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Abstract

Traditional semantic segmentation models often struggle with poor generalizability in zero-shot scenarios such as recognizing
attributes unseen in the training labels. On the other hands, language-vision models (VLMs) have shown promise in improving
performance on zero-shot tasks by leveraging semantic information from textual inputs and fusing this information with visual
features. However, existing VLM-based methods do not perform as effectively on remote sensing data due to the lack of such data
in their training datasets. In this paper, we introduce a two-stage fine-tuning approach for a VLM-based segmentation model using
a large remote sensing image-caption dataset, which we created using an existing image-caption model. Additionally, we propose a
modified decoder and a visual prompt technique using a saliency map to enhance segmentation results. Through these methods, we
achieve superior segmentation performance on remote sensing data, demonstrating the effectiveness of our approach.

1. Introduction

In recent years, significant progress has been made in the
field of semantic segmentation using deep learning techniques.
Along with that, segmentation methods have already been stud-
ied in the fields related to remote sensing data, such as land-
cover / land-usage classification and building extraction using
satellite or aerial images. However, traditional vision-based se-
mantic segmentation methods are limited in their ability to re-
cognize new categories that are not included in training data-
sets, i.e., zero-shot learning. Taking the building extraction
model as an example, the model is usually trained to extract
all buildings but can not distinguish specific types of buildings
like ’commercial facilities’, ’medical facilities’, or ’buildings
with a red rooftop’. Incorporating every possible specific cat-
egory into training datasets is impractical due to the high cost
of annotation. Therefore, a model that can be easily generalized
to an arbitrary category using remote sensing data is desired.

The emergence of large Vision-Language Models (VLMs), cap-
able of leveraging semantic information from textual data, has
revolutionized computer vision. Models like CLIP (Radford
et al., 2021) have demonstrated impressive performance, es-
pecially in zero-shot settings, compared to traditional vision-
based methods. However, VLM models are usually trained on
large-scale datasets primarily sourced from the Internet, which
lack sufficient data related to remote sensing data. This lim-
itation explains the suboptimal performance of remote sensing
data (Radford et al., 2021). The annotation for remote sensing
data is extremely time-consuming and costly, not even to men-
tion the scale of datasets required for training large VLMs.

To overcome this limitation, we propose a two-stage approach
to fine-tune a VLM-based segmentation model, CLIPSeg
(Lüddecke and Ecker, 2022), using publicly available remote
sensing datasets without further manual annotation. We create
a training dataset using public remote sensing datasets to fine-
tune CLIPSeg. Since these datasets often lack captions or tex-
tual annotations, we utilize the image-caption model, BLIP (Li
et al., 2022), to generate captions for each remote sensing im-

age. To further enhance performance, we introduce an effective
modification to the model. We replace transposed convolutions
with linear interpolation in the decoder of CLIPSeg to generate
segmentation masks with clearer boundaries. Additionally, we
also propose a visual prompting engineering technique to fur-
ther improve performance. Prompting engineering has attracted
growing attention, especially in large language models, and has
been proven to effectively improve performance without requir-
ing the model to be re-trained. Specifically, we propose a simple
visual prompting that uses saliency maps to enrich the visual
input information. The experiments demonstrate that our pro-
posed methods of fine-tuning, module modification, and visual
prompts effectively enhance the performance of CLIPSeg on
remote sensing data.

2. Related Works

2.1 Vision-Language Model

CLIP (Radford et al., 2021) is a groundbreaking model in the
realm of VLMs. By leveraging a 400 million scale training
dataset consisting of image-text pairs, CLIP learns a joint em-
bedding space of textural and visual features using a contrast-
ive learning scheme. This joint embedding space bridges the
domain gap between natural languages and vision, thus CLIP
shows superior generalizability to unseen data. Furthermore,
the joint embedding of CLIP also serves as a promising initial-
ization for many downstream computer vision tasks, such as
image classification, image retrieval, etc. Among these tasks,
CLIPSeg (Lüddecke and Ecker, 2022) proposed a semantic seg-
mentation method that uses the pre-trained CLIP as an encoder.
By conditioning the joint text-visual embedding space of the
pre-trained CLIP with a simple segmentation decoder, CLIPSeg
can estimate a binary segmentation mask based on an arbitrary
text prompt at a test time. Since CLIPSeg can be easily applied
to various settings such as zero-shot, one-shot, or few-shot, we
choose this model as our base VLMs.
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2.2 Image captioning

Image captioning, which estimates a textual description of an
image, has been developed along with VLMs as image captions
are required to learn VLMs. Among image captioning models,
BLIP (Li et al., 2022), short for Border-Layout Integrated Pic-
ture, is a novel image captioning model that excels at generating
visual content of images. Through incorporating visual features
with spatial layout information, BLIP can generate captions that
describe the objects in an image and their relative positions. The
datasets to learn image captioning in remote sensing fields, on
the other hand, have not been published enough as far as we
are aware. UCM-captions (Qu et al., 2016) and RSICD (Lu
et al., 2017) are the most ones. However, compared to normal
image captioning datasets such as Visual Genome (Krishna et
al., 2017), those remote sensing images lack sufficient scale and
diversity.

2.3 Visual Prompting

The design of the input, often referred to as a prompt, plays
a crucial role in the performance of language-related mod-
els. Recent studies, such as prompt tuning and prompt learn-
ing, have garnered significant attention in the topics concerning
language-related models. Prompt tuning involves modifying
the appearance of the input while preserving its content to en-
hance the model’s performance. In Vision-Language Models,
the visual prompt also plays a pivotal role in determining the
model’s output. (Shtedritski et al., 2023) proposed the use of
unsupervised saliency maps to reduce noise in the input. Build-
ing on these studies, we utilize saliency maps as prior informa-
tion to guide the model’s focus on the target category.

Figure 1. The Network of CLIPSeg

3. Methodology

3.1 Fine-tuning CLIPSeg

CLIPSeg comprises two main components, as illustrated in Fig-
ure 1: CLIP encoders and a CLIPSeg decoder. It takes an image
and a short text caption as the input and estimates a binary seg-
mentation mask that corresponds to the text caption. At first,
the CLIP text encoder extracts textual embedding from the in-
put text, and the CLIP vision encoder extracts visual embedding
from the input image. Then, CLIP projects these embeddings to
a joint embedding space. Subsequently, the CLIPSeg decoder
relates the activations in joint embedding space with visual em-
bedding to generate a binary mask. The original CLIPSeg is
trained using the pre-trained CLIP as the encoder where the
parameters were frozen during training.

However, the experiment results of CLIP (Radford et al., 2021)
indicated its limited performance on remote sensing data due

to the lack of samples from this domain in its training dataset,
primarily consisting of common internet images.

To address this, we propose a two-stage fine-tuning approach
for CLIPSeg to enhance its performance on remote sensing
data. In the first stage, we fine-tune the CLIP encoders using
remote sensing images with their corresponding captions. Sub-
sequently, we fine-tune the decoder of CLIPSeg using remote
sensing images, segmentation masks, and text captions, while
keeping the CLIP encoders, fine-tuned in the first stage, fixed.

3.2 Dataset Preparation

The preparation of datasets for training Vision-Language Mod-
els (VLMs) for remote sensing tasks poses unique challenges
due to the focus of existing public remote sensing datasets on
vision-based tasks. Given that language-related models require
large amounts of data, manually annotated captions are both
time-consuming and costly, requiring skilled annotators. To ad-
dress this, we leverage the image captioning model BLIP (Li et
al., 2022), which excels at generating textual descriptions that
describe the visual content of images.

We start by collecting eight remote sensing datasets (listed in
Table 1) and use BLIP to generate captions for fine-tuning
CLIPSeg. Specifically, we employ BLIP with a large Vision
Transformer (ViT) as a backbone to generate captions from re-
mote sensing images. BLIP usually takes an image and a query
text token as the input and generates a text caption starting with
the query text token based on the visual content of the image.
However, a query text token that is not related to the image can
mislead BLIP to generate a false caption, which may harm the
training of the VLM. Thus, to guide BLIP in generating cap-
tions relevant to the image’s content, we use the category label
of the input image as the query text token. For the datasets
with captions, we use the original captions as the training data.
For Semantic Segmentation datasets such as WHDLD (Shao et
al., 2018) and LoveDA (Wang et al., 2021), where images con-
tain multiple categories, we extract the top-5 categories based
on pixel count from the segmentation mask and use these top
categories as text tokens. Examples of generated captions for
fine-tuning CLIP, alongside those from the UCM image cap-
tion dataset (Qu et al., 2016), are shown in Figure 2. Examples
of generated captions of LoveDA, for fine-tuning CLIPSeg, are
shown in Figure 3, providing insight into the quality of the gen-
erated captions.

The generated captions are used to train CLIP and CLIPSeg,
resulting in a dataset comprising approximately 0.2M image-
caption pairs. This dataset is then split into two parts. Datasets
other than LoveDA are used for the first training stage, which is
fine-tuning CLIP. The rest of the dataset, LoveDA, is used for
the second training stage, which is fine-tuning the decoder of
CLIPSeg.

3.3 CLIPSeg Decoder

In the pilot experiments of CLIPSeg, we observed suboptimal
segmentation masks, as illustrated in Figure 5 (b) where the
boundary of the extracted target is not smooth and the score of
neighboring patches is inconsistent. We attribute this subop-
timal performance to the network design of the CLIPSeg de-
coder.

The CLIPSeg decoder comprises Transformer blocks and con-
volution layers, as shown in the upper part of Figure 4. The
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Datasets Training Stage Annotation Category Image Size Image Number
DLRSD (Shao et al., 2018)

First Stage

Classification / Segmentation

256×256

2,100
MLRSNet (Qi et al., 2020) Classification 109,16

PatternNet (Zhou et al., 2018) Classification 30,400
NWPU-RESISC45 (Cheng et al., 2017) Classification 31,500

UCM-captions (Qu et al., 2016) Image Captioning 2,100
RSICD (Lu et al., 2017) Image Captioning 224×224 10,921

WHDLD (Shao et al., 2020) Segmentation 256×256 4,940
LoveDA (Wang et al., 2021) Second Stage Segmentation 1,000×1,000 4,191
Aerial Image Dataset(ours) Segmentation (buildings only) 3,925

Table 1. Source of Our Generated Datasets

(a) DLRSD (b) MLRSNet (c) PatternNet (d) RESISC45 (e) UCM (f) WHDLD

Figure 2. Examples of Captions generated by BLIP are as follows. (a) baseball fields are seen from above with a few trees in the
background. (b) commercial area is seen from above in this aerial photo. (c) dense residential is with a lot of trees and cars parked on
the street. (d) freeway are lined with cars and utility lines on both sides. (e) An intersection with some cars parked at the roadside. (f)

[”buildings are blue in color”, ”roads are in the middle of the picture”, ”pavements are shown in this aerial photo of a building”,
”vegetations are growing in a field near a blue building”, ”bare soil are seen in this aerial photo of a building”]

(a) buildings (b) agricultures (c) waters

Figure 3. Examples of LoveDA Dataset. The red regions
represent the segmentation mask of the corresponding category.
The captions generated by BLIP of each image are as follows.
(a) buildings are in the distance of a large body of water. (b)

agricultures are growing in a large area near a lake. (c) waters
are seen in a large area of farmland and a lake.

Transformer blocks take text and vision embeddings from the
CLIP encoder as input and project them to token embedding.
Subsequently, the convolution layers reproject the token em-
bedding to the original image size, estimating a binary segment-
ation mask. This lightweight network design minimizes the
number of parameters, reducing training time. However, the de-
coder originally adopts two transposed convolution layers (ker-
nel size=4, stride=4) with activation functions only, to rescale
the feature maps that are projected from the token embedding.
The relationship between neighboring pixels is not investigated
sufficiently in this manner. As a result, the boundaries are not
smooth and the scores of neighboring pixels are inconsistent. In
our pilot studies, we failed to improve the segmentation results
by adding convolution layers after the transposed convolutions
or reducing their rescaling factor (kernel size=2, stride=2).

To address this issue, we propose replacing transposed convo-
lutions with linear interpolation layers in the CLIPSeg decoder,
similar to conventional vision-based segmentation models. The
detail of the architecture of our proposed decoder is shown in
the down part of Figure 4. We introduce four linear interpol-
ation layers with a rescaling factor of 2 to increase the size of

Figure 4. The Network Structure CLIPSeg Decoder

feature maps. Each interpolation layer is followed by a convo-
lution layer and ReLU activation, except for the last interpola-
tion layer, which is only followed by a convolution layer. This
modification significantly improves segmentation mask quality,
reducing inconsistency between patch images, as depicted in
Figure 5 (d).

3.4 Visual Prompting

Effective prompt design can enhance model performance, par-
ticularly for language-related models. Studies (Shtedritski et
al., 2023) have shown that simple visual prompts, like high-
lighting targets of interest with red circles, can lead to perform-
ance improvements. Motivated by these findings, we propose

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2-2024 
ISPRS TC II Mid-term Symposium “The Role of Photogrammetry for a Sustainable World”, 11–14 June 2024, Las Vegas, Nevada, USA

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-203-2024 | © Author(s) 2024. CC BY 4.0 License.

 
205



generating visual prompts by multiplying the saliency map with
the input image, emphasizing less salient regions.

We conducted experiments using saliency maps as supplement-
ary information for visual prompting, exploring both unsuper-
vised and supervised approaches. For unsupervised saliency
maps, we employed TokenCut (Wang et al., 2022) and DINO
(Caron et al., 2021) to generate saliency maps. DINO, a self-
supervised training method for Vision Transformers (ViTs),
has shown promise in extracting object features from images.
TokenCut utilizes DINO to locate object regions in an image.
However, these methods only extract saliency maps without se-
mantic information, potentially leading to the inclusion of un-
desired objects in the prompt, contrary to our task’s goal, where
the segmentation mask should correspond to the query text.

For supervised saliency maps, we utilized Class Activation Map
(CAM) (Zhou et al., 2016) and SmoothGradCAM++ (Omeiza
et al., 2019). CAM highlights regions salient to a specific cat-
egory based on the weights of the last convolutional layer of
a CNN model, such as ResNet (He et al., 2016). Smooth
Grad-CAM++ improves CAM by smoothing it with the aver-
age gradient while perturbing the input with random noise.

Unlike unsupervised saliency maps, CAM can extract saliency
regions corresponding to the query text’s category. However,
most publicly available pre-trained CNN models, such as Res-
Net50, are trained on non-remote sensing datasets, potentially
leading to performance degradation due to domain gaps and in-
consistencies between the training dataset and our task. To mit-
igate this, we trained a ResNet50 using the classification data-
sets from Table 1, which have more than 70 categories, to gen-
erate saliency maps. Specifically, we estimate the activation
map CAMi ∈ RH×W of category i ⊂ N that is related to the
query text. Then, we calculate the mean of all activation maps
and normalize it to 0˜1, as the following equation exhibits, to
generate saliency map S ∈ RH×W .

S =
1
N

∑N
i CAMi

max( 1
N

∑N
i CAMi)

4. Experiments

4.1 Datasets

We utilize a total of nine datasets for training and evaluation, as
summarized in Table 1. LoveDA and our Aerial Image Dataset
are employed for training the CLIPSeg decoder, while the re-
maining seven datasets are utilized for training the CLIP Vision
Encoder and CLIP Text Encoder. To eliminate the influence of
a domain gap, we also incorporate high resolution Aerial Image
Dataset to train the CLIPSeg decoder in one of our experiments,
which is not included in these public datasets. All images are
divided into training and validation sets at a 4:1 ratio.

DLRSD: This dense labeling remote sensing dataset provides
category labels and pixel-wise labels for images collected from
the UC Merced Land Use Dataset (Yang and Newsam, 2010).
It comprises 21 broad categories with 100 images per category,
sourced from the USGS National Map Urban Area Imagery col-
lection. The images have a pixel resolution of 1 foot.

MLRSNet: A multi-label remote sensing dataset containing 46
categories, with pixel resolutions ranging from 0.1m to 10m.
The number of images per category varies from 1,500 to 3,000.

PatternNet: This dataset serves as a benchmark for remote
sensing image retrieval tasks, offering 38 classes with 800 im-
ages per class. The data is collected from Google Earth imagery
or via the Google Maps API for US cities, with pixel resolutions
ranging from 0.062m to 4.693m.

NWPU-RESISC45: A remote sensing image scene classifica-
tion dataset comprising 45 categories, with 700 images per cat-
egory. Images are sourced from Google Earth imagery, with
pixel resolutions ranging from 0.2m to 30m.

UCM-captions: An image captioning dataset for remote sens-
ing data, utilizing the same images as DLRSD. Each image has
5 captions generated to describe its scene, with slight differ-
ences in captions between images of the same category.

RSICD: A remote sensing image captioning dataset comprising
images from various sources with captions generated manually
by experienced volunteers. The number of captions per image
varies from 1 to 5, with various pixel resolutions.

WHDLD: A dense labeling remote sensing dataset with pixel-
wise labels for 6 categories, consisting of images cropped from
a larger remote sensing image of the urban region of Wuhan,
China, with a pixel resolution of 0.3 m

LoveDA: Originally designed for domain adaptive semantic
segmentation tasks, this dataset comprises images collected
from 3 regions in China, with a pixel resolution of 0.3m and
7 categories.

Aerial Image Dataset: This dataset contains high-resolution
aerial images ranging from 0.05m to 0.125m resolution, with
4,033 images collected from three regions of Japan. We only
annotate a segmentation label for the building category in this
dataset. Evaluation is performed on 108 images with a pixel
resolution of 0.125m, divided into urban, rural, and mountain-
ous regions. The remaining images, with pixel resolutions of
0.05m to 0.1m, are used for training.

4.2 Implementation Details

We utilized the CLIPSeg implementation from the Hugging
Face library (Wolf et al., 2020), employing the ViT-B/16 ar-
chitecture as an encoder. For comparison, we employed the
officially released pre-trained CLIPSeg weights (hereinafter re-
ferred to as original CLIPSeg). The binary cross entropy loss
function is adopted to optimize the decoder.

To generate supervised saliency maps for visual prompts, we
additionally trained a ResNet50 classification model using data-
sets containing category labels, i.e., DLRSD, MLRSNet, Pat-
ternNet, and NWPU-RESISC45. Aiming at a unified classific-
ation dataset, we merged all identical categories, resulting in a
dataset with 72 categories. The training of this classification
CNN model was conducted using the PyTorch deep learning
library. For generating visual prompts, we utilized the library
of torch-cam (Fernandez, 2020). In a test time, we used visual
prompts, that are generated from saliency maps, and query text
prompts as input for CLIPSeg.

4.3 Evaluation of Training Strategy

We evaluated the performance of CLIPSeg using the IoU met-
ric for building segmentation in the Aerial Image dataset. The
results are presented in Tables 2, 3, and 4. Across all three
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Model Background Building Mean
Original CLIPSeg 33.45 36.86 35.15

Fine-tuned CLIPSeg 45.22 41.43 43.32
Fine-tuned CLIPSeg 57.26 45.63 51.45/w our decoder
Fine-tuned CLIPSeg

72.94 55.81 64.37/w our decoder
/w Aerial Image

Table 2. Aerial Image Building Segmentation Evaluation Result
(Urban Region)

Model Background Building Mean
Original CLIPSeg 95.08 41.80 68.44

Fine-tuned CLIPSeg 97.21 52.83 75.02
Fine-tuned CLIPSeg 97.50 55.68 76.62/w our decoder
Fine-tuned CLIPSeg

97.59 55.94 76.77/w our decoder
/w Aerial Image

Table 3. Aerial Image Building Segmentation Evaluation Result
(Rural Region)

Model Background Building Mean
Original CLIPSeg 98.64 26.62 62.63

Fine-tuned CLIPSeg 99.20 28.07 63.34
Fine-tuned CLIPSeg 99.33 35.93 67.63/w our decoder
Fine-tuned CLIPSeg

99.49 44.00 71.74/w our decoder
/w Aerial Image

Table 4. Aerial Image Building Segmentation Evaluation Result
(Mountainous Region)

Figure 5. Examples of Segmentation Results. (a) shows the
input image. (b) shows the Result of pre-trained CLIPSeg. (c)

shows the result of our fine-tuned CLIPSeg w/ transposed
convolutions layers. (d) shows the Result of our fine-tuned

CLIPSeg w/ linear interpolation layers. The first row shows the
results of the text prompt as ’buildings’. The second row shows

the results of the text prompt as ’agriculture’. The third row
shows the results of the text prompt as ’roads’.

evaluation regions, fine-tuning CLIPSeg significantly improved
building segmentation accuracy compared to those with the ori-
ginal CLIPSeg.

In the urban region, the original CLIPSeg tended to over-
segment the building areas, leading to noisy segmentation res-
ults. Our fine-tuned model effectively mitigated this over-

Method Background Building Mean
Red Channel 70.14 50.61 60.38

Green Channel 71.78 43.01 57.40
Blue Channel 76.40 51.41 63.91
All Channels 79.77 56.21 67.99

Table 5. Aerial Image Building Segmentation Result Using
Visual Prompts (CAM) on Different Channels (Urban Region).

segmentation issue, demonstrating an IoU improvement of over
10% when fine-tuned with aerial images. This highlights the
challenge of domain gaps between the source and target data,
even when trained on a large dataset. We also observed a similar
improvement in the mountainous region, but the results in the
rural region did not show significant enhancement. We attribute
this to the fact that the proportion of buildings in the mountain-
ous regions is less than 1%, where even minor changes can lead
to substantial differences in evaluation results.

Conversely, both the original and fine-tuned models achieved
high accuracy in the background category in the rural and
mountainous regions. This is due to the low density of build-
ings in these regions, which is less than 4%, and forests and
agricultural lands being the dominant land-cover categories. In
contrast, the urban region has an almost 30% building ratio.

Figure 5 showcases examples of segmentation prediction
scores. Columns (b) and (c) depict segmentation confidence
predicted by the original decoder architecture of CLIPSeg,
which estimates masks from patch images and struggles to ad-
dress the inconsistency between them. This inconsistency is
alleviated by using interpolation layers instead of transposed
convolution layers, as shown in column (d).

Furthermore, the rows of Figure 5 demonstrate the segment-
ation results for query texts of buildings, agricultural lands,
and roads. The original CLIPSeg exhibited rough segmentation
masks, while our fine-tuned CLIPSeg produced more precise
masks, extracting objects at the instance level.

4.4 Evaluation of Visual Prompt

(Shtedritski et al., 2023) suggested a method for creating visual
prompts by overlaying a saliency map onto all channels of an
input image. However, each channel may have varying effects
on different categories. For instance, buildings, typically ap-
pearing in bright colors like light gray or white, are influenced
by all channels, while the green channel tends to have a stronger
impact on categories such as forests and agricultural regions.

We conducted experiments to test various methods of generat-
ing visual prompts, specifically by multiplying the real number
of saliency map as a weight to the red, green, blue, or all chan-
nels of the input image. This manipulation can either lower the
importance of certain colors (when applied to a single channel)
or highlight certain regions of the image (when applied to all
channels). We qualitatively evaluated building extraction in the
urban region, forest extraction in the mountainous region, and
agriculture extraction in the rural region. The generated visual
prompts and their segmentation results are illustrated in Fig-
ure 6. For categories of forests and agriculture that are more
closely related to the green channel, visual prompts that over-
lay the saliency map to the green channel tend to improve the
segmentation performance. We did an additional quantitative
evaluation for building extraction in the urban region. The res-
ult is shown in Table 5, which indicates that highlighting the
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Figure 6. Examples of different visual prompt overlay methods
and their corresponding segmentation results using our

fine-tuned CLIPSeg with our proposed decoder and aerial
images. The 1st row shows the visual prompts of buildings. 2nd
row shows the segmentation results of buildings. 3rd row shows
the zoomed-in segmentation results of buildings. 4th row shows
the visual prompts of forests. 5th row shows the segmentation

results of forests. 6th row shows the visual prompts of
agricultures. The last row shows the segmentation results of

agricultures.

image contents across all channels yielded better building ex-
traction performance compared to manipulating a single color
channel.

Furthermore, we examined the effectiveness of visual prompts
using unsupervised and supervised saliency maps, as depicted
in Figure 7. Visual prompts based on unsupervised saliency
maps tended to fail in cases where there were multiple cat-
egories, lacking the necessary semantic information. For ex-
ample, TokenCut focused on buildings and ignored forests in
the second row of Figure 7 (b), leading to a failure in forest
extraction. Compared to CAM, SmoothGradCAM++ generates
saliency maps with a larger contrast between foreground and
background. As a result, in visual prompts, the values of the
background become smaller, leading to increased difficulty in
segmentation. Especially, omissions are more likely to occur.

Method Background Building Mean
/wo visual prompt 72.94 55.81 64.37

TokenCut 60.80 45.62 53.21
DINO 57.12 43.05 50.09
CAM 79.77 56.21 67.99

SmoothGradCAM++ 75.59 47.00 61.30

Table 6. Aerial Image Building Segmentation Result Using
Visual Prompt (Urban Region)

Method Background Building Mean
/wo visual prompt 97.59 55.94 76.77

TokenCut 96.27 41.49 68.88
DINO 97.27 41.55 69.41
CAM 98.19 56.98 77.58

SmoothGradCAM++ 88.89 14.56 51.72

Table 7. Aerial Image Building Segmentation Result Using
Visual Prompt (Rural Region)

Method Background Building Mean
/wo visual prompt 99.49 44.00 71.74

TokenCut 99.25 37.73 68.49
DINO 99.46 14.13 56.80
CAM 99.41 39.46 69.44

SmoothGradCAM++ 99.49 37.91 68.70

Table 8. Aerial Image Building Segmentation Result Using
Visual Prompt (Mountainous Region)

We also conducted quantitative evaluations on building extrac-
tion using visual prompts generated by unsupervised and su-
pervised saliency maps, with results shown in Tables 6 - 8.
The segmentation performance is consistent with the qualitat-
ive evaluation results, that CAM can correctly react to the query
text, as demonstrated in the segmentation results of Figure 8 and
reduce segmentation noise compared to the original CLIPSeg.
In urban and rural regions, visual prompts using CAM demon-
strated the ability to enhance building extraction performance
from aerial images. However, in the mountainous region, all
methods failed to improve segmentation performance. This is
likely due to the small and sparse distribution of buildings in the
mountainous regions, causing saliency maps to overlook these
objects.

5. Conclusion

In this study, we proposed a two-stage training approach to fine-
tuning CLIPSeg and improving its performance using remote
sensing data. Specifically, we generated a training dataset com-
prising approximately 0.2 million image-caption pairs using the
image captioning model BLIP. We then introduced a modified
decoder using linear interpolation layers instead of transposed
convolution layers to address the inconsistency between patch
images. Additionally, we proposed a simple visual prompt
method that highlights relevant regions of query text to reduce
segmentation noise. Our experimental results demonstrated that
fine-tuning a Vision-Language Model (VLM) can significantly
enhance segmentation performance.

The scale of the dataset, however, is still not sufficient for train-
ing a generalizable model, as we noticed that it does not per-
form as well as the original CLIPSeg in zero-shot cases. Fur-
thermore, when the target object is small, such as buildings in
the mountainous region, CAM tends to generate saliency maps
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Figure 7. Examples of visual prompts generated by different saliency maps. Visual prompts of 2nd column (TokenCut) and 3rd
column (DINO) are generated from unsupervised saliency maps, which do not contain semantic information. Visual prompts of 4th

column (CAM) and 5th column (SmoothGradCAM++) are generated from saliency maps of one certain category. Specifically, the 1st
row shows the visual prompts for buildings, the 2nd row shows the visual prompts for forests, the 3rd row shows the visual prompts

for agricultures, and the 4th row shows the visual prompts for roads.

Figure 8. Examples of segmentation results using visual prompts. The 1st row shows the results of buildings. 2nd row shows the
results of forests. 3rd row shows the results of agriculture. 4th row shows the results of roads.
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with reduced accuracy. This is due to the small size of the at-
tention map, which is 1/32 of the input image.

For future work, we aim to extract specific targets based on their
attributes, such as color, shape, and usage. Since the captions
generated by BLIP may not provide such detailed information,
we plan to explore the use of larger vision-language models,
such as LLaVA (Liu et al., 2023), for generating more inform-
ative captions.
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