
Exploitation of the Number of Return Echoes for DTM Extraction from Point Clouds 
Acquired by LiDAR UAS DJI Zenmuse L1

Francesca Matrone 1 *, Francesca Gallitto 1, Andrea Maria Lingua 1, Paolo Felice Maschio 1 

1 Laboratory of Photogrammetry, Geomatics & GIS, Department of Environment, Land and Infrastructures Engineering (DIATI), 
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, (francesca.matrone, francesca.gallitto, paolo.maschio, 

andrea.lingua)@polito.it 

Keywords: UAS, LiDAR, DTM extraction, return number, echoes, machine learning, Random Forest, morphological filter 

Abstract 

Following the enormous technological developments of LiDAR (Light Detection And Ranging) sensors, it is currently easier to find 

them commercially in the UA (Uncrewed Aerial Systems) sector. In particular, with the Zenmuse L1 by DJI (Dà-Jiāng Innovations) 

the market has grown globally, mainly due to the compactness of the product that is easily compatible with UAS. The L1 sensor can 

record up to three returns of the emanating signal, so it can acquire a larger amount of points, such as those below the vegetation. 

Therefore, in addition to the geometric information of the points, the Zenmuse L1 point clouds also provide other information, such as 

the number of echo returns from 1 to 3. This data could be exploited to improve the automatic extraction of the digital terrain model 

(DTM) from the point clouds, hopefully leading to the avoidance of manual correction. This research aims to focus on evaluating 

whether the addition of the return number feature can affect the identification of the ground points through different computational 

methods and can improve the time efficiency of state-of-the-art algorithms. 

1. Introduction

The advent of Light Detection and Ranging (LiDAR) technology 

has revolutionized the way we perceive and understand 

landscapes. LiDAR systems capture vast amounts of data, 

generating highly detailed three-dimensional point clouds. In 

recent years, with the DJI solutions on the market, LiDAR 

systems have become very compact and affordable, guaranteeing 

an even higher level of detail thanks to the possibility of 

mounting it on a Unmanned Aerial Vehicles (UAV). The so-

obtained point clouds serve as a rich source of information, 

invaluable for various applications ranging from urban planning 

to environmental monitoring. 

However, within these dense point clouds lies a wealth of 

nuanced data that requires careful interpretation and extraction. 

One crucial aspect that significantly influences the accuracy and 

utility of derived products, such as Digital Terrain Models 

(DTMs), is the return number associated with each LiDAR point. 

Return numbers, or echoes, categorize individual points based on 

the number of times the laser pulse is reflected back to the sensor. 

These can range from first returns, representing the surface of 

objects like trees and buildings, to multiple returns, indicative of 

complex terrain features or vegetation layers. While all returns 

contribute to the overall point cloud, understanding and 

leveraging the return numbers could be paramount, particularly 

in DTM extraction processes, since DTMs need to be devoid of 

above-ground features such as vegetation and structures. 

Accurate DTMs are essential for applications like flood 

modelling (Alho et al., 2009), viewshed analysis (Maloy et al., 

2001), and slope stability assessment (Subramaniam et al., 2022). 

The precision of these models hinges on the ability to distinguish 

between ground points and non-ground points within the LiDAR 

point cloud. 

In this context, the utilization of return numbers emerges as a 

critical factor in refining DTM extraction methodologies. By 

differentiating between first returns, which predominantly 

represent ground surfaces, and subsequent returns, which may 

signify vegetation or man-made structures, it is possible to 

enhance the accuracy of terrain modelling processes. Leveraging 

the information encoded in return numbers enables the 

development of robust algorithms tailored to isolate ground 

points with greater precision, thus yielding more accurate and 

reliable DTMs (Chen et al., 2017; Hyyppä et al., 2005; Štroner et 

al., 2023). 

In particular, in this contribution, we would like to investigate, 

on one side, if it is possible to use the return number to improve 

the computing time of state-of-the-art morphological algorithms, 

on the other hand if it could be considered effective for the point 

cloud semantic segmentation through Machine Learning (ML) 

algorithms such as the Random Forest. 

This investigation was carried out on the data derived from the 

previously mentioned DJI Zenmuse L1 sensor, which has as one 

of the most interesting features, the integration between the 

LiDAR, the RGB camera and the IMU (Inertial Measurement 

Unit) module in one single hardware mounted on a 3-axis 

stabilized gimbal. Table 1 shows some specifications (Teppati 

Losè et al., 2022). 

LiDAR sensor 

Range 450 m @ 80% reflectivity, 0 klx 

190 m @ 10% reflectivity, 100 klx 

Point Rate Single return: max. 240,000 pts/s 

Multiple return: max. 480,000 pts/s 

Positional accuracy Horizontal: 10 cm @ 50 m 

Vertical: 5 cm @ 50 m 

Point Cloud 

Coloring 

Reflectivity, Height, Distance, RGB 

Ranging Accuracy 3 cm @ 100 m 

FoV Non-repetitive scanning pattern: 

70.4° (horizontal) × 77.2° (vertical) 

Repetitive scanning pattern: 70.4° 

(horizontal) × 4.5° (vertical) 

Yaw Accuracy Real-time: 0.3°, Post-processing: 

0.15° 

Pitch / Roll 

Accuracy 

Real-time: 0.05°, Post-processing: 

0.025° 

RGB sensor 

RGB camera 1” CMOS 

20 MP 

Focal Length 
8.8 mm / 24 mm (Equivalent)

Table 1. Specifications of DJI Zenmuse L1. 
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1.1 The case study 

Three different methodologies have been applied to evaluate 

whether the addition of the return number information improves 

the discrimination of the ground points. Each methodology is 

based on a different classification strategy and focused on 

investigating different insights.  

The case study depicts a mountain area in the west Italian alpine 

region with slopes and different kinds of patterns where small 

and medium-sized shrubs alternate with large areas of both flat 

and noisy ground (Figure 1). 

 

Figure 1.  Overall point cloud with the subset of points used for 

the tests (red for Sample 1, pink for the Sample 2). 

 

A small testbed area was selected out of the whole point cloud 

for the preliminary tests and to set up and validate the algorithms. 

It included only three categories (ground, road and vegetation) 

and it counted 651.898 points out of 53.303.310; we will refer to 

it as Sample 1 (Figure 2).  

A second wider sample (Sample 2) was then selected, with 

8.679.442 points and additional categories such as buildings and 

electricity poles (Figure 3). Both the point clouds had the 

standard features directly derived from the Zenmuse L1 LiDAR: 

RGB, Scan angle rank, GPS time, number of returns and 

intensity.  

Table 2 shows the main features of the two samples. 

 

 Features 
Numbers 

of returns 

Numbers of 

points 

Sample 1 (S1) RGB, number of 

returns, Scan 

angle rank, GPS 

time 

3 

617.001 

Sample 2 (S2) 8.679.442 

Table 2. Main features of the two samples. 

 

 
(a) 

   

                       (b)                             (c) 

Figure 2. Sample 2 (S2), with scalar field based on the number 

of returns: 1 orange, 2 light blue, 3 red. Top view (a) and 

bottom view (b). Manually classified point cloud, top view (c): 

ground – blue, road – grey, vegetation – red. 

 

 
(a) 

   
 (b)      (c) 

 

Figure 3. Sample 2 (S2), with scalar field based on the number 

of returns: 1 orange, 2 light blue, 3 red. Top view (a) and 

bottom view (b). Manually classified point cloud, top view (c): 

ground – blue, road – violet, vegetation – grey, buildings – pink, 

power lines – red.  

 

2. Methodology and results 

Three algorithms were tested, each of which defined a different 

method and approach to investigate whether the information 

given by the return number could be useful to extract the ground 

points. These methods were applied to both S1 and S2, and a 

confusion matrix was calculated to evaluate the performances. In 

addition, the processing time was also recorded to compare the 

timing. Methods 1 and 2 were developed in MATLAB, involved 

the geometric structure of the point clouds and were compared to 

assess the effectiveness of Method 2, while Method 3 consists of 

the Random Forest ML classifier. 
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2.1 Method 1: simple morphological filter algorithm 

The first method to be tested (that constituted the reference one) 

consisted of a simple morphological filter (SMRF) algorithm, 

which extracts the ground points by evaluating only the geometry 

of each individual point (Pingel et al., 2013). In this case, return 

number information is not used. The algorithm consists of three 

steps: 1) creating a minimum elevation surface map from the 

point cloud data; 2) segmenting the surface map into ground and 

off-ground grid elements; 3) segmenting the original point cloud 

data and subsampling it with a grid-spaced approach. To create a 

minimum elevation surface map, the process begins by dividing 

the point cloud data into grids along the xy-plane, the grid size is 

specified.  

Subsequently, for each grid element (pixel), the lowest elevation 

value (Zmin) is found. To generate a segment surface map, the 

process is initiated by employing a morphological opening 

operation on the minimum surface map. This operation entails 

the application of both an erosion filter and a dilation filter 

consecutively. The structuring element's shape and its window 

radius play a crucial role in defining the search neighbourhood 

for this operation. Typically, a disc-shaped structuring element is 

utilised, commencing with a window radius of 1 pixel.  

Following this, the slope between the minimum surface and the 

opened surface maps is computed at each grid element. The pixel 

is categorised as non-ground if the disparity surpasses the 

elevation threshold. These steps are carried out iteratively, 

progressively increasing the window radius by 1 pixel in each 

iteration until it reaches the specified maximum radius.  

The process unfolds as follows to segment the original point 

cloud: initially, the binary mask generated earlier is employed on 

the original minimum surface map to filter out non-ground grids. 

Subsequently, the vacant grids are filled using image 

interpolation techniques to construct an estimated elevation 

model. Then, the disparity in elevation between every point in the 

original point cloud and its corresponding point in the estimated 

elevation model is computed. Pixels with discrepancies 

exceeding the threshold are classified as non-ground.  

Moreover, the incline of the elevation model at each point is 

scaled and added to the threshold value. This step aids in 

pinpointing ground points on steep slopes. Through this iterative 

process, a binary mask is derived where each pixel of the point 

cloud undergoes classification as either ground or non-ground 

based on the segmentation criteria. 

The algorithm has already been implemented in the function 

segmentGroundSMRF(..) since MATLAB version R2021a. The 

argument to be inserted into the function is the point cloud, while 

the result is a logical vector, where the value 0 represents off-

ground points while 1 represents the ground points. 

The MATLAB code is represented below: 

 

groundPtsIdx = segmentGroundSMRF(ptCloud); 

ptCloudWithGround = select(ptCloud,groundPtsIdx); 

nonGroundPtCloud = select(ptCloud, ~groundPtsIdx); 

 

2.1.1 Sample 1: For the smallest area, the code executed quite 

fastly, totalling 8 seconds, and the result was considered 

satisfactory since higher than 98% (Figure 4). 

The next step was to compare the result with a manual 

classification of the point cloud; the results are shown in the 

confusion matrix CMM1,S1 (Method1, Sample1) Table 3).  

 

 
(a) 

 
(b) 

Figure 4. Sample 1, visualization of the point cloud according to 

the z-value scalar field (a), result of method 1 (b). 

 

𝐶𝑀𝑀1,𝑆𝐶 = (
405623 5359
5772 200247

) 

 

Metrics Value 

Accuracy 98.19 % 

Precision 98.69 % 

Recall 

F1 

98.59 % 

98.64 % 

Table 3. Results of Method 1 – Sample 1 

 

2.1.2 Sample 2: As for S2 (13 times larger than the S1), the 

code processes fairly quickly for a total of 14 seconds. The result 

showed still high performances with an overall accuracy of 95%, 

and with buildings and urban elements properly removed as well 

as the vegetation (Figure 5). As for S1 a comparison with manual 

classification was performed, these results are contained in the 

confusion matrix CMM1,S2 (Table 4). 

 

 
(a) 
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(b) 

Figure 5. Sample 2, visualization of the point cloud according to 

the z-value scalar field (a), result of method 1 (b). 

 

𝐶𝑀𝑀1,𝑀𝐶 = (
5128968 327684
57551 3165241

) 

 

Metrics Value 

Accuracy 95.56 % 

Precision 93.99 % 

Recall 

F1 

98.89 % 

96.38 % 

Table 4. Results of Method 1 – Sample 2 

 

2.2 Method 2: geometry-based approach with return 

number embedding 

The second method is very similar to the previous one, but it adds 

the return number to investigate the possibility of making Method 

1 even faster. In particular, a mask of size n x n is created and 

iterated through the point cloud as a kernel; then, for each mask, 

the smallest z value among all the points is stored. All the points 

that exceed a certain threshold from the minimum z are classified 

as off-ground. Unlike the previous method, the return numbers 

data has been partially used: in fact, since the bare terrain areas 

are mainly characterized by a return number of 1 (as depicted in 

Figure 2 and 3), the method bypasses kernels with only 1 values, 

directly associating the ground class. 

By taking advantage of this feature it is possible to make the first 

method faster and more efficient, keeping also a higher number 

of points. However, the potential of the echoes is still not fully 

addressed and evaluated, thus the third method comes to help. 

Several tests were performed to find the best combination of the 

kernel size and the minimum z-threshold; the values to get the 

best result without a high increasing of the processing time are 5 

meters x 5 meters for the mask and 2 meters for the z-threshold. 

The MATLAB code for method 2 is represented below: 

while MXmin < xmax 

while MYmin < ymax  

num_punti_maschera=0; 

for i=1:N 

if x(i)> MXmin && x(i)<MXmax && y(i)>MYmin && 

y(i)<MYmax %condition inside mask 

                

num_punti_maschera=num_punti_maschera+1; %how many 

points 

ZM(num_punti_maschera,1)=z(i);%save xyz  

XM(num_punti_maschera,1)=x(i); 

YM(num_punti_maschera,1)=y(i); 

NMM(num_punti_maschera,1)=returnNumb(i);             

indice(num_punti_maschera,1)=i; 

end 

end 

if num_punti_maschera>0 %if we have points inside 

mask 

[z_min,I]=min(ZM); %must to be clean 

NMM_max=max(NMM); 

if NMM_max~=1 %if we have just 1 of returns number, 

is ground 

for k=1:num_punti_maschera 

if ZM(k,1) > z_min + delta_z                           

ground(indice(k,1),1)=0; %not ground         

end 

end 

end 

clear All parametersZM 

end 

MYmin=MYmin+delta; %update y mask 

MYmax=MYmax+delta; 

end 

MXmin=MXmin+delta; %update x, y of mask 

MXmax=MXmax+delta; 

MYmin=ymin; 

MYmax=ymin+delta;  

End 

 

2.2.1 Method 2 – Sample 1: as hypothesized Method 2 turns 

out to be faster, for S1 it processed in 1.3 seconds, almost 8 times 

faster than Method 1. The result (Figures 6) was compared with 

manual classification, and the confusion matrix CMM2,S1 and 

metrics are reported in Table 5. 

 

 
Figure 6. Sample 1, result of method 2. 

 

 

𝐶𝑀𝑀2,𝑆𝐶 = (
400124 5070
10150 235412

) 

 

 

Metrics Value 

Accuracy 97.66% 

Precision 98.75% 

Recall 

F1 

97.53% 

98.13% 

Table 5. Results of Method 2 – Sample 1. 
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2.2.2 Method 2 – Sample 2: in this case, the elapsed time is 

62 seconds, way higher than the one obtained with the first 

method. The result is depicted in Figure 7, and the overall metrics 

are presented in Table 6. 

 

 
Figure 7.  Sample 2, result of method 2. 

 

 

𝐶𝑀𝑀2,𝑀𝐶 = (
5059434 310012
48789 3261213

) 

 

 

Metric Value 

  

Accuracy 95.87 % 

Precision 94.23 % 

Recall 

F1 

99.04 % 

96.58 % 

Table 6. Results of Method 2 – Sample 2. 

 

2.3 Method 3: Random Forest 

The following approach investigated the use of machine learning 

algorithms, such as the Random Forest, to define if the addition 

of the echoes data does really affect the final classification (Wang 

et al. 2019).  

In particular, a set of three tests was carried out for both S1 and 

S2, while for S2, additional tests were performed. For all the 

tests, various combinations between the splitting criteria to 

measure the impurity of the nodes (gini index or entropy), 

number of trees (100, 150 or 200) and scalers (none, scaler 1 or 

scaler 2) have been conducted, while the depth of the tree was 

always set to none. In the following sections, only the best results 

are reported. 

As regards the scalers, they have been introduced to better 

address the presence of 3D features (Weinmann et al., 2015) and 

they consist in scaler1 which standardizes features by removing 

the mean and scaling to unit variance, and scaler 2 that scales 

features using statistics that are robust to outliers (Matrone et al. 

2021).  

In particular, the considered 3D features have been (Figure 8): 

• RGB – radiometric component 

• Return number (feature 1 – f1) 

• Scan angle rank (f2) 

• GPS time (f3) 

• Verticality (radius 0.6 m) (f4) 

• Planarity (radius 0.6 m) (f5) 

• Eigenentropy (radius 0.4 m) (f6) 

• Surface variation (radius 0.6 m) (f7) 

 

  
 (a)     (b) 

 

 
   (c) 

 
   (d) 

  
 (e)    (f) 

Figure 8. Scan Angle Rank (a), GPS time (b), Verticality (c), 

Planarity (d), Eigentropy (e), Surface variation (f). 

 

Table 7 contains the configurations of the features selected for 

the various tests. 

The third configuration (C3) was added to test the point cloud as 

restituted by the Zenmuse L1. The fifth configuration (C5), on 

the other hand, was investigated as a consequence of the results 

obtained from C3 (see § 2.3.1). 

The scenes were then divided into training, validation and test, in 

order to have the presence of all the classes in each dataset 

(Figure 9) 

 

Configuration S1 S2 

C1 RGB yes yes 

C2 RGB + f1 yes yes 

C3 RGB + f1, f2, f3 no yes 

C4 RGB + f1, f2, f3, f4 f5, f6, f7  yes yes 

C5 RGB + f1, f4 f5, f6, f7 no yes 

Table 7. Configuration of the feature selection for the various 

tests performed. 
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 (a)             (b) 

Figure 9. Dataset divided into: training – green, validation – red, 

test – blue. Sample 1 (a) and Sample 2 (b). 

 

2.3.1 Method 3 – Sample 1 (S1): 

The first set of tests involved the smaller point cloud with only 

three classes. The experiments were carried out on Google 

Colaboratory, and the training + test phases took 49 seconds for 

the configuration with only the radiometric components (C1 of 

Table 7), 50 seconds for the combination with the addition of the 

echoes (C2) and 1 minute and 11 seconds with all the features 

(C5). Tables 8, 9 and 10 report the obtained results, while Figure 

10 shows a visual comparison between the three predictions and 

the ground truth. 

 
 Precision Recall F1-score 

Ground 0.83 0.69 0.75 

Road 1 0.95 0.97 

Vegetation 0.53 0.71 0.6 

Overall accuracy 0.71 

Weighted avg 0.74 0.71 0.72 

Table 8. Results of the test with only the RGB as input features 

(C1). 

 
 Precision Recall F1-score 

Ground 0.87 0.77 0.82 

Road 1 0.96 0.98 

Vegetation 0.62 0.78 0.69 

Overall accuracy 0.78 

Weighted avg 0.8 0.78 0.79 

Table 9. Results of the test with the RGB + return number as 

input features (C2). 

 
 Precision Recall F1-score 

Ground 0.89 0.91 0.9 

Road 1 0.9 0.95 

Vegetation 0.81 0.79 0.8 

Overall accuracy 0.87 

Weighted avg 0.87 0.87 0.87 

Table 10. Results of the test with all the features as input (C4). 

 
 (a)           (b) 

 
 (c)            (d) 

Figure 10. Ground truth (a) and predictions: based on C1 - only 

RGB (b), C2 – RGB + return number (c), C4 – all the features 

(d). 

 

Comparing the results, it is possible to highlight that the 

introduction of the information related to the return number helps 

improve the overall metrics, leading to an increase of about 7% 

for the overall accuracy and 6% for the F1 Score. In particular, 

the ground class achieved 82% of the F1 Score compared to the 

previous 75%. These results are further improved with the 

addition of other features (Table 10), respectively +7% and +8%, 

confirming the positive trend demonstrated in other previous 

contributions (Matrone et al., 2020).  

However, it was necessary to understand whether the 

improvement in performance was due solely to the introduction 

of new features, respecting the abovementioned trend, or whether 

the return numbers provided effective and relevant informative 

content for the algorithms. 

In this regard, we added a further test, namely configuration 5 

(C5) with all the features except for the Scan angle rank and GPS 

time. This choice was dictated by the fact that visually these two 

features seemed not to add significant information and not to be 

able to discriminate any particular category. 

Finally, a further configuration (C3) was envisaged to understand 

if and to what extent the data extracted as such from sensors such 

as the LiDAR L1 can be effective in predictions and 

classifications for the generation of DTMs. These tests were 

conducted only for Sample 2. 

 

2.3.2 Method 3 – Sample 2 (S2): 

Below are report the results of the five configurations (Table 11, 

12, 13, 14, 15 and 16) and the visual predictions (Figure 11). 

In this case, the experiments were also carried out on Google 

Colaboratory, and the training + test phases took 14 to 17 

minutes. 

 
 Precision Recall F1-score 

Ground 0.72 0.77 0.74 

Road 0.89 0.49 0.63 

Vegetation 0.71 0.63 0.67 

Buildings 0.39 0.78 0.52 

Power lines 0.02 0 0 

Overall accuracy 0.70 

Weighted avg 0.71 0.7 0.7 

Table 11. Results of the test with only the RGB as input features 

(C1). 
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 Precision Recall F1-score 

Ground 0.76 0.82 0.79 

Road 0.87 0.53 0.66 

Vegetation 0.78 0.7 0.73 

Buildings 0.43 0.74 0.55 

Power lines 0.2 0.02 0.04 

Overall accuracy 0.76 

Weighted avg 0.76 0.76 0.76 

Table 12. Results of the test with the RGB + return number as 

input features (C2). 

 
 Precision Recall F1-score 

Ground 0.75 0.8 0.77 

Road 0.7 0.61 0.65 

Vegetation 0.74 0.72 0.73 

Buildings 0.24 0.09 0.13 

Power lines 0.45 0.2 0.28 

Overall accuracy 0.74 

Weighted avg 0.73 0.74 0.73 

Table 13. Results of the test with the L1 features as input (C3). 

 
 Precision Recall F1-score 

Ground 0.78 0.95 0.85 

Road 0.95 0.62 0.75 

Vegetation 0.92 0.71 0.8 

Buildings 0.64 0.47 0.54 

Power lines 0.7 0.04 0.07 

Overall accuracy 0.82 

Weighted avg 0.84 0.82 0.82 

Table 14. Results of the test with all the features as input (C4). 

Gini index, scaler 1. 

 
 Precision Recall F1-score 

Ground 0.79 0.95 0.86 

Road 0.93 0.6 0.73 

Vegetation 0.92 0.72 0.81 

Buildings 0.7 0.6 0.65 

Power lines 0.72 0.02 0.05 

Overall accuracy 0.83 

Weighted avg 0.85 0.83 0.83 

Table 15. Results of the test with all the features as input (C4). 

Entropy, scaler 1. 

 
 Precision Recall F1-score 

Ground 0.8 0.95 0.87 

Road 0.92 0.62 0.74 

Vegetation 0.93 0.75 0.83 

Buildings 0.73 0.67 0.7 

Power lines 0.41 0.02 0.03 

Overall accuracy 0.85 

Weighted avg 0.86 0.85 0.84 

Table 16. Results of the test with all the features as input except 

for the Scan angle rank (f2) and GPS time (f3) (C5). 

 

From these metrics, it is clear that the behaviour is similar to 

Sample 1 if considering C1, C2, and C4, thus validating the 

previous conclusion; but, above all, the C5 test shows that the 

addition of features is not always a positive factor. In fact, in this 

case, the elimination of two features that could not properly 

describe the classes led to slightly higher metrics in the 

predictions, e.g. overall accuracy of 85% (C5) versus 82/83% 

(C4), and for the ground category, an increasing of about 2%. 

Finally, regarding the comparison between the C2 and C3 

configuration, it is highlighted that the data directly extracted 

from the L1 is not optimal for classification with ML algorithms 

such as Random Forest, but they need a pre-analysis or filtering 

of the features. 

 
(a) 

    
 (b)     (c) 

 

    
 (d)    (e) 

Figure 11. Ground truth (a) and predictions: based on C1 - only 

RGB (b), C2 – RGB + return number (c), C4 – all the features 

(d), C5 – all the features except for the Scan angle rank (f2) and 

GPS time (f3). 

 

3. Conclusions 

In this contribution, the exploitation of the return number from 

the DJI Zenmuse L1 for DTM extraction has been investigated. 

Preliminary tests on a MATLAB state-of-the-art morphological 

filter algorithm were conducted to enhance its computing time. 

This method (method 1) showed promising results in terms of 

accuracy and precision but has higher processing times for 

Sample 1, while it performs better in Sample 2. On the other 

hand, the proposed method 2 is more performant and precise in 

the point cloud where only vegetation is present (Sample 1), 

while in Sample 2, where we find building roofs and urban 

elements, there is a consistent misclassification with the terrain 

category. The results shown for this proposed method are only 

preliminary and further investigations and in-depth studies and 

tests should be carried out. In addition, a limitation of this method 

consists of the fact that the return number is only used to initially 

filter the ground points, on one side making an assumption that 
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is not fully generalizable, on the other side restraining the 

intrinsic potentialities of this kind of data. 

As regards the use of the Random Forest, it emerged that the 

return number is effectively a useful feature in discriminating the 

ground class for DTM extraction, even if its coupling with 

additional features is desirable anyway.  

A further development of this research could lie in the ability to 

understand not if, but how the number of returns influences the 

final predictions, analysing the possible correlations between the 

echoes and the classes to be discriminated. 
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