networkin the following. Whereas, the network trained by thewaveforms with a relatively lower energy threshold of waterbottom is expected to be more sensitive to the weak bottomreturns.
3 Results
The performance of the proposed method was tested on realwaveforms acquired by RIEGL VQ-840-G in the bay areaof Toulon, a Mediterranean coastal city in France. Due tothe lack of ground truth values, we compare the resultsagainst the results of the original implementation ofexponential decomposition, which is denoted as Ori-XDC.In the Ori-XDC, the initial values of surface and bottomreturns were computed by evaluating the isolation,prominence and amplitude of each sample point. The detailscan be seen in (Schwarz et al., 2019). DL-XDC denotes theexponential decomposition where initial values wereestimated by a deep learning network. Based on which pre-trained network has been used for initial values estimation,we refer to our methods as sensitive DL-XDC and robustDL-XDC. Note that the same modified un-constrained leastsquare optimization method is applied after estimating theinitial values in the above-mentioned methods. The resultsare evaluated by visually inspecting the generated pointclouds in Section 3.1, the waveform decomposition resultsin Section 3.2 comparing the modelled waveforms and thereceived waveforms and the computation time in Section3.3.
3.1 Generated point clouds
Fig. 3 presents the point clouds generated by eachdecomposition method. The length of the profiles in Fig. 3is about 162 m and the deepest area is about 29 m deep. TheOri-XDC tends to generate more points within watercolumn. Compared with robust DL-XDC, more bottompoints are detected by the sensitive DL-XDC method,however, some points under the water surface are alsoreturned due to its high sensitivity to weak signal returns.For better evaluation of the bottom detection, we manuallyidentified the bottom points and had the selected pointscounted in RiPROCESS (RIEGL, 2018). The resulting
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bottom point count by Ori-XDC, robust DL-XDC andsensitive DL-XDC is 458, 560 and 630, respectively. Thissuggests that an improvement of bottom detection is
achieved by both DL-XDC methods, meanwhile resultingalso in less points within the water column.

(a) ori-XDC

(b) robust DL-XDC

(c) sensitive DL-XDCFig. 3. Near shore sea profiles of the point clouds. The blue point clouds are the echoes from the water surface and the red pointclouds are the echoes from the water bottom. (a) was generated by Ori-XDC, (b) was generated by robust DL-XDC and (c) wasgenerated by sensitive DL-XDC.
3.2 Waveform decomposition results
To intuitively examine the effect of DL, we selected tworeceived waveforms that are difficult to interpret by hand-crafted features such as peak isolation and prominence, anddepicted their modelled waveforms to illustrate thedecomposition performance. The modelled waveforms arethe result of the convolution of the system waveform andthe target dBCS function, in which the coefficients aresolved by Ori-XDC and the proposed DL-XDC methods.The intermediate modelled waveform before the least squareoptimization procedure are presented as well, in order toevaluate the quality of the initial values provided by Ori-XDC and DL methods.
Since the laser pulse may be scattered by objects within thewater column, an intermediate prominent peak, sometimeswith a even stronger returned energy than the water bottomecho, may be observed in the received waveform, as forexample in Fig. 4. The water bottom echo is initiallydetected at the index of 472, 621 and 620 by Ori-XDC inFig. 4(b), robust-DL in Fig. 4(c) and sensitive-DL in Fig.4(d), respectively, After the iteratively optimization, thewater bottom echo is determined at the index of 472, 622and 622 by Ori-XDC in Fig. 4(e), robust DL-XDC in Fig.4(f) and sensitive DL-XDC in Fig. 4(g). By hand-craftedfeatures, Ori-XDC identified the intermediate peak as thebottom return because it is the second most prominent peakdetected in the waveform, which results in many scatteringpoints (Fig. 3(a)) below the water surface. Both DLmethodstend to regard the last weak signal as the bottom return, thusyielding less scatter points in the water column.
In Fig. 5, the water bottom return is very weak and andnearly obscured by noise. For the initial estimates, thebottom echo is detected at the index of 429, 683 by Ori-

XDC in Fig. 5(b) and sensitive-DL in Fig. 5(d), respectively,while no bottom echo is detected by robust-DL in Fig. 5(c).After the optimization, the bottom echo location is fine-tuned and detected at the index of 421 and 688 by Ori-XDCin Fig. 5(e) and sensitive DL-XDC in Fig. 5(g), respectively.As the optimization is only performed on the input echoparameters, no new echo would be created during theoptimization procedure. Thus, only the surface echoparameters are fine-tuned for the robust-DL. The sensitive-DL network was trained to be more responsive to weaksignals and successfully detects the very weak water bottomsignal from such a low signal-noise-ratio (SNR) waveform.As for Ori-XDC, an intermediate peak is considered as thewater bottom echo like in the previous example shown inFig. 4,
The waveforms modelled by the initial estimates of the DLmodels are plotted in the (c) and (d) in Fig. 4 and Fig. 5. Themodelled waveforms fit the received waveforms alreadyquite well before the optimization procedure proving thatthe trained DL networks provide more accurate estimates ofthe initial values.
Considering the test area is a relatively clear water body, thewater column is expected to be clean rather than occupiedby points. Additionally the water bottom points generatedby the DL methods are in agreement with the neighbouringbottom points. Thus we conclude that the DL methodsimprove the waveform decomposition performance andresult in more accurate water bottom points detection. BothDL-networks show the ability to better distinguishintermediate signals back-scattered by objects or particlesand the bottom returns. In addition, the sensitive DL networkis able to detect even weak bottom returns exhibiting verylow SNRs.
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(a)

(b) (c) (d)

(e) (f) (g)Fig. 4. An example of the received waveform with the echo returned from submerged particles or objects in water. (a) receivedwaveform, the subset in the green rectangle are further depicted with additional modelled waveform in (b)-(g) to have a close lookat the fitting results. (b)-(d) are the modelled waveforms (before least square optimization) constructed by the initial parametersvalues estimated by Ori-XDC, the predicted parameter values directly from robust DL and sensitive DL, respectively. (e)-(g) arethe modelled waveforms after least square optimization using the initial values provided by the different methods.

(a)

(b) (c) (d)

(e) (f) (g)
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Fig. 5. An example of the received waveforms with the weak signal of the water bottom. (a) received waveform, the subset in thegreen rectangle are further depicted with additional modelled waveform in (b)-(g) to have a close look at the fitting results. (b)-(d)are the modelled waveforms (before least square optimization) constructed by the initial parameters values estimated by Ori-XDC,the predicted parameter values directly from robust DL and sensitive DL, respectively. (e)-(g) are the modelled waveforms afterleast square optimization using the initial values provided by the different methods.
3.3 Computation time
Least square optimization iteratively minimize thedifference between the received waveform and the modelledwaveform to determine the best parameter values of thedBCS function. Better initial values result in feweroptimization steps and thus likely less processing time. Tab.2 presents the processing time for each method for therecord containing 670309 waveforms. Runtime denotes theoverall processing time from reading the input data towriting the point cloud, whereas full waveform analysistime is only the time spent on waveform decompositionitself.
ForOri-XDC, the waveform decomposition time is 22m47s,which includes the initial values estimation and theoptimization procedure.

For DL-XDC, the waveform decomposition comprises twosteps, the initial values estimation by the trained DLnetworks and the follow-up optimization step implementedby XDC algorithm. Note that the deep learning inferenceruns on a GPU (Quadro M2200). Thus, the total waveformdecomposition for DL methods is the sum of initial valuesestimation time by DL and optimization time by XDC. Thewaveform decomposition of robust DL-XDC and sensitiveDL-XDC is 18m57s and 18m38s, respectively. Overall, thewaveform decomposition time required by the DL-XDC isslightly less than the Ori-XDC.

Tab. 2. Processing timemethods runtime full waveform analysis timeOri-XDC 23m50s 22m47sinitial values optimizationrobust DL-XDC 20m02s 3m57s 15m00ssensitive DL-XDC 19m41s 3m54s 14m44s
4. Conclusion
In this work we designed and trained a deep learningnetwork to provide initial values for the parameters of thedBCS used for full waveform analysis in the context ofbathymetric laser scanning. The proposed DL-assistedwaveform decomposition method is evaluated on the ALBdataset collected in the ocean area. The improvement ofthese initial values compared to hand-crafted initial valuescan be confirmed by the generated point clouds, modelledwaveforms by the estimated parameters, and thecomputation time. Compared to the Ori-XDC, the resultingpoint cloud with the assistant of DL has less isolated pointsin the water volume but more water bottom points. Byvisually inspecting the waveform decomposition results, theDL-XDC methods are less influenced by the intermediatepeaks in the received waveform and more likely to detectthe real water bottom return. Two DL-XDC networks areoffered based on different settings for the SNR: more bottomsignals can be detected by the sensitive DL-XDC in deepwater areas, but generating relatively more scattering pointswithin the water column than the robust DL-XDC. In thefuture work, the performance of the proposed DL-XDC willbe evaluated on the ALB waveforms collected in differentwater bodies, such as lakes and rivers.
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